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Abstract

The bin packing problem is a well-studied problem in combinatorial optimization. In the
classical bin packing problem, we are given a list of real numbers in (0, 1] and the goal is to place
them in a minimum number of bins so that no bin holds numbers summing to more than 1.
The problem is extremely important in practice and finds numerous applications in scheduling,
routing and resource allocation problems. Theoretically the problem has rich connections with
discrepancy theory, iterative methods, entropy rounding and has led to the development of
several algorithmic techniques. In this survey we consider several classical generalizations of bin
packing problem such as geometric bin packing, vector bin packing and various other related
problems.

In two-dimensional geometric bin packing, we are given a collection of rectangular items to
be packed into a minimum number of unit size square bins. This variant has a lot of applications
in cutting stock, vehicle loading, pallet packing, memory allocation and several other logistics
and robotics related problems. In d-dimensional vector bin packing, each item is a d-dimensional
vector that needs to be packed into unit vector bins. This problem is of great significance in
resource constrained scheduling and in recent virtual machine placement in cloud computing.
We also consider several other generalizations of bin packing such as geometric knapsack, strip
packing and other related problems such as vector scheduling, vector covering etc. We survey
algorithms for these problems in offline and online setting, and also mention results for several
important special cases. We briefly mention related techniques used in the design and analysis
of these algorithms and also survey some heuristics that work well in practice. In the end we
conclude with a list of open problems.

∗This research was supported by NSF EAGER award grants CCF-1415496 and CCF-1415498
†Georgia Institute of Technology, Atlanta, USA. Email: hic@cc.gatech.edu
‡Istituto Dalle Molle di studi sull’Intelligenza Artificiale (IDSIA), Scuola universitaria professionale della Svizzera

italiana (SUPSI), Universit della Svizzera italiana (USI), Switzerland. email: arindam.khan@supsi.ch. Supported by
SNF Grant 200021 159697/1. A part of this work was done when the author was a student at Georgia Institute of
Technology.
§Georgia Institute of Technology, Atlanta, USA. Email: sebastian.pokutta@isye.gatech.edu
¶Georgia Institute of Technology, Atlanta, USA. Email: tetali@math.gatech.edu

1



Contents

1 Introduction 3
1.1 Organization of the Survey . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Preliminaries 4
2.1 Approximation Algorithms and Inapproximability . . . . . . . . . . . . . . . . . 4
2.2 One Dimensional Bin Packing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.2.1 Offline 1-D Bin Packing . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.2.2 Online 1-D Bin Packing . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.3 Multidimensional Bin Packing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.3.1 Geometric Packing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.3.2 Vector Packing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.3.3 Relation between the problems . . . . . . . . . . . . . . . . . . . . . . . . 9

2.4 Techniques: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.4.1 Next Fit Decreasing Height (NFDH) . . . . . . . . . . . . . . . . . . . . . 10
2.4.2 Configuration LP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.4.3 Algorithms based on rounding items to constant number of types . . . . . 11
2.4.4 Round and Approx (R&A) Framework . . . . . . . . . . . . . . . . . . . . 12

3 Geometric Bin Packing 13
3.1 Geometric Bin Packing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.2 Square Packing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.3 Online Packing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.4 Heuristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.5 Resource Augmentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.6 Strip Packing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.7 Shelf and Guillotine Packing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.8 Geometric Knapsack . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

4 Vector Bin Packing 20
4.1 Offline Vector Packing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
4.2 Online Vector Packing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
4.3 Vector Scheduling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
4.4 Vector Bin Covering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
4.5 Heuristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

5 Open Problems 23

2



1 Introduction

The bin packing problem has been the corner stone of approximation algorithms and has been
extensively studied starting from the early seventies. In the classical bin packing problem, we
are given a list I = {i1, i2, . . . , in} of real numbers in the range (0, 1], the goal is to place them
in a minimum number of bins so that no bin holds numbers summing to more than 1.

Bin packing is a special case of the one-dimensional cutting stock problem [GG61], loading
problem [EC71] and several scheduling related problems [CMM71]. In theoretical computer
science, the bin packing problem was probably first studied by Garey, Graham and Ullman
in 1972 [GGU72], from the standpoint of memory allocation problems such as table format-
ting, prepaging and file allocation. They noticed that finding a general placement algorithm
for attaining the minimum number of bins appears to be impractical, and thus provided four
heuristics: first fit (FF), best fit (BF), first fit decreasing height (FFDH) and best fit decreasing
heights (BFDH). Soon Johnson, Demers, Ullman, Garey and Graham [JDU+74] published the
first definitive analysis of the worst case guarantees of several bin packing approximation algo-
rithms. The bin packing problem is well-known to be NP-hard [GJ79] and the seminal work of
Johnson et al. initiated an extremely rich research area in approximation algorithms [Hoc96]. In
fact the term approximation algorithm was coined by David S. Johnson [Joh73] in an influential
and prescient paper in 1974 where he studied algorithms for bin packing and other packing and
covering related optimization problems.

Bin packing is extremely useful in practice and has a lot of applications in various fields.
Skiena [Ski99] has presented market research for the field of combinatorial optimization and
algorithms, attempting to determine which algorithmic problems are most in demand for appli-
cations, by studying WWW traffic. Both bin packing and related knapsack problem were among
top five most popular NP-hard problems. The implementations of bin packing and knapsack
were the most needed among all NP-hard problems, even more than problems such as set-cover,
traveling salesman and graph-coloring.

Garey and Johnson [GJ81], followed by Coffman et al. [CJGJ84], gave comprehensive surveys
on bin packing algorithms. Coffman and Lueker also covered probabilistic analyses of packing
algorithms in detail [CL91]. Galambos and Woeginger [GW95] gave an overview restricted
mainly to online variants of bin packing problems. There had been many surveys on bin packing
problems thereafter [Gon07, CGMV99, CW98]. The most recent, extensive coverage on 1-D bin
packing was given by Coffman et al. [CJCG+13].

In this survey, we primarily focus on packing in higher dimensions due to its prominence
in many real world applications. We primarily consider two generalizations of bin packing:
geometric bin packing and vector bin packing.

In two-dimensional (2-D) geometric bin packing (GBP), we are given a collection of rectan-
gular items to be packed into a minimum number of unit-size square bins. This variant and
other higher dimensional GBP variants have vast applications in cutting stock, vehicle load-
ing, pallet packing, memory allocation and several other logistics and robotics related problems
[GG61, Ram92]. In two dimensions, packing objects into containers have many important ap-
plications, e.g., in the context of cutting out a given set of patterns from a given large piece of
material minimizing waste, typically in sheet metal processing and apparel fabrication. In three
dimensions, these problems are frequently encountered in minimizing storage space or container
space for transportation. In this survey we consider the widely studied orthogonal packing case,
where the items must be placed in the bin such that their sides are parallel to the sides of the
bin. In any feasible solution, items are not allowed to overlap. Here two variants are usually
studied, (i) where the items cannot be rotated (packing by translations), and (ii) they can be
rotated by 90 degrees (packing by restricted rigid motions). These variants are also recurrent
in practice, e.g., in apparel production usually there are patterns of weaving or texture on the
material so that the position where a piece should be cut cannot be rotated arbitrarily.
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In d-dimensional vector bin packing (VBP), each item is a d-dimensional vector that needs
to be packed into unit vector bins. The problem is of great significance in resource con-
strained scheduling and appeared also recently in virtual machine placement in cloud computing
[PTUW11]. For example, consider each job (item) has multiple resource requirements (dimen-
sions) such as CPU, memory, I/O, disk, network etc. and each server (bin) has a bounded
amount of these resources. The goal to assign all jobs to minimum number of servers, with-
out violating the resource constraints, translates to the vector packing problem. Even in two
dimensions, vector packing has many novel applications in layout design, logistics, loading and
scheduling problems [SW84, Spi94].

These generalizations have been well studied since the 1970s. Baker, Coffman, and Rivest
first considered orthogonal packings in two dimensions [BJR80]. At the same time Coffman
et al. [JGJT80] gave performance bounds for level-oriented two-dimensional packing algorithms
such as Next Fit Decreasing Height and First Fit Decreasing Height. Lodi, Martello and Monaci
first gave a survey on two-dimensional packing problems [LMM02]. Epstein and van Stee gave a
survey in [Gon07] on multi-dimensional bin packing. There has been consistent progress in the
area since then. We will provide a detailed survey of related works in the later corresponding
sections.

1.1 Organization of the Survey

In Section 2, we introduce related definitions and notation. In Section 3, we discuss results
related to geometric bin packing. Thereafter in Section 4, we discuss results related to vector
packing. Finally, in Section 5 we conclude with a list of open problems.

2 Preliminaries

In this section we introduce relevant notation and definitions required to define, analyze and
classify bin packing related problems. Some more additional definitions will be introduced later
on as required.

2.1 Approximation Algorithms and Inapproximability

Approximation Algorithm is an attempt to systematically measure, analyze, compare and im-
prove the performance of heuristics for intractable problems. It gives theoretical insight on how
to find fast solutions for practical problems, provides mathematical rigor to study and analyze
heuristics, and also gives a metric for the difficulty of different discrete optimization problems.

Definition 2.1. (Approximation ratio) Given an algorithm A for a minimization problem
Π, the (multiplicative) approximation ratio is:

ρA = supI∈I

{
A(I)

Opt(I)

}
,

where A(I) is the objective function value of the solution returned by algorithm A on instance
I ∈ I and Opt(I) is the objective function value of the corresponding optimal solution.

In other words, an algorithm A for a minimization problem Π is called a ρ-approximation
algorithm if A(I) ≤ ρ·Opt(I) holds for every instance I of Π. An algorithm A for a maximization
problem Π is called a ρ-approximation algorithm if A(I) ≥ 1

ρ · Opt(I) holds for every instance
I of Π. This asymmetry ensures that ρ ≥ 1 for all approximation algorithms.

In some cases, quality of the heuristic is measured in terms of additive approximation. In
other words, an algorithm A for a minimization problem Π is called a σ-additive approximation
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algorithm if A(I) ≤ Opt(I) + σ holds for every instance I of Π. Additive approximation algo-
rithms are relatively rare. Karmarkar-Karp’s algorithm [KK82] for one-dimensional bin packing
is one such example.

For detailed introduction to approximation algorithms, we refer the readers to the following
books on approximation algorithms [Vaz01, WS11].

Definition 2.2. (Polynomial time approximation scheme (PTAS)) A problem is said to
admit a polynomial time approximation scheme (PTAS) if for every constant ε > 0, there is a
poly(n)-time algorithm with approximation ratio (1 + ε) where n is the size of the input. Here
running time can be as bad as O(nf(1/ε) for any function f that depends only on ε.

If the running time of PTAS is O(f(1/ε) · nc) for some function f and a constant c that is
independent of ε, we call it to be an efficient polynomial time approximation scheme (EPTAS).

On the other hand, if the running time of PTAS is polynomial in both n and 1/ε, it is said
to be a fully polynomial time approximation scheme (FPTAS).

Assuming P 6= NP, a PTAS is the best result we can obtain for a strongly NP-hard problem.
Already in the 1D case, a simple reduction from the Partition problem shows that it is NP-
hard to determine whether a set of items can be packed into two bins or not, implying that no
approximation better than 3/2 is possible. However, this does not rule out the possibility of an
Opt+ 1 guarantee where Opt is the number of bins required in the optimal packing. Hence it is
insightful to consider the asymptotic approximation ratio.

Definition 2.3. (Asymptotic approximation ratio (AAR)) The asymptotic approximation
ratio of an algorithm A is ρ if the output of the algorithm has objective function value at most
ρ · Opt(I) + δ for some constant δ, for each instance I.

In this context the approximation ratio defined as in Definition 2.1, is also called to be the
(absolute) approximation ratio. If δ = 0, then A has (absolute) approximation guarantee ρ.

Definition 2.4. (Asymptotic PTAS (APTAS)) A problem is said to admit an asymptotic
polynomial time approximation scheme (APTAS) if for every ε > 0, there is a poly-time algorithm
with asymptotic approximation ratio of (1 + ε).

If the running time of APTAS is polynomial in both n and 1/ε, it is said to be an asymptotic
fully polynomial time approximation scheme (AFPTAS).

Note that NP optimization problems whose decision versions are all polynomial time re-
ducible to each other (due to NP-completeness), can behave very differently in their approx-
imability. For example classical bin packing problem admits an APTAS, whereas no polynomial
factor approximation is known for the traveling salesman problem. This anomaly is due to the
fact that reductions between NP-complete problems preserve polynomial time computability,
but not the quality of the approximate solution.

PTAS is the class of problems that admit polynomial time approximation scheme. On the
other hand, APX is the class of problems that have a constant-factor approximation. Clearly
PTAS ⊆ APX. In fact the containment is strict unless P = NP. A problem is APX-hard if there
is a constant δ > 0 such that the problem does not admit a (1+δ) approximation unless P = NP.

Theorem 2.5. [CP91] If a problem F is APX-hard then it does not admit a PTAS unless
P = NP.

In fact there is no quasi-polynomial time approximation scheme (QPTAS) for any APX-hard
problem unless NP ⊆ QP.

Online Algorithms: Optimization problems where the input is received in an online manner
and the output must be produced online are called online problems. Bin packing is also one of
the key problems in online algorithms. Let us define the notion of a competitive ratio which
will be useful when we discuss some related results in online algorithms in later sections.
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Definition 2.6. (Competitive Ratio) Given an online algorithm A for a minimization prob-
lem Π, the competitive ratio is:

ρA = supI∈I

{
A(I)

Opt(I)

}
,

where A(I) is the objective function value of the solution returned by the online algorithm A
on instance I over the set of all finite input sequences I and Opt(I) is the objective function
value of the corresponding optimal offline solution.

Asymptotic competitive ratio and absolute competitive ratio are defined analogously. In
general, there are no requirements or assumptions concerning the computational efficiency of an
online algorithm. However, in practice, we usually seek polynomial time online algorithms.

There are few others metrics to measure the quality of a packing, such as random-order
ratio [Ken96], accommodation function [BLN01], relative worst-order ratio [BF07], differential
approximation measure [DGP98] etc.

2.2 One Dimensional Bin Packing

Before going to multidimensional bin packing, we give a brief description of the results in 1-D
bin packing. Here we focus primarily on very recent results. For a detailed survey and earlier
results we refer the interested reader to [CJCG+13].

2.2.1 Offline 1-D Bin Packing

The earliest algorithms for one dimensional (1-D) bin packing were simple greedy algorithms
such as First Fit (FF), Next Fit (NF), First Fit Decreasing Heights (FFDH), Next Fit Decreas-
ing Heights (NFDH) etc. In their celebrated work, de la Vega and Lueker [dlVL81] gave the
first APTAS by introducing linear grouping that reduces the number of different item types.
Algorithms based on other item grouping or rounding based techniques have been used in many
related problems. The result was substantially improved by Karmarkar and Karp [KK82] who
gave a guarantee of Opt +O(log2 Opt) by providing an iterative rounding for a linear program-
ming formulation. It was then improved by Rothvoß [Rot13] to Opt + O(logOpt · log logOpt)
using ideas from discrepancy theory. Very recently, Hoberg and Rothvoß [HR15] achieved ap-
proximation ratio of Opt + O(logOpt) using discrepancy method coupled with a novel 2-stage
packing approach. On the other hand, the possibility of an algorithm with an Opt+1 guarantee
is still open. This is one of the top ten open problems in the field of approximation algorithms
mentioned in [WS11].

Table 1 summarizes different algorithms and their performance guarantees. Here T∞ ≈ 1.69
is the well-known harmonic constant that appears ubiquitously in the context of bin packing.

The Gilmore-Gomory LP relaxation [GG61] is used in [dlVL81, KK82, Rot13] to obtain
better approximation. This LP is of the following form:

min
{
1Tx|Ax = 1, x ≥ 0

}
(1)

Here A is the pattern matrix that consists of all column vectors {p ∈ Nn|pT s ≤ 1} where
s := (s1, s2, . . . , sn) is the size vector for the items. Each such column p is called a pattern
and corresponds to a feasible multiset of items that can be assigned to a single bin. Now if
we only consider patterns p ∈ {0, 1}n, LP (1) can be interpreted as an LP relaxation of a set
cover problem, in which a set I of items has to be covered by configurations from the collection
C ⊆ 2I , where each configuration C ∈ C corresponds to a set of items that can be packed into a
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Table 1: Approximation algorithms for one dimensional bin packing

Algorithm Performance Guarantee Techniques

Next Fit [JDU+74] 2 · Opt Greedy, Online,
Next Fit Decreasing [JDU+74] T∞ · Opt +O(1) [BC81] Presorting
First Fit [JDU+74] b1.7Optc [DS13] Greedy, Online
First Fit Decreasing[JDU+74] 11

9 Opt + 6
9 [DLHT13] Presorting

de la Vega and Lueker [dlVL81] (1 + ε)Opt +O( 1
ε2

) Linear grouping
Karp and Karmarkar [KK82] Opt +O(log2Opt) Iterative rounding
Rothvoß [Rot13] Opt +O(logOpt · log logOpt) Discrepancy methods
Hoberg and Rothvoß [HR15] Opt +O(logOpt) Discrepancy methods

bin:

min

{∑
C∈C

xC :
∑
C3i

xC ≥ 1 (i ∈ I), xC ∈ {0, 1} (C ∈ C)

}
. (2)

This configuration LP is also used in other algorithms for multidimensional bin packing and we
will continue the discussion of configuration LPs in later sections.

Let Opt and Optf be the value of the optimal integer solution and fractional solution for
LP (1) respectively. Although LP (1) has an exponential number of variables, one can compute
a basic solution x with 1Tx ≤ Optf + δ in time polynomial in n and 1/δ using the Grötschel
-Lovász-Schrijver variant of the Ellipsoid method [GLS88] or the Plotkin-Shmoys-Tardos frame-
work [PST95, AHK12]. In fact the analysis of [HR15], only shows an upper bound of O(logOpt)
on the additive integrality gap of LP (1). It has been conjectured in [ST97] that the LP has the
Modified Integer Roundup Property, i.e., Opt ≤ dOptfe+1. The conjecture has been proved true
for the case when the instance contains at most 7 different item sizes [SS09]. Recently, Eisen-
brand et al. [EPR13] found a connection between coloring permutations and bin packing, that
shows that Beck’s Three Permutation Conjecture (any three permutations can be bi-colored
with O(1) discrepancy) would imply a O(1) integrality gap for instances with all items sizes
bigger than 1/4. However, Newman, Neiman, and Nikolov [NNN12] found a counterexample to
Beck’s conjecture. Using these insights Eisenbrand et al. [EPR13] showed that a broad class of
algorithms cannot give an o(log n) gap. Rothvoß [Rot12] further explored the connection to dis-
crepancy theory and gave a rounding using Beck’s entropy method achieving an O(log2 Opt) gap
alternatively. The later improvement to O(logOpt) in [Rot13, HR15] arose from the constructive
partial coloring lemma [LM12] and gluing techniques. Recently Goemans and Rothvoß [GR14]
also have shown polynomiality for bin packing when there are O(1) number of item types.

Bin packing problem is also well-studied when the number of bins is some fixed constant k. If
the sizes of the items are polynomially bounded integers, then the problem can be solved exactly
using dynamic programming in nO(k) time, for an input of length n. Along with APTAS for
bin packing, this implies a QPTAS for bin packing, significantly better than 3/2, the hardness
of (absolute) approximation for the problem. However, Jansen et al. [JKMS13] showed unary
bin packing (where item sizes are given in unary encoding) is W[1]-hard and thus the running
time for fixed number of bins k, cannot be improved to f(k) ·nO(1) for any function of k, under
standard complexity assumptions.
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2.2.2 Online 1-D Bin Packing

An online bin packing algorithm uses k-bounded space if, for each item, the choice of where
to pack it, is restricted to a set of at most k open bins. Lee and Lee [LL85] gave a O(1)-
bounded space algorithm that achieve asymptotic competitive ratio of T∞ ≈ 1.69. They also
established tightness. Seiden [Sei02] gave a new algorithm, HARMONIC++, whose asymptotic
performance ratio is at most 1.58889. Ramanan et al. [RBLL89] showed that Harmonic-type
algorithms cannot achieve better than 1.58333 asymptotic competitive ratio. Very recently, this
Harmonic lower bound was beaten by Heydrich and van Stee [HvS15] who presented an online
algorithm with asymptotic performance ratio of at most 1.5817 using a new type of interval
classification. They also gave a lower bound of 1.5766 for any interval classification algorithm.
In general the best known lower bound for asymptotic competitive ratio is 1.54014 [vV92]. Very
recently, Balogh et al. [BBD+15] presented an online bin packing algorithm with an absolute
competitive ratio of 5/3 which is optimal.

Online bin packing has also been studied in probabilistic settings. Shor [Sho91] gave tight-
bounds for average-case online bin packing. Other related algorithms for online stochastic
bin packing are Sum of Squares algorithm by Csirik et al. [CJK+06] and primal-dual based
algorithms in [GR12].

2.3 Multidimensional Bin Packing

We will now discuss preliminaries related to multidimensional bin packing. We will consider the
offline setting, where all items are known a priori. We also briefly survey results in the online
setting, when the items appear one at a time and we need to decide packing an item without
knowing the future items.

2.3.1 Geometric Packing

Definition 2.7. (Two-Dimensional Geometric Bin Packing (2-D GBP)) In two-dimensional
geometric bin packing (2-D GBP), we are given a collection of n rectangular items I :=
{r1, r2, . . . , rn} where each rectangle rk is specified by its width and height (wk, hk) such that
wk, hk are rational numbers in [0, 1]. The goal is to pack all rectangles into a minimum number
of unit square bins.

We consider the widely studied orthogonal packing case, where the items must be placed in
the bin such that their sides are parallel to the sides of the bin. In any feasible solution, items
are not allowed to overlap. Here two variants are usually studied, (i) where the items cannot be
rotated, and (ii) they can be rotated by 90 degrees.

We will also mention some results related to strip packing and geometric knapsack problems,
two other geometric generalizations of bin packing, in Section 3.

Definition 2.8. (Strip Packing (2-D SP)) In two-dimensional strip packing (2-D SP), we
are given a strip of unit width and infinite height, and a collection of n rectangular items
I := {r1, r2, . . . , rn} where each rectangle rk is specified by its width and height (wk, hk) such
that wk, hk are rational numbers in [0, 1]. The goal is to pack all rectangles into the strip
minimizing the height.

This is a variant of cutting stock problem, well studied in optimization.

Definition 2.9. (Geometric Knapsack (2-D GK)) In two-dimensional geometric knapsack
(2-D GK), we are given a unit square bin and a collection of two dimensional rectangles I :=
{r1, r2, . . . , rn} where each rectangle rk is specified by its width and height (wk, hk) and profit
pk such that wk, hk, pk are rational numbers in [0, 1]. The goal is to find the maximum profit
subset that can be feasibly packed into the bin.
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Multidimensional variants of above three geometric problems are defined analogously us-
ing d-dimensional rectangular parallelepipeds (also known as d-orthotope, the generalization of
rectangles in higher dimensions) and d-dimensional cuboids (also known as d-cube, the general-
ization of squares in higher dimensions ). We will discuss 3-dimensional variants in more detail
in Section 3.

2.3.2 Vector Packing

Now we define vector bin packing, the nongeometric generalization of bin packing.

Definition 2.10. (Vector Bin Packing (d-D VBP)) In d-dimensional vector packing (d-D
VBP), we are given a set of n rational vectors I := {v1, v2, . . . , vn} from [0, 1]d. The goal is
to partition them into sets (bins) B1, B2, . . . , Bm such that ||σBj ||∞ ≤ 1 for 1 ≤ j ≤ m where
σBj =

∑
vi∈Bj vi is the sum of vectors in Bj , and we want to minimize m, the number of bins.

In other words, the goal is to pack all the vectors into minimum number of bins so that for
every bin the sum of packed vectors in the bin should not exceed the vector of the bin in each
dimension.

We now define related vector scheduling and vector bin covering problems.

Definition 2.11. (Vector Scheduling (d-D VS)) In d-dimensional vector scheduling (d-D
VS), we are given a set of n rational vectors I := {v1, v2, . . . , vn} from [0, 1]d and an integer m.
The goal is to partition I into m sets B1, B2, . . . , Bm such that max1≤i≤m||σBi ||∞ is minimized,
where σBi =

∑
vi∈Bi vi is the sum of vectors in Bi.

For d = 1, this just reduces the classical multiprocessor scheduling.

Definition 2.12. (Vector Bin Covering (d-D VBC)) In d-dimensional vector bin covering
(d-D VBC), we are given a set of n rational vectors I := {v1, v2, . . . , vn} from [0, 1]d. The goal
is to partition them into sets (bins) B1, B2, . . . , Bm such that σBj ≥ 1 in all dimensions for all
j ∈ [m], where σBj =

∑
vi∈Bj vi is the sum of vectors in B1, and we want to maximize m, the

number of bins.

For d = 1, classical bin covering problem admits APTAS [JSO03].

Figure 1: Two rectangles of size 1
2 ×

3
4 and 1

2 ×
3
4

can be packed into one bin

Figure 2: Two vectors (12 ,
3
4) and (14 ,

3
4) cannot be

packed into one vector bin as their sum exceeds
one in the second dimension
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2.3.3 Relation between the problems

Figure 1 and 2 show the difference between geometric packing and vector packing. Given a
set of vectors, one can easily determine whether they can be packed into one unit bin by just
checking whether the sum along each coordinate is at most one or not. However for geometric
bin packing, it is NP-hard to determine whether a set of rectangles can be packed into one unit
square bin or not, implying that no (absolute) approximation better than 2 is possible even for
2-D GBP.

Note that both geometric knapsack and strip packing are closely related to geometric bin
packing. Results and techniques related to strip packing and knapsack have played a major role
in improving the approximation for geometric bin packing. If all items have same height then
d-dimensional strip packing reduces to (d−1)-dimensional geometric bin packing. On the other
hand to decide whether a set of rectangles (wi, hi) for i ∈ [n] can be packed into m bins, one can
define a 3-D geometric knapsack instance with n items (wi, hi, 1/m) and profit (wi · hi · 1/m)
and decide if there is a feasible packing with profit

∑
i∈n(wi · hi · 1/m). Figure 3 shows the

relation between different generalizations of bin packing.

Figure 3: Generalizations of bin packing problems

There are few other generalizations of bin packing such as weighted bipartite edge coloring.
We do not cover them here and we refer the readers to [Kha15, KS15].

2.4 Techniques:

Now we describe some techniques, heavily encountered in multidimensional packing.

2.4.1 Next Fit Decreasing Height (NFDH)

The Next Fit Decreasing Height (NFDH) procedure was introduced by Coffman et al. [JGJT80]
for 2-D packing. NFDH considers items in a non-increasing order of height and greedily assigns
items in this order into shelves, where a shelf is a row of items having their bases on a line that
is either the base of the bin or the line drawn at the top of the highest item packed in the shelf
below. More specifically, items are packed left-justified starting from bottom-left corner of the
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bin, until the next item cannot be included. Then the shelf is closed and the next item is used
to define a new shelf whose base touches the tallest (left most) item of the previous shelf. If
the shelf does not fit into the bin, the bin is closed and a new bin is opened. The procedure
continues until all the items are packed. This simple heuristic works quite well for small items.
Some key properties of NFDH are following:

Lemma 2.13. [MM68] Let B be a rectangular region with width w and height h. We can pack
small rectangles (with both width and height less than ε) with total area A using NFDH into
B if w ≥ ε and w · h ≥ 2A+ w2/8.

Lemma 2.14. [CLM05] Given a set of items of total area of V and each having height at most
one, they can be packed in at most 4V + 3 bins by NFDH.

Lemma 2.15. [JGJT80] Let B be a rectangular region with width w and height h. If we
pack small rectangles (with both width and height less than ε) using NFDH into B, total
w · h− (w + h) · ε area can be packed, i.e., the total wasted volume in B is at most (w + h) · ε.

In fact it can be generalized to d-dimensions.

Lemma 2.16. [BCKS06] Let C be a set of d-dimensional cubes (where d ≥ 2) of sides smaller
than ε. Consider NFDH heuristic applied to C. If NFDH cannot place any other cube in a
rectangle R of size r1 × r2 × · · · rd (with ri ≤ 1), the total wasted (unfilled) volume in that bin

is at most: ε
∑d
i=1 ri.

2.4.2 Configuration LP

The best known approximations for most bin packing type problems are based on strong LP
formulations called configuration LPs. Here, there is a variable for each possible way of feasibly
packing a bin (called a configuration). This allows the packing problem to be cast as a set
covering problem, where each item in the instance I must be covered by some configuration.
Let C denote the set of all valid configurations for the instance I. The configuration LP is
defined as:

min

{∑
C∈C

xC :
∑
C3i

xC ≥ 1 ∀i ∈ I, xC ≥ 0 ∀C ∈ C

}
. (3)

As the size of C can possibly be exponential in the size of I, one typically considers the dual of
the LP given by:

max

{∑
i∈I

vi :
∑
i∈C

vi ≤ 1 ∀C ∈ C, vi ≥ 0 ∀i ∈ I

}
. (4)

The separation problem for the dual is the following knapsack problem. Given set of weights vi,
is there a feasible configuration with total weight of items more than 1. From the well-known
connection between separation and optimization [GKPV01, PST95, GLS88], solving the dual
separation problem to within a (1 + ε) accuracy suffices to solve the configuration LP within
(1 + ε) accuracy. We refer the readers to [Rot12] for an explicit proof that, for any set family
C ⊆ 2[n], if the dual separation problem can be approximated to (1 + ε)-factor in time T (n, ε)
then the corresponding column-based LP can be solved within an arbitrarily small additive error
δ in time poly(n, 1δ ) · T (n,Ω( δn )). This error term cannot be avoided as otherwise we can decide
the PARTITION problem in polynomial time. For 1-D BP, the dual separation problem admits
an FPTAS, i.e., it can be solved in time T (n, ε) = poly(n, 1ε ). Thus the configuration LP can be
solved within arbitrarily small additive constant error δ in time poly(n, 1δ ) · poly(n,O(nδ )). For
multidimensional bin packing, the dual separation problem admits a PTAS, i.e., can be solved in
time T (n, ε) = O(nf(

1
ε )). Thus the configuration LP can be solved within (1 + δ) multiplicative

factor in time poly(n, 1δ ) · T (n,Ω( δnn )), i.e., in time O(nO(f( 1
δ ))).
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Note that the configurations in (3) are defined based on the original item sizes (without any
rounding). However, for more complex problems (say 3-D GBP) one cannot hope to solve such
an LP to within (1 + ε) (multiplicative) accuracy, as the dual separation problem becomes at
least as hard as 2-D GBP. In general, given a problem instance I, one can define a configuration
LP in multiple ways (say where the configurations are based on rounded sizes of items in I,
which might be necessary if the LP with original sizes is intractable). For the special case of
2-D GBP, the separation problem for the dual (4) is the 2-D geometric knapsack problem for
which the best known result is only a 2-approximation. However, Bansal et al. [BCJ+09] showed
that the configuration LP (3) with original sizes can still be solved to within 1+ ε accuracy (this
is a non-trivial result and requires various ideas).

Similarly for the case of vector bin packing, the separation problem for the dual (4) is the
vector knapsack problem which can be solved to within 1 + ε accuracy [FC84]. However, there
is no EPTAS even for 2-D vector knapsack [KS10].

The fact that solving the configuration LP does not incur any loss for 2-D GBP or VBP
plays a key role in the present best approximation algorithms.

2.4.3 Algorithms based on rounding items to constant number of types

Rounding of items to O(1) types has been used either implicitly [BLS05] or explicitly [dlVL81,
KK82, Cap02, JP13, KO07], in almost all bin packing algorithms to reduce the problem com-
plexity and make it tractable. Let I be a given set of items and sx be the size of item x ∈ I.
Define a partial order on bin packing instances as follows: I ≤ J if there exists a bijective
function f : I → J such that sx ≤ sf(x) for each item s ∈ I. J is then called a rounded up
instance of I. One of the key properties of rounding items is as follows:

Lemma 2.17. [KK82] I ≤ J implies Opt(I) ≤ Opt(J).

There are typically two types of rounding: either the size of an item in some coordinate
(such as width or height) is rounded in an instance-oblivious way (e.g., in harmonic rounding
[LL85, Cap02], or rounding sizes to geometric powers [KK82]), or it is rounded in an input
sensitive way (e.g., in linear grouping [dlVL81]).

Linear grouping: Linear grouping was introduced by Fernandez de la Vega and Lueker
[dlVL81] in the first approximation scheme for 1-D bin packing problem. It is a technique
to reduce the number of distinct item sizes. The scheme works as follows, and is based on a
parameter k, to be fixed later. Sort the n items by nonincreasing size and partition them into
d1/ke groups such that the first group consists of the largest dnke pieces, next group consists
of the next dnke largest items and so on, until all items have been placed in a group. Apart
from the last group all other groups contain dnke items and the last group contains ≤ nk items.
The rounded instance Ĩ is created by discarding the first group, and for each other group, the
size of an item is rounded up to the size of the largest item in that group. The following lemma
shows that the optimal packing of these rounded items is very close to the optimal packing of
the original items.

Lemma 2.18. [dlVL81] Let Ĩ be the set of items obtained from an input I by applying linear
grouping with group size dnke, then

Opt(Ĩ) ≤ Opt(I) ≤ Opt(Ĩ) + dnke

and furthermore, any packing of Ĩ can be used to generate a packing of I with at most dnke
additional bins.

If all items are > ε, then nε < Opt. So, for k = ε2 we get that any packing of Ĩ can be used
to generate a packing of I with at most dnε2e ≤ nε2+1 < ε ·Opt+1 additional bins. See [Kha15]
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for a slightly modified version of linear grouping that does not loose the additive constant of 1.

Geometric grouping: Karmarkar and Karp [KK82] introduced a refinement of linear group-
ing called geometric grouping with parameter k. Let α(I) be the smallest item size of an
instance I. For r = 0, 1, . . . , blog2

1
α(I)c, let Ir be the instance consisting of items i ∈ I such

that si ∈ (2−(r+1), 2−r]. Let Jr be the instances obtained by applying linear grouping with
parameter k · 2r to Ir. If J = ∪rJr then:

Lemma 2.19. [KK82] Opt(J) ≤ Opt(I) ≤ Opt(J) + kdlog2
1

α(I)e.

Harmonic rounding: Lee and Lee [LL85] introduced a harmonic algorithm (harmonick)
for online 1-D bin packing, where each item j with sj ∈ ( 1

q+1 ,
1
q ] for q ∈ {1, 2, · · · , (k − 1)}, is

rounded to 1/q. Then q items of type 1/q can be packed together in a bin. So for each type q,
we open one bin Bq and only items of type q are packed into that bin and a new bin for type q
items is opened when Bq is full. Let t1 = 1, tq+1 := tq(tq + 1) for q ≥ 1. Let m(k) be the integer
with tm(k) < k < tm(k)+1. It is shown in [LL85] that the asymptotic approximation ratio of

harmonick is Tk =
∑m(k)
q=1

1
tq

+ 1
tm(k)+1

· k
k−1 . When k →∞, T∞ = 1.691.., this is the harmonic

constant, ubiquitous in bin packing. Caprara [Cap02] introduced the harmonic decreasing height
algorithm for 2-D GBP with asymptotic approximation ratio of T∞, where widths are rounded
according to harmonic rounding and then same width items are packed using NFDH. We refer
the readers to [Eps15] for more related applications of the Harmonic algorithm in online and
bounded space algorithms.

2.4.4 Round and Approx (R&A) Framework

Now we describe the R&A Framework as described in [BCS09]. It is the key framework used
to obtain present best approximation algorithms for 2-D geometric bin packing and vector bin
packing.

1. Solve the LP relaxation of (3) using the APTAS ([BCJ+09] for 2-D GBP, [FC84] for VBP).
Let x∗ be the (near)-optimal solution of the LP relaxation and let z∗ =

∑
C∈C x

∗
C . Let r

the number of configurations in the support of x∗.

2. Initialize a |C|-dimensional binary vector xr to be an all-0 vector. For d(ln ρ)z∗e iterations
repeat the following: select a configuration C ′ ∈ C at random with probability x∗C′/z∗ and
let xrC′ := 1.

3. Let S be the remaining set of items not covered by xr, i.e., i ∈ S if and only if
∑
C3i x

r
C = 0.

On set S, apply the ρ-approximation algorithm A that rounds the items to O(1) types
and then pack. Let xa be the solution returned by A for the residual instance S.

4. Return x = xr + xa.

Let Opt(S) and A(S) denote the value of the optimal solution and the approximation al-
gorithm used to solve the residual instance, respectively. Since the algorithm uses randomized
rounding in step 2, the residual instance S is not known in advance. However, the algorithm
should perform “well” independent of S. For this purpose, Bansal, Caprara and Sviridenko
[BCS09] defined the notion of subset-obliviousness where the quality of the approximation algo-
rithm to solve the residual instance is expressed using a small collection of vectors in R|I|.

Definition 2.20. An asymptotic ρ-approximation for the set covering problem defined in (1),
is called subset-oblivious if, for any fixed ε > 0, there exist constants k,Λ, β (possibly dependent
on ε), such that for every instance I of (1), there exist vectors v1, v2, · · · , vk ∈ R|I| that satisfy
the following properties:
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1.
∑
i∈C v

j
i ≤ Λ, for each configuration C ∈ C and j = 1, 2, · · · , k;

2. Opt(I) ≥
∑
i∈I v

j
i for j = 1, 2, · · · , k ;

3. A(S) ≤ ρ
∑
i∈S v

j
i + εOpt(I) + β, for each S ⊆ I and j = 1, 2, · · · , k.

Roughly speaking, the vectors are analogues to the sizes of items and are introduced to use
the properties of the dual of (1). Property 1 says that the vectors divided by constant Λ must
be feasible for (2). Property 2 provides lower bound for OPT (I) and Property 3 guarantees
that the A(S) is not significantly larger than ρ times the lower bound in Property 2 associated
with S.

The main result about the R&A is the following.

Theorem 2.21. (simplified) If a problem has a asymptotic ρ-approximation algorithm that is
subset oblivious, and the configuration LP with original item sizes can be solved to within (1+ε)
accuracy in polynomial time for any ε > 0, then the R&A framework gives a (1+ln ρ)-asymptotic
approximation.

Very recently, Bansal and Khan [BK14] extended the R&A framework to any constant
rounding based algorithms for 2-D GBP. Then Bansal, Elias and Khan [BEK16] further showed
that any constant rounding based algorithm for VBP is also subset-oblivious.

One can derandomize the above procedure and get a deterministic version of R&A method
in which Step 2 is replaced by a greedy procedure that defines xr guided by a suitable potential
function. See [BCS09] for the details of derandomization.

3 Geometric Bin Packing

In this section we give an extensive survey of the literature related to geometric packing and
other related problems.

3.1 Geometric Bin Packing

Two-dimensional geometric bin packing (GBP) is substantially different from the 1-D case.
Bansal et al. [BCKS06] showed that 2-D bin packing in general does not admit an APTAS unless
P = NP.

On the positive side, there has also been a long sequence of works giving improved approxi-
mation algorithms. We refer readers to [LMM02] for a review of several greedy heuristics such
as Next Fit Decreasing, First Fit Decreasing, Best Fit Decreasing, Finite Best Strip, Floor-
Ceiling algorithm, Finite First Fit, Knapsack Packing algorithm, Finite Bottom-Left, Alternate
Directions etc. For the case when we do not allow rotation, until the mid 90’s the best known
bound was a 2.125 approximation [CGJ82], which was improved by Kenyon and Rémila [KR00]
to a 2 + ε approximation (this follows as a corollary of their APTAS for 2-D strip packing) for
any ε > 0. Caprara in his break-through paper [Cap02] gave an algorithm for 2-D bin packing
attaining an asymptotic approximation ratio of T∞(≈ 1.69103).

For the case when rotations are allowed, Miyazawa and Wakabayashi [MW04] gave an algo-
rithm with an asymptotic performance guarantee of 2.64. Epstein and Stee [EvS05b] improved
it to 2.25 by giving a packing where, in almost all bins, an area of 4/9 is occupied. Finally an
asymptotic approximation guarantee arbitrarily close to 2 followed from the result of [JvS05].
This was later improved by Bansal et al. [BCS09] to (ln(T∞) + 1) ≈ 1.52, for both the cases
with and without rotation, introducing a novel randomized rounding based framework: Round
and Approx (R & A) framework. Jansen and Prädel [JP13] improved this guarantee further to
give a 1.5-approximation algorithm. Their algorithm is based on exploiting several non-trivial
structural properties of how items can be packed in a bin.
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Very recently, Bansal and Khan [BK14] gave a polynomial time algorithm with an asymptotic
approximation ratio of ln(1.5) + 1 ≈ 1.405 for 2-D GBP. This is the best algorithm known so
far, and holds both for the case with and without rotations. The main idea behind this result
is to show that the Round and Approx (R&A) framework introduced by Bansal, Caprara and
Sviridenko [BCS09] (See section 2.4.4) can be applied to the (1.5 + ε)-approximation result of
Jansen and Prädel [JP13]. They give a more general argument to apply the R&A framework
directly to a wide class of algorithms. In particular, they show that any algorithm based on
rounding the (large) items into O(1) types, is subset-oblivious. The main observation is that
any ρ-approximation based on rounding the item sizes, can be related to another configuration
LP (on rounded item sizes) whose solution is no worse than ρ times the optimum solution.
They also give some results to show the limitations of rounding based algorithms in obtaining
better approximation ratios. There are typically two types of rounding: either the size of
an item in some coordinate (such as width or height) is rounded up in an instance-oblivious
way (e.g., Harmonic rounding [LL85, Cap02], or Geometric rounding [KK82]), or it is rounded
up in an input sensitive way (e.g. linear grouping [dlVL81]). They show that any rounding
based algorithm that rounds at least one side of each large item to some number in a constant-
size collection values chosen independent of problem instance (let us call such rounding input-
agnostic), cannot have an approximation ratio better than 3/2. For arbitrary constant rounding
based algorithms they show a hardness of 4/3.

We remark that there is still a huge gap between these upper bounds and known lower
bounds. In particular, the best known explicit lower bound on the asymptotic approximation
for 2-D BP is currently 1 + 1/3792 and 1 + 1/2196, for the versions with and without rotations,
respectively [CC06]. The best asymptotic worst-case ratio that is achievable in polynomial time
for d-dimensional GBP for d > 2 is T d−1∞ [Cap02], and in fact it can be achieved by an online
algorithm using bounded space. There are no known explicit better lower bounds for higher
dimensions.

In non-asymptotic setting, without rotations there are a 3-approximation algorithms by
Zhang [Zha05] and also by Harren and van Stee [HvS12]. Harren and van Stee [HvS08] gave a
non-asymptotic 2-approximation with rotations. Independently this approximation guarantee
is also achieved for the version without rotations by Harren and van Stee [HvS09] and Jansen
et al. [JPS09]. These 2-approximation results match the non-asymptotic lower bound for this
problem, unless P = NP.

3.2 Square Packing

Leung et al. [LTW+90] have shown that even the special case of packing squares into square is
still NP-hard. Kohayakawa et al. [KMRW01] gave a (2− (2/3)d + ε) approximation for packing
d-dimensional cubes into unit cubes. Later Bansal et al. [BCKS06] have given an APTAS for
the problem of packing d-dimensional cubes into d-dimensional unit cubes.

3.3 Online Packing

Coppersmith and Raghavan [CR89] first studied online 2-D GBP and gave algorithms with
asymptotic performance ratio of 3.25 and 6.35 for d = 2 and 3 respectively. Csirik and van Vliet
[CVV93] gave an algorithm with performance ratio T d∞ (This gives 2.859 for 2-D) for arbitrary
dimension d. Epstein and van Stee [EvS05b] achieved the same ratio of T d∞ only using bounded
space and showed it to be the optimal among all bounded space algorithms. In 2002, Seiden
and van Stee [SvS02] proposed an elegant algorithm called H ⊗ C, comprised of the Harmonic
algorithm H and the Improved Harmonic algorithm C, for the 2-D online bin packing problem
and proved that the algorithm has an asymptotic competitive ratio of at most 2.66013. Since the
best known online algorithm for one-dimensional bin packing is the Super Harmonic algorithm
[Sei02], a natural question was whether a better upper bound could be achieved by using the

15



Super Harmonic algorithm instead of the Improved Harmonic algorithm? Han et al. [HCT+11]
gave a positive answer for this question and a new upper bound of 2.5545 is obtained for the
two-dimensional online bin packing. The main idea is to develop new weighting functions for
the Super Harmonic algorithm and propose new techniques to bound the total weight in a
rectangular bin. The best known lower bound is 1.907 by Blitz, van Vliet and Woeginger
[BvVW96]. We refer the readers to [vS15] for a survey of online algorithms for geometric bin
packing in multiple dimensions.

When we allow rotation, Epstein [Eps03b] gave an algorithm with asymptotic performance
ratio of 2.45. Later Epstein and van Stee [EVS05c] gave an algorithm with asymptotic perfor-
mance ratio of 2.25.

For the special case where items are squares, there is also a large number of results. Cop-
persmith and Raghavan [CR89] showed their algorithm gives asymptotic performance ratio of
2.6875 in this case. They also gave a lower bound of 4/3. Seiden and van Stee [SvS02] gave an
algorithm with asymptotic performance ratio of 2.24437. Epstein and van Stee [EvS05a] have
shown an upper bound of 2.2697 and a lower bound of 1.6406 for online square packing, and
an upper bound of 2.9421 and a lower bound of 1.6680 for online cube packing. The upper
bound for squares can be further reduced to 2.24437 using a computer-aided proof. Later Han
et al. [HYZ10] get an upper bound of 2.1187 for square packing and 2.6161 for cube packing.
For bounded space online algorithms, Epstein and van Stee [EVS07] showed lower and upper
bounds for optimal online bounded space hypercube packing till dimensions 7. In particular,
for 2-D it lies in (2.3634, 2.3692) and for 3-D it lies in (2.956, 3.0672).

Table 2: Present state of the art for geometric bin packing

Problem Dim. Subcase Best algorithm Best lower bound

Geometric
Bin
Packing

2
OFF-REC-WR

asymp1: 1.405 [BK14] 1 + 1/3792 [CC06]
abs2: 2 [HvS08] 2 (folklore)

OFF-REC-NR
asymp: 1.405 [BK14] 1 + 1/2196 [CC06]
abs: 2 [HvS09] 2 (folklore)

d
OFF-REC-NR asymp: T d−1∞ for d > 2 [Cap02] 1 + 1/2196 [CC06]

OFF-CUB
asymp: PTAS[BCKS06] NP-hard
abs: 2 [BCKS06] 2 [FMW98]

2
ON-REC-NR asymp: 2.5545 [HCT+11] 1.907 [BvVW96]
ON-REC-WR asymp: 2.25 [EVS05c] 1.6406 [EvS05a]
ON-CUB asymp: 2.1187[HYZ10] 1.6406 [EvS05a]

3
ON-REC-NR asymp: 4.3198 [HCT+11] 1.907 [BvVW96]
ON-CUB asymp: 2.6161[HYZ10] 1.6680 [EvS05a]

Table 2 summarizes present best approximation/inapproximability results for geometric bin
packing. Here OFF denotes offline, ON denotes online, REC denotes rectangles, CUB denotes
cubes, WR denotes with rotation and NR denotes without rotation.

3.4 Heuristics

Lodi et al. have reviewed several exact algorithms based on enumerative approach or branch-
and-bound in [LMM02]. They have also studied several integer programming models for 2-D

1Here asymp. means asymptotic approximation guarantee
2Here abs. means absolute approximation guarantee
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GBP and other related problems. Pisinger and Sigurd [PS07] gave an algorithm based on
Dantzig-Wolfe decomposition. Here the master problem is a set covering problem, solved by
delayed column generation. The subproblem deals with the packing of rectangles into a single
bin and is solved as a constraint-satisfaction problem (CSP). Martello and Vigo [MV98] had
considered exact solutions for 2-D GBP for instance sizes up to 120.

Jylanki [Jyl10] reviewed several greedy heuristics in detail and did an empirical study. Pri-
marily he considered five broad classes of algorithms: shelf algorithms, fit-based guillotine algo-
rithms, split-based guillotine algorithms, maximal rectangle algorithms and skyline algorithms.
Lodi [Lod99] also has surveyed several one-phase, two-phase and non-shelf algorithms.

In the past two decades, many local search and meta-heuristic algorithms for rectangle
packing problems have been proposed. We refer interested readers to Aarts and Lenstra [AL03]
and Glover and Laguna [GL99] for a detailed survey. Dowsland [Dow93] proposed a meta-
heuristic approach to strip packing using simulated annealing. During the search, the objective is
to minimize pair-wise overlapping area of rectangles and the neighborhood contains all solutions
representing vertical or horizontal items shifting. Jakobs [Jak96] presented a genetic algorithm,
based on the representation of packing pattern by an order given by some permutation, and
packing positions are determined by a Bottom-Left strategy. There are many similar algorithms
based on a permutation coding scheme. These algorithms consist of two phases: (1) first, find
a good permutation using some meta-heuristic, (2) then the decoding algorithm puts items
following the permutation order. Several interesting coding schemes have been proposed such
as n-leaf binary tree [JvS79], sequence pair [MFNK96], bounded sliceline grid (BCG) [NFMK98],
O-tree [GTCY01], B∗-tree [CCWW00], quarter-state sequence [SKM03] etc. Pasha [Pas03] has
studied geometric bin packing algorithms for arbitrary shapes and presented several genetic
algorithms and simulated annealing based approach. Kroger [Krö95] introduced a sequential
and a parallel genetic algorithm based on guillotine cuts.

Lodi et al. [LMV02] introduced a Tabu Search framework exploiting a new constructive
heuristic for the evaluation of the neighborhood for 3-D GBP. Kell and Hoeve [KvH13] investi-
gated the application of multivalued decision diagrams (MDDs) to multidimensional bin packing
problems. Faroe et al. [FPZ03] have given a guided local search based algorithm for 3-D GBP.
For other heuristics for cutting and packing related problems, see the application-oriented re-
search bibliography by Sweeney and Paternoster [SP92]. For further details on meta-heuristics
for rectangle packing we refer the readers to [IYN07, HT01, Bor06].

For practical problems such as pallet packing in warehouses, several other factors are needed
to be considered such as the stability of packing (under gravity), elasticity, interlocking etc.
Several heuristics are considered in [SBS+10, DMO+12] for the stable pallet packing problem.
In VLSI design, simulated annealing algorithms are used in practice to solve 3-D Bin Packing
problem. Though these algorithms do not have a good worst-case guarantee, they still sometimes
work well in practice. There are multiple ways e.g., sequence triple, transitive closure, 3D-CBL
[MHDC05] to map each solution of bin packing to a list of 0-1 integers to apply simulated
annealing along with different ways to move in the solution space.

3.5 Resource Augmentation

Due to pathological worst-case examples, bin packing has been well-studied under resource
augmentation, i.e., the side length of the bin is augmented to (1 + ε) instead of one. This is also
known as bin stretching. Though 2-D GBP does not admit an APTAS, Bansal et al. [BCKS06]
gave a polynomial time algorithm to pack rectangles into at most m number of bins of size
(1 + ε) × (1 + ε) where m is the optimal number of unit bins needed to pack all items. Later
Bansal and Sviridenko [BS07] showed that this is possible even when we relax the size of the
bin in only one dimension.
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3.6 Strip Packing

A closely related problem is the Strip Packing problem. It is another generalization of the one
dimensional bin packing problem and closely tied with the geometric bin packing problem. As
we had stated earlier, the best approximation algorithm for 2-D GBP used to be a factor 2 + ε
and was a corollary from the APTAS for 2-D strip packing due to Kenyon and Rémila [KR00].
The 2-D variant, where we are given a strip with width one and unlimited height and the goal is
to pack 2-D rectangular items into the strip so as to minimize the height of the packing, is also
known as the Cutting Stock Problem. In three dimensions, we are given 3-D rectangular items
each of whose dimensions is at most one and they need to be packed into a single 3-D box of
unit depth, unit width and unlimited height so as to minimize the height of the packing.

First let us discuss offline algorithms for 2-D strip packing. Baker et al. [BJR80] introduced
the problem in 1980 and gave an algorithm with absolute approximation ratio of 3. Later
Coffman et al. [JGJT80] introduced Next-Fit Decreasing Height (NFDH), First-Fit Decreasing
Height (FFDH) [JGJT80] for 2-D strip packing without rotations, achieving asymptotic approx-
iamtion ratio as 2 and 1.7 respectively. The upper bound of 2 for NFDH remains valid even for
the case with rotations, since the proofs use only area arguments. Epstein and Stee [EvS05b]
gave a 3/2 approximation algorithm for the problem with rotation. Finally an APTAS was given
for 2-D strip packing without rotations [KR00] and with rotations in [JvS05] using a nice inter-
play of techniques like fractional strip packing, linear grouping and a variant of NFDH. For the
absolute approximation, Harren et al. [HJPvS14] have given a (5/3 + ε)-approximation whereas
the lower bound is 3/2 which follows from one dimensional bin packing. Very recently, Nadiradze
et al. [NW16] have given a (1.4 + ε)-absolute approximation algorithm with pseudo-polynomial
running time.

Now we discuss online algorithms for 2-D strip packing. Baker and Schwartz [BS83] showed
that First-Fit Shelf has asymptotic performance ratio 1.7. Csirik and Woeginger [CW97] im-
proved it to T∞ ≈ 1.691 using the Harmonic algorithm as a subroutine. They also mention a
lower bound of 1.5401. For the absolute performance ratio, Brown et al. [BBK82] have given a
lower bound of 2.

3-D strip packing is a common generalization of both the 2-D bin packing problem (when
each item has height exactly one) and the 2-D strip packing problem (when each item has
width exactly one). Li and Cheng [LC90] were among the first people who considered the
problem. They showed 3-D versions of FFDH and NFDH have unbounded worst-case ratio.
They gave a 3.25 approximation algorithm, and later gave an online algorithm with upper bound
of T 2

∞ ≈ 2.89 [LC92] using the Harmonic algorithm as a subroutine. Bansal et al. [BHI+07] gave
a 1.69 approximation for the offline case. Recently Jansen and Prädel [JP14] further improved
it to 1.5. Both these two algorithms extend techniques from 2-D bin packing.

3.7 Shelf and Guillotine Packing

For d = 2, many special structures of packings have been considered in the literature, because
they are both easy to deal with and important in practical applications. Among these, very fa-
mous are the two-stage packing structures, leading to two-dimensional shelf bin packing (2SBP)
and two-dimensional shelf strip packing (2SSP). Two-stage packing problems were originally
introduced by Gilmore and Gomory [20] and, thinking in terms of cutting instead of packing,
requires that each item be obtained from the associated bin by at most two stages of cutting.

In two-stage packing, in the first stage, the bins are horizontally cut into shelves. The second
stage produces slices, which contain a single item by cutting the shelves vertically. Finally, an
additional stage (called trimming) is allowed in order to separate an item from a waste area.
See Figure 4 for an example of two-stage packing. Two-stage packing is equivalent to packing
the items into the bins in shelves, where a shelf is a row of items having their bases on a line
that is either the base of the bin or the line drawn at the top of the highest item packed in
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Figure 4: Example of two-stage packing

Figure 5: Example of guillotine packing

the shelf below. Formally, a shelf is a set S of items such that total width
∑
j∈S wj ≤ 1; its

height h(S) is given by maxj∈Shj . Many classical heuristics for 2-D strip packing ([JGJT80],
[BS83], [CW97]) and 2-D GBP ([CGJ82]), including NFDH and FFDH, construct solutions that
are in fact feasible for the two-stage versions. Moreover, Caprara et al. [CLM05] presented an
APTAS, each for 2SBP and 2SSP. Given this situation, it is natural to ask for the asymptotic
worst-case ratio of general packing versus two-stage packing. Csirik and Woeginger [CW97]
showed ratio of 2SSP versus 2-D strip packing is equal to T∞. Caprara [Cap02] showed the
ratio of 2SBP versus 2-D GBP is also equal to T∞. Both their algorithms are online and based
on Harmonic Decreasing Height (HDH) heuristic. Now consider the optimal 2SBP solution in
which the shelves are horizontal as well as the optimal 2SBP solution in which they are vertical.
(Recall that near-optimal 2SBP solutions can be found in polynomial time [CLM05].) There is
no evidence that the asymptotic worst-case ratio between the best of these two solutions and
the optimal 2-D GBP can be as bad as T∞, and in fact Caprara conjectured that this ratio is
3/2. On the other hand, he also mentions that there are examples where we cannot do better
than T∞, if both solutions are formed by the HDH algorithm in [Cap02].

Seiden and Woeginger [SW05] observed that the APTAS of Kenyon and Rémila [KR00] can
easily be adapted to produce a near-optimal packing in three stages for 2-D strip packing,
showing that the asymptotic worst-case ratio of 2-D strip packing versus its k-stage version is 1
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Figure 6: Example of non-guillotine packing

for any k > 2, and leading to an APTAS for the latter.
Bansal et al. [BLS05] provided an APTAS for the guillotine case, i.e., the case in which the

items have to be packed in alternate horizontal and vertical stages but there is no limit on the
number of stages that can be used. In the guillotine case, there is a sequence of edge-to-edge
cuts parallel to one of the edges of the bin. See Figure 5 for an example of guillotine packing
and Figure 6 for an example that is not a guillotine packing. Recently Abed et al. [ACC+15]
studied other related packing problems under guillotine cuts. They also made a conjecture
that, for any set of n non-overlapping axis-parallel rectangles, there is a guillotine cutting
sequence separating Ω(n) of them. A proof of this conjecture will imply a O(1)-approximation
for Maximum Independent Set Rectangles, a related NP-hard problem.

3.8 Geometric Knapsack

For 2-D Geometric Knapsack (GK), a result of Steinberg [Ste97] for strip packing translates
into a (3 + ε) approximation [CM04]. Present best known approximation algorithm is due to
Jansen and Zhang [JZ07] and has an approximation guarantee of (2+ ε). On the other hand, no
explicit inapproximability results are known. PTAS are known for special cases when resource
augmentation is allowed in one dimension [JS07], all items are square [JS08] or all items are
small [FGJ05]. Bansal et al. [BCJ+09] gave a PTAS for the special case when the range of the
profit-to-area ratio of the rectangles is bounded by a constant. Recently Adamaszek and Wiese
[AW15] gave a quasi-PTAS for the problem. This implies that the problem is not APX-hard
(thus we can still hope for a PTAS) unless NP ⊆ QP. Very recently, Abed et al. [ACC+15]
obtained another quasi-PTAS for the version with guillotine cut.

For 3-D, Diedrich et al. [DHJ+08] have given 7 + ε and 5 + ε approximation, for the cases
without and with rotations, respectively.

Table 3 summarizes present best results for strip packing and geometric knapsack. As
previously, OFF denotes offline, ON denotes online, REC denotes rectangles, CUB denotes
cubes, WR denotes with rotation and NR denotes without rotation.

3See [vS15] for the modified algorithm
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Table 3: Present state of the art for strip packing and geometric knapsack

Problem Dim. Subcase Best algorithm Best lower bound

Strip
Packing

2
OFF-REC-WR

asymp: PTAS[JvS05] NP-hard
abs: 5

3 + ε [HJPvS14] 3/2
OFF-REC-NR asymp: PTAS[KR00] NP-hard

3
OFF-REC-NR asymp: 1.5 [JP14] 1 + 1/2196 [CC06]
OFF-CUB asymp: PTAS[BHI+07] NP-hard

2 ON-REC-NR asymp: T∞ [CW97] 1.5401 [CW97]
3 ON-REC-NR asymp: 2.5545 [HCT+11] 3 1.907 [BvVW96]
d > 3 ON-REC-NR asymp: T d∞ [CVV93] → 3 (for d→∞) [vS15]

Geometric
Knapsack

2
OFF-REC-NR 2 + ε [JZ07] NP-hard
OFF-CUB PTAS[JS08] NP-hard

3
OFF-REC-NR 7 + ε [DHJ+08] NP-hard
OFF-REC-WR 5 + ε [DHJ+08] NP-hard

4 Vector Bin Packing

In this section we survey the previous work on vector packing and its variants.

4.1 Offline Vector Packing

The first paper to obtain an APTAS for 1-D bin packing by Fernandez de la Vega and Lueker
[dlVL81], implies a (d + ε) approximation for vector packing problem. Woeginger [Woe97]
showed that there exists no APTAS even for d = 2 unless P = NP. However some restricted
class of vectors may still admit an APTAS. For example, consider the usual partial order on d
dimensional vectors, where (x1, x2, . . . , xd) ≺ (y1, y2, . . . , yd) if and only if xi ≤ yi for all i ∈ [d].
In Woeginger’s gadget for the lower bound, the items are pairwise incompatible. The opposite
extreme case, when there is a total order on all items, is easy to approximate. In fact, a slight
modification of de la Vega and Lueker [dlVL81] algorithm yields an APTAS for subproblems of
d-dimensional VBP with constant Dilworth number. After nearly twenty years, offline results
for the general case were improved by Chekuri and Khanna [CK04]. They gave an algorithm
with asymptotic approximation ratio of (1+εd+H1/ε) where Hk = 1+1/2+· · ·+1/k, is the k’th
Harmonic number. Considering ε = 1/d, they show that for fixed d, vector bin packing can be
approximated to within O(ln d) in polynomial time. Bansal, Caprara and Sviridenko [BCS09]
then introduced the Round and Approx framework and the notion of subset oblivious algorithm
and improved it further to (1 + ln d). Both these algorithms run in time that is exponential in
d (or worse). Yao [Yao80] showed that no algorithm running in time o(n log n) can give better
than a d-approximation.

For arbitrary d, Chekuri-Khanna [CK04] showed vector bin packing is hard to approximate
to within a d1/2−ε factor for all fixed ε > 0 using a reduction from graph coloring problem.
This can be improved to d1−ε by using the following simple reduction. Let G be a graph on n
vertices. In the d-dimensional VBP instance, there will be d = n dimensions and n items, one
for each vertex. For each vertex i, we create an item i that has size 1 in coordinate i and size
1/n in coordinate j for each neighbor j of i, and size 0 in every other coordinate. It is easily
verified that a set of items S can be packed into a bin if and only if S is an independent set in
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G. Thus we mainly focus on the case when d is a fixed constant and not part of the input.
The two dimensional case has received special attention. Kellerer and Kotov [KK03] designed

an algorithm for 2-D vector packing with worst case absolute approximation ratio as 2. On the
other hand there is a hardness of 3/2 for absolute approximation ratio that comes from the
hardness of 1-D bin packing.

Very recently, Bansal, Elias and Khan [BEK16] have given improved approximation for
multidimensional vector packing. They give a polynomial time algorithm with an asymptotic
approximation ratio of (1 + ln(1.5) + ε) ≈ (1.405 + ε) for 2-D vector packing and a ln d+ 0.807 +
od(1) + ε-approximation for d-dimensional vector packing. This overcomes a natural barrier of
(1+ln d) of R&A framework due to the fact that one cannot obtain better than d-approximation
using rounding based algorithms. They circumvent this problem based on two ideas.

First, they show a structural property of vector packing that any optimal packing of m bins
can be transformed into nearly d 3m2 e bins of two types:
1. Either a bin contains at most two big items, or
2. The bin has slack in one dimension (i.e., the sum of all vectors in the bin is at most 1− δ for
some constant δ). They then search (approximately) over the space of such “well-structured”
1.5-approximate solutions. However, as this structured solution (necessarily) uses unrounded
item sizes, it is unclear how to search over the space of such solutions efficiently. So a key idea is
to define this structure carefully based on matchings, and use an elegant recent algorithm for the
multiobjective-multibudget matching problem by Chekuri, Vondrák, and Zenklusen [CVZ11].

The second step is to apply the subset oblivious framework to the above algorithm. There
are two problems. First, the algorithm is not rounding-based. Second, even proving subset
obliviousness for rounding based algorithms for vector packing is more involved than for geo-
metric bin-packing. To get around these issues, they use additional technical observations about
the structure of d-dimensional VBP.

Another consequence of the these techniques is the following tight (absolute) approximation
guarantee. they show that for any small constant ε > 0, there is a polynomial time algorithm
with an almost tight absolute approximation ratio of (1.5 + ε) for 2-D vector packing.

4.2 Online Vector Packing

A generalization of the First Fit algorithm by Garey et al. [GGJ76] gives d+ 7
10 competitive ratio

for the online version. Galamobos et al. [GKW93] showed a lower bound on the performance
ratio of online algorithms that tends to 2 as d grows. The gap persisted for a long time, and in
fact it was conjectured in [Eps03a] that the lower bound is super constant, but sublinear.

Recently Azar et al. [ACKS13] settled the status by giving Ω(d1−ε) information theoretic
lower bound using stochastic packing integer programs and online graph coloring. In fact their
result holds for arbitrary bin size B ∈ Z+ if the bin is allowed to grow. In particular, they show
that for any integer B ≥ 1, any deterministic online algorithm for VBP has a competitive ratio of

Ω(d
1
B−ε). For {0, 1}-VBP the lower bound is Ω(d

1
B+1−ε). They also provided an improved upper

bound for B ≥ 2 with a polynomial time algorithm for the online VBP with competitive ratio:
O(d1/(B−1) log dB/(B+1)), for [0, 1]d vectors and O(d1/B log d(B+1)/B), for {0, 1}d vectors. Very
recently, Azar et al. [ACFR16] studied the online vector packing for small vectors (relative to the
size of a bin). For this special case, they give a constant competitive ratio of e for arbitrary d.
For 2-D, they present a First Fit variant with a competitive ratio ≈ 1.48 and another essentially
tight algorithm (not via a First Fit variant) with a competitive ratio arbitrarily close to 4/3.

4.3 Vector Scheduling

For d-dimensional vector scheduling, the first major result was obtained by Chekuri and Khanna
[CK04]. They obtained a PTAS when d is a fixed constant, generalizing the classical result of
Hochbaum and Shmoys [HS87] for multiprocessor scheduling. For arbitrary d, they obtained
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O(ln2 d)-approximation using approximation algorithms for packing integer programs (PIPs) as
a subroutine. They also showed that, when m is the number of bins in the optimal solution, a
simple random assignment gives O(ln dm/ ln ln dm)-approximation algorithm which works well
when m is small. Furthermore, they showed that it is hard to approximate within any constant
factor when d is arbitrary. This ω(1) lower bound is still the present best lower bound for the
offline case.

In the online setting, Meyerson et al. [MRT13] gave deterministic online algorithms with
O(log d) competitive ratio. Im et al. [IKKP14] recently gave an algorithm withO(log d/ log log d)-
competitive ratio. They also show tight information theoretic lower bound of Ω(log d/ log log d).
Surprisingly this is also the present best offline algorithm!

4.4 Vector Bin Covering

For d-dimensional vector bin covering problem Alon et al. [AAC+98] gave an online algorithm
with competitive ratio 1

2d , for d ≥ 2, and they showed an information theoretic lower bound
of 2

2d+1 . For the offline version they give an algorithm with an approximation guarantee of

Θ( 1
log d ).

Table 4: Present state of the art for vector packing and related variants

Problem Subcase Best algorithm Best lower bound

Vector Bin
Packing

Offline (constant d) ln d+ 0.807 + od(1) + ε (asymp.4) [BEK16] APX-hard [Woe97]

d = 2
1.405 + ε (asymp.) [BEK16] APX-hard [Woe97]

3/2 + ε (abs.5) [BEK16] 3/2 6

Offline (arbitrary d) 1 + εd+O(ln 1
ε ) [CK04] d1−ε 7

Online d+ 7
10 [GGJ76] Ω(d1−ε) [ACKS13]

Vector
Scheduling

Offline (constant d) PTAS[CK04] NP-hard

Offline (arbitrary d) O( log d
log log d) [IKKP14] ω(1) [CK04]

Online O( log d
log log d) [IKKP14] Ω( log d

log log d) [IKKP14]

4.5 Heuristics

Heuristics for 2-D VBP were studied in detail by Spieksma [Spi94], who mentions applications in
loading, scheduling, and layout design, considers lower bounding and heuristic procedures using
a branch-and-bound scheme. Here, upper bounds are derived from a heuristic, adapted from the
first fit decreasing (FFD)-rule for bin-packing. To find better lower bounds, properties of pairs of
items are investigated. Han et al. [HDC94] present heuristic and exact algorithms for a variant
of 2-D VBP, where the bins are not identical. Caprara and Toth [CT01] also studied 2-D VBP.
They analyze several lower bounds for the 2-D VBP. In particular, they determine an upper
bound on the worst-case performance of a class of lower bounding procedures derived from the
classical 1-D BP. They also prove that the lower bound associated with the huge LP relaxation
dominates all the other lower bounds. They then introduce heuristic and exact algorithms, and

4Here asymp. means asymptotic approximation guarantee
5Here abs. means absolute approximation guarantee
6Follows from the fact that even 1-D bin packing cannot be approximated better than 3/2
7See the reduction in Section 4.1

23



report extensive computational results on several instance classes, showing that in some cases
the combinatorial approach allows for a fast solution of the problem, while in other cases one
has to resort to a large formulation for finding optimal solutions. Chang et al. [CHP05] had
proposed a greedy heuristic named hedging. Otoo et al. [OPR11] studied the 2-D VBP, where
each item has 2 distinct weights and each bin has 2 corresponding capacities, and have given
linear-time greedy heuristics. An interesting application of the 2-D VBP problem is studied
by Vercruyssen and Muller [VM87]. The application arises in a factory where coils of steel
plates (items), each having a certain physical weight and height, have to be distributed over
identical furnaces (bins) with a limited capacity for height and weight. Another application of
the problem is described by Sarin and Wilhelm [SW84], in the context of layout design. Here, a
number of machines (items) have to be assigned to a number of robots (bins), with each robot
having a limited capacity for space, as well as a limited capacity for serving a machine. Many
of these heuristics are tailor-made for 2-D.

For the general case, Stillwell et al. [SSVC10] studied variants of FFD concluding that
the algorithm FFDAvgSum is best in practice. They also show that genetic algorithms do
not perform well. Panigrahy et al. [PTUW11] systematically studied variants of the First Fit
Decreasing (FFD) algorithm. Inspired by bad instances for FFD-type algorithms, they propose
new geometric heuristics that run nearly as fast as FFD for reasonable values of n and d.

5 Open Problems

In this section we conclude by listing ten major open problems related to multidimensional bin
packing.

Problem 1. Tight approximability of bin packing.
The present best algorithm for 1-D BP by Hoberg and Rothvoß [HR15], uses Opt +O(logOpt)
bins. Proving one could compute a packing with only a constant number of extra bins will be a
remarkable progress and is mentioned as one of the ten most important problems in approxima-
tion algorithms [WS11]. Consider the seemingly simple 3-Partition case in which all n items
have sizes si ∈ (1/4, 1/2). Recent progress by [NNN12] suggests that either O(log n) bound is
the best possible for 3-Partition or some fundamentally new ideas are needed to make progress.

Problem 2. Integrality gap of Gilmore-Gomory LP.
It has been conjectured in [ST97] that the Gilmore-Gomory LP for 1-D BP has Modified Integer
Roundup Property, i.e., Opt ≤ dOptfe + 1. The conjecture has been proved true for the case
when the instance contains at most 7 different item sizes [SS09]. Settling the status for the
general case is an important open problem in optimization.

Problem 3. Tight asymptotic competitive ratio for 1-D online BP.
The present best algorithm for online bin packing is by Heydrich and van Stee [HvS15] who
presented an online algorithm with asymptotic performance ratio of at most 1.5817 using a new
type of interval classification. They also gave a lower bound of 1.5766 for any interval classi-
fication algorithm. In general the best known lower bound for asymptotic competitive ratio is
1.54014 [vV92]. Giving a stronger lower bound using some other construction is an important
question in online algorithms.

Problem 4. Improved approximability for geometric bin packing.
There is a huge gap between the best approximation guarantee and hardness of geometric bin
packing. There are no explicit inapproximability bounds known for multidimensional bin pack-
ing as function of d, apart from the APX-hardness in 2-D. Thus there is a huge gap between the
best algorithm (1.69d−1, i.e., exponential in d) and the hardness. Improved inapproximability,

24



as a function of d, will be an interesting hardness result.

Problem 5. Improved approximability for vector bin packing.
Similarly, there are no explicit inapproximability bounds known for vector bin packing as func-
tion of d, apart from the APX-hardness in 2-D. Thus there is a gap between the best algorithm
(O(ln d) for vector packing for d > 2) and the hardness. Improved inapproximability, as a func-
tion of d, will be an interesting hardness result even in this case.

Problem 6. Improved approximability for geometric knapsack.
Finding a PTAS for 2-D geometric knapsack is one of the major problems related to bin packing.

Problem 7. Tight ratio between optimal Guillotine packing and optimal bin pack-
ing. Improving the present guarantee for 2-D GBP will require an algorithm that is not input-
agnostic. In particular, this implies that it should have the property that it can round two
identical items (i.e., with identical height and width) differently. One such candidate is the
guillotine packing approach [BLS05]. It has been conjectured that this approach can give an
approximation ratio of 4/3 for 2-D GBP. At present the best known upper bound on this gap is
T∞ ≈ 1.69 [CLM05]. Guillotine cutting also has connections with other geometric packing prob-
lems such as geometric knapsack and maximum independent set rectangles [ACC+15].

Problem 8. Tight ratio between optimal two-stage packing and optimal bin packing.
Caprara conjectured [Cap02] that there is a two-stage packing that gives 3/2 approximation for
2-D bin packing. As there are PTAS for 2-stage packing [CLM05], this will give another 3/2
approximation for 2-D BP and coupled with our R&A method this will give another (1.405 + ε)
approximation. Presently the upper bound between best two-stage packing and optimal bin
packing is T∞ ≈ 1.69. As 2-stage packings are very well-studied, this question is of independent
interest and it might give us more insight on the power of Guillotine packing.

Problem 9. Extending R&A framework to d-D GBP and 3-D SP.
One key bottleneck to extend R&A framework to d-D GBP or other related problems, is to
find a good approximation algorithm to find the solution of the configuration LP. A poly(d)
asymptotic approximation for the LP will give us a poly(d) asymptotic approximation for d-D
GBP, a significant improvement over the current best ratio of 2O(d) for d > 2.

Problem 10. Tight absolute approximation for 2-D SP.
As we had earlier mentioned, there is a gap between the best upper bound of (5/3+ε) [HJPvS14]
and lower bound of 3/2. Tightening the gap is an interesting open problem.

Finally, finding faster heuristics that work well in practice, is also a very important problem.
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Pérez-Lantero, José A. Soto, and Andreas Wiese. On guillotine cutting sequences.
In APPROX, pages 1–19, 2015. 19, 24

[ACFR16] Yossi Azar, Ilan Cohen, Amos Fiat, and Alan Roytman. Packing small vectors. To
appear in SODA, 2016. 21

25



[ACKS13] Yossi Azar, Ilan Reuven Cohen, Seny Kamara, and Bruce Shepherd. Tight bounds
for online vector bin packing. In STOC, pages 961–970, 2013. 21, 22

[AHK12] Sanjeev Arora, Elad Hazan, and Satyen Kale. The multiplicative weights update
method: a meta-algorithm and applications. Theory of Computing, 8(1):121–164,
2012. 7

[AL03] Emile HL Aarts and Jan Karel Lenstra. Local search in combinatorial optimization.
Princeton University Press, 2003. 16

[AW15] Anna Adamaszek and Andreas Wiese. A quasi-ptas for the two-dimensional geo-
metric knapsack problem. In SODA, pages 1491–1505, 2015. 19
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