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Abstract
We consider a random graph process analogous to one suggested by Barabási and

Albert. Their model can be roughly described as follows. At each step we add one vertex
and one outgoing edge, and the probability that the new vertex is connected to a vertex v
is proportional to the degree of v. These types of processes serve as models of real-world
networks. In this paper we consider a well-known generalization of the Barabási and Albert
model – the Buckley-Osthus model. Buckley and Osthus proved that in this model the
degree sequence has a power law distribution. As a natural (and arguably more interesting)
next step, we study the second degrees of vertices. Roughly speaking, the second degree
of a vertex is the number of vertices at distance two from this vertex. The distribution of
second degrees is of interest because it is a good approximation of PageRank, where the
importance of a vertex is measured by taking into account the popularity of its neighbors.

We prove that the second degrees also obey a power law. More precisely, we estimate
the expectation of the number of vertices with the second degree greater than or equal
to k and prove the concentration of this random variable around its expectation using
the now-famous Talagrand concentration inequality over product spaces. As far as we
know this is the only application of Talagrand inequality to random web graphs, where
the (preferential attachment) edges are not defined over a product distribution, making
the application nontrivial, and requiring certain novelty.

Keywords: random graphs, preferential attachment, power law distribution, second degrees.

1 Introduction
In this paper we consider some properties of random graphs. The standard random graph

model G(n,m) was introduced by Erdős and Rényi in [12]. In this model we randomly choose
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one graph from all graphs with n vertices andm edges. The similar model G(n, p) was suggested
by Gilbert in [14]: we have an n-vertex set and we join each pair of vertices independently with
probability 0 < p < 1. Many papers deal with the classical models. Fundamental results about
these models can be found in [5], [13], [16].

Recently there has been an increasing interest in modeling complex real-world networks. It
is well understood that real structures differ from standard random graphs. Many models of
real-world networks and main results can be found in [6]. For example, a basic characteristic
of random graphs is their degree sequence. In many real-world structures the degree sequence
obeys a power law distribution. However, standard random graph models do not have this
property.

In 1999, Barabási and Albert [3] suggested the so-called preferential attachment model that
has a desired degree distribution. Later Bollobás and Riordan [7] gave a more precise definition
of this model. In this model the probability that a new vertex is connected to some previous
vertex v is proportional to the degree of v. Bollobás and Riordan also proved that the degree
sequence has a power law distribution with exponent equal to −3.

Naturally one would not expect that this constant will suit all (or even most) of the real
networks. In order to make the model more flexible, two groups of authors (see [10] and [11])
proposed to add one more parameter — an “initial attractiveness” of a node which is a positive
constant that does not depend on the degree. In [9], Buckley and Osthus gave an explicit
construction of that model.

Many papers deal with different variations of preferential attachment. We mention here
the paper by Rudas, Tóth and Valko (see [18]). The authors consider quite a generic model
of a random tree and prove some interesting results concerning a neighborhood structure of a
random vertex. Also one can find a neighborhood analysis in preferential attachment models
in the preprint [4] on the weak graph limit.

This paper deals with the Buckley–Osthus model, which we now describe. Let n be a
number of vertices in our graph, m ∈ N and a ∈ R+ be fixed parameters.

We begin with the case m = 1. We inductively construct a random graph Hn
a,1. The graph

H1
a,1 consists of one vertex and one loop (we can also start with H0

a,1, which is the empty graph).
Assume that we have already constructed the graph H t−1

a,1 . At the next step we add one vertex
t and one edge between vertices t and i, where i is chosen randomly with

P(i = s) =


d
Ht−1
a,1

(s)−1+a

(a+1)t−1
if 1 6 s 6 t− 1,

a
(a+1)t−1

if s = t.

Here dHt
a,1

(s) is the degree of the vertex s in H t
a,1. We will also use the notation d(s) := dHn

a,1
(s).

To construct Hn
a,m with m > 1 we start from Hmn

a,1 . Then we identify the vertices 1, . . . ,m
to form the first vertex; we identify the vertices m+ 1, . . . , 2m to form the second vertex, etc.
As for the edges, if the edge e connects vertices im+ k and jm+ l, 1 6 k, l 6 m, in the graph
Hmn
a,1 then we draw an edge e′ between vertices i + 1 and j + 1 in Hn

a,m. Note that we have
a one-to-one correspondence between the edges of Hmn

a,1 and Hn
a,m, so there may be multiple

edges (and multiple loops) between vertices in Hn
a,m. Denote by Hn

a,m the probability space of
constructed graphs.

In [9] Buckley and Osthus proved that the degree sequence of Hn
a,m has a power law with

exponent −2 − a if a is a natural number. Recently Grechnikov substantially improved this
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result.

Theorem 1. (Grechnikov, [15]) Let a ∈ R+. If d = d(n) > m and ψ(n)→∞ as n→∞, then∣∣∣∣R(d, n)− B(d−m+ma, a+ 2)n

B(ma, a+ 1)

∣∣∣∣ 6 (√d−2−an+ d−1
)
ψ(n) ,

with probability tending to 1 as n → ∞. Here R(d, n) is the number of vertices in Hn
a,m with

degree equal to d and B(x, y) is the beta function.

In this paper we consider the so-called second degrees of vertices. Roughly speaking, the
second degree of a vertex is the number of vertices at distance two from the vertex. We prove
that the number of vertices Yn(k) with the second degree at least k decreases as k−a, where a is
the initial attractiveness. This means that the distribution of second degrees obeys power law.
To prove this we calculate the expectation of Yn(k) and show the concentration of this random
variable around its expectation using Talagrand’s inequality. The application of this inequality
is nontrivial, in particular, we have to redefine the probability space of the Buckley-Osthus
graph so that we obtain a product probability space. After that we use Talagrand’s inequality
in asymmetric form. But still it is difficult to verify the conditions of Talagrand’s theorem,
therefore we use some combinatorial constructions first.

This paper is organized as follows. In Section 2 we give the main definitions and formulate
the results. In Sections 3 and 4 we prove the theorems from Section 2.

2 Definitions and results

2.1 Definitions

In this paper we study the random graph Hn
a,1. We shall write ij ∈ Hn

a,1 if Hn
a,1 contains

the edge ij; we shall write t ∈ Hn
a,1 if t is a vertex of Hn

a,1. Given a vertex t ∈ Hn
a,1, the second

degree of the vertex t is

d2(t) = #{ij : i 6= t, j 6= t, it ∈ Hn
a,1, tj ∈ Hn

a,1}.

In other words, the second degree of t is the number of edges adjacent to the neighbors of t
except for the edges adjacent to the vertex t. We say that a vertex t is a k-vertex if d2(t) > k.

Let M1
n(d) be the expectation of the number of vertices with degree d in Hn

a,1:

M1
n(d) = E

(
#{t ∈ Hn

a,1 : dHn
a,1

(t) = d}
)
.

Let Yn(k) denote the number of k-vertices in Hn
a,1.

In this paper we study second degrees of vertices in Hn
a,1. The main results are stated in

Theorems 2 and 5.
We also consider the variable Xn(k) equal to the number of vertices with second degree k

in Hn
a,1. Note that Yn(k) =

∑
i>kXn(i).
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2.2 Expectation

Theorem 2. For any k > 1 we have

EYn(k) =
(a+ 1)Γ(2a+ 1)

Γ(a+ 1)ka
n

(
1 +O

(
(ln k)da+1e

k

)
+O

(
k1+a

n

))
.

The easy consequence of Theorem 2 is

Corollary 1. We have EYn(k) = Θ
(
n
ka

)
for k = O

(
n

1
1+a

)
.

Using the same technique as in proof of Theorem 2 we can prove the following

Theorem 3. For any k > 1 we have

EXn(k) =
(a+ 1)Γ(2a+ 1)n

Γ(a)ka+1

(
1 +O

(
(ln k)da+1e

k

)
+O

(
k1+a

n

))
.

Again, as a consequence we get

Corollary 2. We have EXn(k) = Θ
(

n
k1+a

)
for k = O

(
n

1
1+a

)
.

We need the following definition. Let Nn(l, k) be the number of vertices in Hn
a,1 with degree

l, with second degree k, and without loops:

Nn(l, k) = #{t ∈ Hn
a,1 : d(t) = l, d2(t) = k, tt /∈ Hn

a,1}.

To prove Theorem 2 we need the following auxiliary theorem.

Theorem 4. In Hn
a,1 we have

ENn(l, k) = c(l, k) (n+ θ(n, l, k)),

where |θ(n, l, k)| < C(l + k)1+a. The constants c(l, k) are defined as follows:

c(l, 0) = c(0, k) = 0,

c(1, k) = c(1, k − 1)
a+ k − 1

k + 3a+ 1
+ c(k)

a+ k − 1

k + 3a+ 1
, k > 0,

c(l, k) = c(l, k − 1)
al + k − 1

l(1 + a) + k + 2a
+ c(l − 1, k)

l − 2 + a

l(1 + a) + k + 2a
, k > 0, l > 1.

Here c(k) = B(k−1+a,a+2)
B(a,a+1)

.

To prove these theorems we shall use two lemmas. In [15] Grechnikov obtained the following
result.

Lemma 1. Let k > 1 be natural; then

M1
n(k) =

B(k − 1 + a, a+ 2)n

B(a, a+ 1)
+ θ̃(n, k),

where |θ̃(n, k)| < C̃/k.
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Denote by Pn(l, k) the number of vertices in Hn
a,1 with a loop, with degree l, and with second

degree k.

Lemma 2. For any n we have
EPn(l, k) 6 p(l, k),

where

p(2, 0) = P,

p(l, 0) = p(l − 1, 0)
l − 2 + a

l(1 + a)− 2− a
, l > 3,

p(l, k) = p(l, k − 1)
al + k − 2a− 1

l(1 + a) + k − 1− a
+ p(l − 1, k)

l − 2 + a

l(1 + a) + k − 1− a
, l > 3, k > 1.

Here P is some constant. For the other values of l and k we have p(l, k) = 0.

2.3 Concentration

Theorem 5. Let δ > 0 and k = O
(
n

1
2+a+δ

)
. Then for some ε > 0 we have

P
(
|Yn(k)− E(Yn(k))| >

(
E(Yn(k))

)1−ε
)

= ō(1).

It is a concentration result which means that the distribution of second degrees does, as the
distribution of degrees, obey (asymptotically) a power law.

This theorem is a non-trivial application of Talagrand’s inequality (see [19]). Instead of
Talagrand’s inequality it is possible to apply Azuma’s inequality (see [1]), but (as we show
later) the result would have been weaker with Azuma’s inequality.

We can prove an analogous result for the value Xn(k).

Theorem 6. Let δ > 0 and k = O
(
n

1
4+a+δ

)
. Then for some ε > 0 we have

P
(
|Xn(k)− E(Xn(k))| >

(
E(Xn(k))

)1−ε
)

= ō(1).

If we substitute a = 1 in the Buckley–Osthus model then we obtain the Bollobás–Riordan
model [8]. The second degrees in this model were considered in [17]. The concentration of
second degrees in [17] was proved using Azuma’s inequality. This inequality provided the
concentration of Xn(k) around its expectation for all k = O

(
n

1
6+δ

)
(with any positive δ). As

stated in Theorem 6 Talagrand’s inequality gives the stronger result: for Bollobás–Riordan
model we obtain the concentration for all k = O

(
n

1
5+δ

)
. We obtain this improvement in spite

of the fact that the proof of the concentration of Xn(k) in Theorem 6 uses the concentration
of Yn(k) from Theorem 5, so it is not optimal in this sense.

It is possible to generalize Theorem 5 (and also Theorem 6) to the case of arbitrary m > 1.
The only problem in this case is that we could not prove an analog of Theorem 2 (or Corollary
1) for m > 1 since it demands even more calculations. But one would expect that the following
conjecture is true.
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Conjecture 1. For any m > 1 and k = O
(
nmin{ 1

2+a
, 1
2a}
)
we have EY m

n (k) = Θ
(
n
ka

)
, where

Y m
n (k) is the number of k-vertices in Hn

a,m.

We can generalize Theorem 5 in the following way.

Theorem 7. Suppose Conjecture 1 is true. Let m ∈ N, δ > 0 and k = O
(
nmin{ 1

2+a+δ
, 1
2a+δ}

)
.

Then for some ε > 0 we have

P
(
|Y m
n (k)− E(Y m

n (k))| >
(
E(Y m

n (k))
)1−ε

)
= ō(1).

In Subsections 3.1 – 3.4 we prove Theorem 5 (using Corollary 1). In Subsection 3.5 we prove
Theorem 6 using Corollary 2. In Subsection 3.6 we present the sketch of the proof of Theorem
7. In Section 4 we prove results from Subsection 2.2 (Theorem 2, Theorem 4, and Lemma 2 in
Subsections 4.2, 4.1 and 4.3 respectively). Finally, we prove Theorem 3 in Subsection 4.4.

3 Concentration

3.1 Interpretation of the Buckley–Osthus model
in terms of independent variables

We consider the following sequence:

1, ξ1, 2, ξ2, . . . , n, ξn,

where ξ1, . . . , ξn are mutually independent random variables. For every i, we have ξi : Ωi →
{1, . . . , 2i− 1} (here (Ωi,Fi,Pi) is some probability space) and

Pi(ξi = 2j − 1) =
a

(a+ 1)i− 1
∀j = 1, . . . , i,

Pi(ξi = 2j) =
1

(a+ 1)i− 1
∀j = 1, . . . , i− 1.

We can interpret the sequence in the following way. Each i is a vertex of a graph. Each ξi
is an endpoint of the edge that goes from the vertex i. If ξi = 2j − 1, then the edge goes to
the vertex j. If ξi = 2j, then we say that the edge from the vertex i goes to the same vertex
as the edge from the vertex j. The value of the variable ξj can also be even (say ξj = 2j1, for
some integer j1), then the edge from the vertex i is again redirected according to the variable
ξj1 . Finally this process stops at some odd value 2v − 1 and we say that ξi (as well as ξj and
ξj1) leads to the vertex v. We also say that ξi leads to ξj.

It is not hard to check that the graph model we obtained is exactly the Buckley–Osthus
model. Indeed, at each time step i the in-degree of each vertex j ∈ {1, . . . , i − 1} is equal to
the number of variables that lead (directly or indirectly) to the vertex j.

Let us give yet another interpretation of the model described above. Consider a vertex v
from the obtained graph. We can think of all the variables that lead to v as connected as a
rooted tree, with v as the root. Let X = {ξi1 , . . . , ξid} be the set of variables that lead to v.
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We inductively construct the corresponding tree on d vertices i1, . . . , id. First consider those
variables ξi11 , . . . , ξi1l1 from X that lead to v directly. The corresponding vertices i11, . . . , i1l1 are
adjacent to v in the tree. Suppose we choose all the vertices at distance 6 s from v and
is1, . . . , i

s
ls
are the vertices at distance s from v. Consider the set {ξis+1

1
, . . . , ξis+1

ls+1

} of variables
that lead to some of ξis1 , . . . , ξisls . We join each of the vertices is+1

1 , . . . , is+1
ls+1

to the corresponding
vertex from {is1, . . . , isls}. We thus obtain the set of vertices at distance s+ 1 from v.

3.2 Decreasing the number of k-vertices

We fix a value x = (x1, . . . , xn) of the random vector ξ = (ξ1, . . . , ξn) from the probability
space Ω =

∏n
i=1 Ωi. The quantity Yn(k) is a function from Ω to N. We discuss the following

question. How can the value Yn(k) = Yn(k,x) decrease, if we change one coordinate xi of the
vector x? In other words, we want to find c(i,x) = maxx′(Yn(k,x)− Yn(k,x′)), where x′ is an
arbitrary vector that differs from x in exactly the ith coordinate.

Lemma 3. For any x = (x1, . . . , xn) and i ∈ {1, . . . , n} we have c(i,x) 6 2k + 1.

Proof. It is convenient to think about the tree interpretation of the random variables. If we
change a value xi of one random variable ξi to some value x′i, then all the variables that lead
to xi are redirected to x′i. In terms of the tree interpretation, we pick the branch of the tree
in which all the edges lead to xi: if x′i is odd, then we link the branch to the vertex with the
number (x′i + 1)/2; if x′i is even, then we link the branch to the variable ξx′i/2.

We want to interpret the change of one coordinate in terms of the graph Hn
a,1. Suppose xi

leads to a vertex v. Then all the variables that lead to xi lead to v. If we change xi to x′i
and x′i leads to v′, then we change the value of all such variables from v to v′. Or, in terms of
Hn
a,1, we take a bundle of edges in the vertex v and move the bundle to the vertex v′. More

precisely, if we had a bundle of edges (i1, v), . . . , (id, v), then after the change we have the edges
(i1, v

′), . . . , (id, v
′). All the rest stays the same.

Now we go on to the proof. We should show that after the change of the ith coordinate,
the number of k-vertices we spoil does not exceed 2k+ 1. Suppose we moved a bundle of edges
(i1, v), . . . , (id, v). It is easy to see that we could spoil only the k-vertices that have a common
edge with v or v itself. Note that we could not spoil the k-vertices in the neighborhood of v′.

We split the set Nv of the vertices incident to v into two parts: I =
⋃d
j=1{ij} and Nv\I.

If |Nv\I| > k + 1, then after changing the edges from the bundle, all the k-vertices from Nv\I
are still k-vertices. Indeed, all the edges in vertex v except for one are 2-incident edges for
any neighbor of v, so there are at least k such edges for every vertex from Nv\I. Similarly, if
|I| > k + 1, then no k-vertices among i1, . . . , id are spoiled except for at most one, since they
are all adjacent to the vertex v′. The only case when some of i1, . . . , id is spoiled is ij = v′ and
so we will not count the edges (i1, v

′), . . . , (id, v
′) in the second degree of ij.

Finally, the number of k-vertices we spoil does not exceed min{|I|, k}+min{|Nv\I|, k}+1 6
2k + 1.

�
We now want to estimate the influence of each variable more accurately. Suppose Yn(k,x) =

q. For each k-vertex vj, j = 1, . . . , q, we consider a subset of coordinates Kj = Kvj(x) =

{ij1, . . . , i
j
dj
}, such that vj is a k-vertex for any y that agrees with x on the coordinates from
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Kj. It is worth noting that Kj depends on x, but is not uniquely defined by it. For any choice
of the sets K1, . . . , Kq, we denote their collection by K = K(x). Clearly, Yn(k,y) > q, for any
y that agrees with x on all the coordinates from all Kj ∈ K.

For each coordinate i, we define its multiplicity C(i,x,K) = |{j : i ∈ Kj}|.
It is easy to see that for any x and any K one has c(i,x) 6 C(i,x,K). So we have

c(i,x) 6 min{2k + 1, C(i,x,K)} =: ci(x,K).

We call a collection K stable, if for every k-vertex vi we construct all the sets Ki according
to the following rule: if Ki contains some of the coordinates that lead to a vertex w, then Ki

contains all of the coordinates that lead to w.
Now, it should not be surprising that for such set systems we can prove an analog of

Lemma 3. Namely, consider a vector x, the corresponding k-vertices vj, j = 1, . . . , q, and some
stable collection K. Let i ∈ {1, . . . , n} and K \ {i} := {Kj \ {i}, j = 1, . . . , q}. Given i there
exist at least q − ci(x, K) such k-vertices that are k-vertices for any x′ with x′s = xs for all
s ∈ Kj \ {i}, j = 1, . . . , q. To prove this fact one has to follow the proof of Lemma 3 and make
sure that the proof works also for this case. The only additional consideration needed is that
the number of k-vertices we loose does not exceed the multiplicity C(j,x,K).

Lemma 4. Let K be a stable collection as described above. We have Yn(k,x) − Yn(k,x′) 6∑
j∈J cj(x,K) for any vector x′ such that x′i = xi for all i ∈ {1, . . . , n}\J.

Proof. Suppose we change one coordinate j of x and obtain some vector x̂. Then we consider
dj := C(j,x,K) k-vertices w1, . . . , wdj such that j ∈ Kwi(x). We remove j from each of these
sets and we check for each i = 1, . . . , dj whether the obtained collection guarantees wi to be a
k-vertex or not. If wi is a k-vertex then we define Kwi(x̂) = Kwi(x)\{j}. If wi is not a k-vertex
then we exclude the set Kwi(x) from K. At the end of this step we obtain a new collection
K̂. To prove the lemma we need one consideration. Namely, instead of changing the edges
(i1, v), . . . , (id, v) to (i1, v

′), . . . , (id, v
′) we can create a new imaginary vertex w and change the

edges to (i1, w), . . . , (id, w). We denote the obtained graph by Gw. We do not count w as a
k-vertex even if it has > k 2-incident edges. It is easy to check that for this graph the collection
K̂ is stable.

The number of k-vertices (except for w) in the graph Gw is definitely not bigger than
the same number for the graph corresponding to x̂. Moreover, the multiplicity of each co-
ordinate in K̂ is less than or equal to the corresponding multiplicity in K. We also have
Yn(k,x)− Yn(k,Gw) 6 cj(x,K). Similarly, if x′ differs from x in l coordinates, then the graph
corresponding to x′ has at least as many k-vertices as the graph G obtained by forming l
imaginary vertices. Moreover, at each step (if we change the coordinate j′ and form the corre-
sponding graph G′) we spoil at most min{2k+ 1, C(j′,x,K)} k-vertices and obtain a stable set
system.

Consequently, we have Yn(k,x)− Yn(k,x′) 6 Yn(k,x)− Yn(k,G) 6
∑

j∈J cj(x,K).
�

3.3 Construction of a suitable set K
Lemma 5. Suppose Yn(k,x) = q for some vector x in the corresponding graph Gx. Then we
can construct a stable set system K = {K1, . . . , Kq} such that

∑n
i=1 ci(x,K) 6 (4k + 5)q.

8



Proof. First consider the set V of vertices with degree at least k + 2. Put NV = {u : u is a
neighbor of v ∈ V }. Note that a vertex from V can also belong to NV . Assume that |NV | = z.
All vertices from NV are k-vertices. Let BV be the set of vertices from NV which do not have
an outcoming edge that goes to V . We have |BV | 6 z/(k + 1) since each vertex has at most
one outcoming edge.

We denote by Lv, Lv ⊂ {1, . . . , n}, the set of coordinates that lead to v. We also put
LV = ∪v∈VLv and LBV = ∪v∈BVLv. For any u ∈ NV we put Ku = LV ∪ LBV . It is easy to
see that for any x′ such that xi = x′i for every i ∈ LV ∪ LBV , the vertex u is k-vertex in the
graph corresponding to x′.

For i ∈ LV ∪ LBV we estimate ci(x,K) by 2k + 1. Note that |LV | 6 z + z
k
. We add

additional z
k
variables because the vertices from V can have loops. We have degw 6 k + 1 for

w ∈ BV \V and |BV \V | 6 z/(k + 1), therefore |LBV \LV | 6 z. So we have∑
i∈LV ∪LBV

ci(x,K) 6 (2k + 1)(|LBV \LV |+ |LV |) 6 (2k + 1)
(

2z +
z

k

)
6 (4k + 5)z.

Next we consider the set W of the remaining k-vertices. We have |W | = q − z. By the
definition, for any w ∈ W all the neighbors Nw of w have degree less than or equal to k + 1.

For each w ∈ W we consider Vw = {v1, . . . , vw}, Vw ⊂ Nw, such that the number of edges
adjacent to at least one of vi ∈ Nw and not adjacent to w is between k and 2k. We can find
such Vw since w is a k-vertex. We can choose vi ∈ Nw one by one, until the total number of
2-adjacent edges does not exceed k. But it cannot exceed 2k since deg vi 6 k + 1 for vi ∈ Nw.
Denote by LVw all the variables that lead to Vw.

Now for each w ∈ W we put Kw = LVw ∪ Lw. Note that |LVw| 6 2k and for w ∈ W\V we
have |Lw| 6 k + 1.

Now we can make the final estimate:

n∑
i=1

ci(x,K) =
∑

i∈LV ∪LBV

ci(x,K) +
∑

i∈{1,...,n}\LV ∪LBV

ci(x,K) 6 (4k + 5)z+

+
∑
w∈W

|LVw|+
∑

w∈W\V

|Lw| 6 (4k + 5)z + 2k(q − z) + (k + 1)(q − z) 6 (4k + 5)q.

The fact that K is a stable set system follows from the construction. �

3.4 Application of Talagrand’s inequality

First we briefly review Talagrand’s inequality (see e.g., [1]).
Let Ω =

∏n
i=1 Ωi be a product probability space with product measure. Suppose α =

(α1, . . . , αn),
∑n

i=1 α
2
i = 1. We define the following distance between a set A ⊂ Ω and a point

x ∈ Ω:
dist(A,x) = max

α
min
y∈A

∑
i∈Ixy

αi,

where Ixy = {i : xi 6= yi}.
For t > 0 we denote by At the set {x : dist(A,x) 6 t}.
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Theorem 8. (Talagrand’s inequality) For any t > 0 and A ⊂ Ω we have P(A)(1−P(At)) 6

e−
t2

4 .

We use the inequality to derive the following theorem.

Theorem 9. For t > 0, k, s ∈ N, and f(s) that satisfies the condition f 2(s) > (2k+1)(4k+5)s

we have P
(
Yn(k) 6 s− tf(s)

)
P
(
Yn(k) > s

)
6 e−

t2

4 .

Proof. The inequality is trivial for tf(s) > s, so we can assume w.l.o.g. that tf(s) 6 s. Since
ξi are independent, we can apply Talagrand’s inequality to the points x from the probability
space Ω. Actually, all we need to prove is that for any x such that Yn(k,x) > s we have x /∈ At,
where A = {y : Yn(k,y) 6 s− tf(s)}.

Suppose Yn(k,x) = q > s. Given x we fix a set system K as in Lemma 5. Then by Lemma
4 for any y ∈ A we have q − s+ tf(s) 6 Yn(k,x)− Yn(k,y) 6

∑
j∈Ixy cj(x,K).

We define a suitable vector α = α(x). Namely, αi = ci(x,K)√∑n
j=1 c

2
j (x,K)

. It is easy to see that∑
α2
j = 1.
We have

n∑
j=1

c2
j(x,K) 6 max

j
cj(x,K)

n∑
j=1

cj(x,K) 6 (2k + 1)(4k + 5)q.

In the last inequality we used Lemma 5 and the definition of cj(x,K).
Now we show that

∑
i∈Ixy αi > t for any y ∈ A.

∑
i∈Ixy

αi =

∑
i∈Ixy ci(x,K)√∑n
j=1 c

2
j(x,K)

>
q − s+ tf(s)√

(2k + 1)(4k + 5)q
>

tf(s)√
(2k + 1)(4k + 5)s

> t. (1)

The second inequality holds since for q > s, tf(s) 6 s we have q−s+tf(s)
q

> tf(s)
s
. The last

inequality follows from the statement of the theorem.
From (1) we obtain that dist(A,x) > t, in other words, x /∈ At. �
We apply Theorem 9 with t = 2 lnn, s = m(Yn(k)) + t(EYn(k))1−ε, f(s) = (EYn(k))1−ε.

Here m(Yn(k)) is the median of Yn(k), and, consequently, P
(
Yn(k) 6 s− tf(s)

)
> 1/2. Since for

any random variable Z we have m(Z) 6 2EZ, it is easy to see that the conditions of Theorem
9 hold if

(EYn(k))1−2ε > 12(2k + 1)2 lnn.

If ε is small enough then this inequality is a consequence of Corollary 1 and the conditions of
Theorem 5.

We obtain that

P
(
Yn(k) > m(Yn(k)) + 2 lnn(EYn(k))1−ε

)
6 2e−

t2

4 = ō(1/n),

and since Yn(k) 6 n for all k, we have

EYn(k) 6 m(Yn(k)) + 2 lnn(EYn(k))1−ε + ō(1).
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Similarly we can derive that

P
(
Yn(k) 6 m(Yn(k))− 2 lnn(EYn(k))1−ε

)
6 2e−

t2

4 = ō(1/n)

and
EYn(k) > m(Yn(k))− 2 lnn(EYn(k))1−ε − ō(1).

Consequently, for some δ > 0 and all sufficiently large n we have |EYn(k) − m(Yn(k))| 6
(EYn(k))1−δ. Therefore, for some ε′ > 0

P
(
|Yn(k)− E(Yn(k))| > E(Yn(k))1−ε′

)
= ō(1).

This concludes the proof of Theorem 5.

3.5 Proof of Theorem 6

We use the obvious fact that Xn(k) = Yn(k)− Yn(k + 1). Fix some ε′ > 0. First we want to
apply Theorem 9 to Yn(k) and Yn(k + 1). We argue as after the proof of Theorem 9. We put
f(s) = n1−ε′

k1+a , t = 2 lnn and s1 = m(Yn(k))+tf(s), s2 = m(Yn(k)), s3 = m(Yn(k+1))+tf(s), s4 =
m(Yn(k + 1)).

We apply Theorem 9 to Yn(k) with s1 and s2, and to Yn(k + 1) with s3 and s4 and obtain

P

(
|Yn(k)− E(Yn(k))| > n1−ε′+ō(1)

k1+a

)
= ō(1),

P

(
|Yn(k + 1)− E(Yn(k + 1))| > n1−ε′+ō(1)

k1+a

)
= ō(1),

provided
n2−2ε′

k2+2a
> Θ

(
nk2−a) lnn.

It is easy to see that this holds if the conditions of Theorem 6 are satisfied for some δ > 0.
We have |Xn(k)− E(Xn(k))| 6 |Yn(k)− E(Yn(k))|+ |Yn(k + 1)− E(Yn(k + 1))|, so

P

(
|Xn(k)− E(Xn(k))| > n1−ε′+ō(1)

k1+a

)
= ō(1).

Since n1−ε′+ō(1)

k1+a = E(Xn(k))1−ε for some ε > 0, this inequality completes the proof of Theorem
6.

3.6 Generalization to the case of arbitrary m

The proof of Theorem 9 can be modified to the case of the graph Hn
a,m. We present only

the sketch of the argument. Suppose m > 1 is fixed. The number of variables changes from n
to mn. The interpretation in terms of independent variables works for this case. Lemmas 3, 4,
5 hold for m > 1, but with some minor changes.
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When we take a bundle of edges from a vertex v and move it to some vertex v′, we can
spoil not only the neighborhood of v, but also the vertex v′. Namely, suppose we change edges
(v, w1), . . . , (v, wl) to (v′, w1), . . . , (v′, wl). If v′ was a k-vertex and edges (v, w1), . . . , (v, wl) were
counted in the second degree of v′, then the second degree of v′ may decrease (this is impossible
in the graph Hn

a,1 since Hn
a,1 is a tree). It is not difficult to see that we cannot spoil the other

vertices.
Hence, we can formulate some analogs of Lemmas 3, 4.

Lemma 6. For any x = (x1, . . . , xn) and i ∈ {1, . . . , n} we have c(i,x) 6 2k + 2.

We also have
c(i,x)− 1 6 min{2k + 1, C(i,x,K)} =: ci(x,K).

Lemma 7. Let K be a stable set collection. We have Yn(k,x)−Yn(k,x′) 6
∑

j∈J(cj(x,K) + 1)
for any vector x′ such that x′i = xi for all i ∈ {1, . . . , n}\J.

Lemma 5 holds for cj(x,K) and m > 1 without any changes.
The only thing left is to modify the proof of Theorem 9. We put αi = ci(x,K)+1√∑mn

j=1(cj(x,K)+1)2
.

Then

mn∑
j=1

(cj(x,K) + 1)2 6

(
max
j
cj(x,K) + 2

) mn∑
j=1

cj(x,K) +mn 6 (2k + 3)(4k + 5)q +mn.

Finally,

∑
i∈Ixy

αi =

∑
i∈Ixy(ci(x,K) + 1)√∑mn
j=1(cj(x,K) + 1)2

>
q − s+ tf(s)√

(2k + 3)(4k + 5)q +mn
>

tf(s)√
(2k + 3)(4k + 5)s+mn

> t,

if f 2(s) > (2k + 3)(4k + 5)s+mn. So we can formulate an analog of Theorem 9.

Theorem 10. For t > 0, m, k, s ∈ N, and f(s) that satisfies the condition f 2(s) > (2k +
3)(4k + 5)s+mn we have

P
(
Y m
n (k) 6 s− tf(s)

)
P
(
Y m
n (k) > s

)
6 e−

t2

4 .

Finally, arguing as after the proof of Theorem 9, one can see that Theorem 7 follows from
Theorem 10 and Conjecture 1.

4 Estimation of EYn(k)
We need the following notation. Let X be a function on n (the number of vertices), l (the

first degree we are interested in), k (the second degree we are interested in); then denote by
θ(X) some function on n, l, k such that |θ(X)| < X.
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4.1 Proof of Theorem 4

It follows from the definition of Hn
a,1 that Nn(l, 0) = Nn(0, k) = 0. Indeed, since we have

no vertices of degree 0, we see that Nn(0, k) = 0. Since vertices with loops are not counted
in Nn(l, k), we have no vertices of second degree 0 and Nn(l, 0) = 0. Therefore, we have
ENn(l, 0) = ENn(0, k) = 0. We want to prove that there exists such constant C that

ENn(l, k) = c(l, k) (n+ θ(n, l, k)),

where |θ(n, l, k)| < C(l + k)1+a.
Let us demonstrate that ENn(1, k) = c(1, k) (n+ θ (Ck1+a)). We shall use induction on k.

For k = 0 there is nothing to prove.
Assume that for j < k we have

ENn(1, j) = c(1, j) (n+ θ
(
Cj1+a

)
).

Denote by Ni(l) the number of vertices with degree l in H i
a,1. We use induction on i and

the equality

E(Ni+1(1, k)|Ni(1, k), Ni(1, k − 1), Ni(k)) =

= Ni(1, k)

(
1− k + 2a

(a+ 1)i+ a

)
+

(k − 1 + a)Ni(1, k − 1)

(a+ 1)i+ a
+

(k − 1 + a)Ni(k)

(a+ 1)i+ a
. (2)

Let us explain this equality. Suppose we constructed H i
a,1. We add one vertex and one edge.

There are Ni(1, k) vertices with degree 1 and with second degree k in H i
a,1. The probability

that we “spoil” one of these vertices is k+2a
(a+1)i+a

. We also have Ni(1, k − 1) vertices with degree
1 and with second degree k − 1. The probability that one of these vertices has degree 1 and
second degree k in H i+1

a,1 is k−1+a
(a+1)i+a

. Finally, with probability equal to k−1+a
(a+1)i+a

the vertex i+ 1

has necessary degrees in H i+1
a,1 . From (2) we obtain

ENi+1(1, k) = ENi(1, k)

(
1− k + 2a

(a+ 1)i+ a

)
+

(k − 1 + a)ENi(1, k − 1)

(a+ 1)i+ a
+

(k − 1 + a)ENi(k)

(a+ 1)i+ a
.

(3)
Note that if we have at least one vertex with first degree 1 and second degree k in H i

a,1,
then we have at least k edges in this graph. Therefore ENi(1, k) = 0 when i < k. Consider the
case i = k. First, note that

ENk(1, k) > c(1, k)
(
k + θ

(
Ck1+a

))
with some C. For a finite number of small k we can find a constant C such that

ENk(1, k) = c(1, k)
(
k + θ

(
Ck1+a

))
.

13



Using (3), Lemma 1, and the assumptions of the theorem we get

ENk(1, k) = ENk−1(1, k − 1)
k − 1 + a

ak + k − 1
+M1

k−1(k)
k − 1 + a

ak + k − 1
=

= c(1, k − 1)
k − 1 + a

ak + k − 1

(
k − 1 + θ

(
C (k − 1)1+a))+ c(k)

k − 1 + a

ak + k − 1

(
k − 1 + θ

(
C1k

1+a
))

=

= c(1, k)
(k + 3a+ 1)(k − 1)

ak + k − 1
+ c(1, k − 1)

k − 1 + a

ak + k − 1
θ
(
C (k − 1)1+a)+ c(k)

k − 1 + a

ak + k − 1
θ
(
C1k

1+a
)

=

= kc(1, k) +
3ak + k − 3a− 1− ak2

ak + k − 1
c(1, k) + c(1, k − 1)

k − 1 + a

ak + k − 1
θ
(
C (k − 1)1+a)+

+c(k)
k − 1 + a

ak + k − 1
θ
(
C1k

1+a
)
6 kc(1, k) +

(3ak + k − 3a− 1− ak2)(a+ k − 1)

(ak + k − 1)(k + 3a+ 1)
c(1, k − 1)+

+
(3ak + k − 3a− 1− ak2)(a+ k − 1)

(ak + k − 1)(k + 3a+ 1)
c(k) + c(1, k − 1)

C(k − 1 + a)

ak + k − 1
(k − 1)1+a +

c(k)
k − 1 + a

ak + k − 1
C1k

1+a 6 kc(1, k) +
C(a+ k − 1)

k + 3a+ 1
c(1, k − 1)k1+a +

C(a+ k − 1)

k + 3a+ 1
c(k)k1+a.

This holds for big values of k. Indeed,

(3ak + k − 3a− 1− ak2)

(ak + k − 1)(k + 3a+ 1)
+
C (k − 1)1+a

ak + k − 1
6

C

k + 3a+ 1
k1+a,

if k and C are big enough.
Consider the case i > k. Using (3), Lemma 1, and the inductive assumption we get

ENi+1(1, k) = ENi(1, k)

(
1− k + 2a

(a+ 1)i+ a

)
+ENi(1, k−1)

k − 1 + a

(a+ 1)i+ a
+M1

i (k)
k − 1 + a

(a+ 1)i+ a
=

= c(1, k)
(
i+ θ

(
Ck1+a

))(
1− k + 2a

(a+ 1)i+ a

)
+ c(1, k − 1)

(
i+ θ

(
C(k − 1)1+a

)) k − 1 + a

(a+ 1)i+ a
+

+c(k)
(
i+ θ1

(
C1k

1+a
)) k − 1 + a

(a+ 1)i+ a
= c(1, k)(i+ 1)−

−c(1, k)
i(k + 3a+ 1) + a

(a+ 1)i+ a
+ c(1, k)θ

(
Ck1+a

)(
1− k + 2a

(a+ 1)i+ a

)
+ c(1, k − 1)i

k − 1 + a

(a+ 1)i+ a
+

+c(1, k − 1)θ
(
C(k − 1)1+a

) k − 1 + a

(a+ 1)i+ a
+ c(k)i

k − 1 + a

(a+ 1)i+ a
+ c(k)θ1

(
C1k

a+1
) k − 1 + a

(a+ 1)i+ a
=

= c(1, k)(i+ 1) + c(1, k)θ
(
Ck1+a

)(
1− k + 2a

(a+ 1)i+ a

)
− (k − 1 + a)ac(1, k − 1)

((a+ 1)i+ a)(k + 3a+ 1)
−

− (k − 1 + a)ac(k)

((a+ 1)i+ a)(k + 3a+ 1)
+c(1, k−1)θ

(
C(k − 1)1+a

) k − 1 + a

(a+ 1)i+ a
+c(k)θ1

(
C1k

a+1
) k − 1 + a

(a+ 1)i+ a
.

We want to prove that there exists a constant C such that

c(1, k)Ck1+a k + 2a

(a+ 1)i+ a
>

(k − 1 + a)ac(1, k − 1)

((a+ 1)i+ a)(k + 3a+ 1)
+

(k − 1 + a)ac(k)

((a+ 1)i+ a)(k + 3a+ 1)
+
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+c(1, k − 1)C(k − 1)1+a k − 1 + a

(a+ 1)i+ a
+ c(k)C1k

1+a k − 1 + a

(a+ 1)i+ a
.

It is sufficient to prove that the following inequalities hold:

c(1, k−1)Ck1+a (k + 2a)(k − 1 + a)

((a+ 1)i+ a)(k + 3a+ 1)
>

(k − 1 + a)ac(1, k − 1)

((a+ 1)i+ a)(k + 3a+ 1)
+c(1, k−1)C(k−1)1+a k − 1 + a

(a+ 1)i+ a

and

c(k)Ck1+a (k + 2a)(k − 1 + a)

((a+ 1)i+ a)(k + 3a+ 1)
>

(k − 1 + a)ac(k)

((a+ 1)i+ a)(k + 3a+ 1)
+ c(k)C1k

1+a k − 1 + a

(a+ 1)i+ a
.

Or
Ck1+a(k + 2a) > a+ C(k − 1)1+a(k + 3a+ 1),

Ck1+a(k + 2a) > a+ C1k
1+a(k + 3a+ 1).

Note that
k1+a(k + 2a)− (k − 1)1+a(k + 3a+ 1) =

= k1+a(k+2a)−(k1+a−(1+a)ka+
a(a+ 1)

2
ka−1+O(ka−2))(k+3a+1) =

(5a+ 2)(a+ 1)

2
ka+O(ka−1).

For big values of k there exists a constant C such that

C(k1+a(k + 2a)− (k − 1)1+a(k + 3a+ 1)) > a.

But we can not choose a constant C if k1+a(k + 2a) 6 (k − 1)1+a(k + 3a + 1). There is
a finite number of k with (5a+2)(a+1)

2
ka + O(ka−1) 6 0. For such k we want to prove that

ENn(1, k) = c(1, k) (n+O (f(k))) with some function f(k). Using the method above we obtain
the same inequalities:

f(k)(k + 2a) > a+ f(k − 1)(k + 3a+ 1),

f(k)(k + 2a) > a+ C1k
1+a(k + 3a+ 1).

There exists a function f such that the inequalities hold. This completes the proof for ENn(1, k).
Consider the case l > 1. Assume that for all i < l, j < k we have

ENn(i, j) = c(i, j)
(
n+ θ

(
C(i+ j)1+a

))
.

We use the following equality, which is similar to (3):

ENi+1(l, k) = ENi(l, k)

(
1− l(1 + a) + k + a− 1

(a+ 1)i+ a

)
+

+
(l − 2 + a)ENi(l − 1, k)

(a+ 1)i+ a
+

(k + al − 1)ENi(l, k − 1)

(a+ 1)i+ a
. (4)

Note that if we have at least one vertex with first degree l and second degree k in H i
a,1

(without a loop), then we have at least l + k − 1 edges in this graph. Therefore ENi(l, k) = 0
when i < l + k − 1. Consider the case i = l + k − 1. It is sufficient to prove that

ENl+k−1(l, k) 6 Cc(l, k)(l + k)
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with some C. For any finite number of small l and k we can easily find a constant C such that

ENl+k−1(l, k) 6 Cc(l, k)(l + k).

Using (4), we get

ENl+k−1(l, k) =
(l − 2 + a)ENl+k−2(l − 1, k)

(a+ 1)(l + k − 2) + a
+

(k + al − 1)ENl+k−2(l, k − 1)

(a+ 1)(l + k − 2) + a
6

6 Cc(l − 1, k)
(l − 2 + a) (l + k − 1)

(a+ 1)(l + k − 2) + a
+ Cc(l, k − 1)

(k + al − 1) (l + k − 1)

(a+ 1)(l + k − 2) + a
6

6 Cc(l − 1, k)
(l − 2 + a)(l + k)

l + al + k + 2a
+ Cc(l, k − 1)

(al + k − 1)(l + k)

l + al + k + 2a
.

The last inequality holds if k is big enough.
We also need to consider a finite number of small k. First we show that for any finite

number of small k we have

c(l, k) = Ω

 lk−4+ a2

a+1

(1 + a)l

 .

Indeed, from the recurrent relation we obtain

c(l, 1) = c(l − 1, 1)
l − 2 + a

(a+ 1)(l + 1 + a/(a+ 1))
.

Therefore

c(l, 1) = Ω

(
Γ(l − 1 + a)

(a+ 1)lΓ(l + 2 + a/(a+ 1))

)
= Ω

 l−3+ a2

a+1

(1 + a)l

 .

Here we used Statement 1 from Subsection 4.2. For k > 2 we have

c(l, k) = c(l, k − 1)
al + k − 1

l(1 + a) + k + 2a
+ c(l − 1, k)

l − 2 + a

l(1 + a) + k + 2a
.

It is sufficient to prove that there exists a positive function f(k) such that

f(k)(l(1+a)+k+2a)lk−4+ a2

a+1 6 f(k−1)(al+k−1)lk−5+ a2

a+1 +f(k)(l−2+a)(a+1)(l−1)k−4+ a2

a+1 ,

f(k)(l(1 + a) + k + 2a)
(
lk−4+ a2

a+1 − (l − 1)k−4+ a2

a+1

)
+ f(k)(3a+ k − a2 + 2)(l − 1)k−4+ a2

a+1 6

6 f(k − 1)(al + k − 1)lk−5+ a2

a+1 .

The last inequality holds for some positive function f(k).
So we want to prove that

ENl+k−1(l, k) = O

 lk−3+ a2

a+1

(1 + a)l

 .
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Suppose that we have a graph on l+ k− 1 vertices and a vertex t has first degree l and second
degree k. Then one edge from this vertex goes to the vertex 1, l − 1 vertices send edges to t,

and k − 2 vertices send edges to the neighbors of t. There are
(
l + k − 2
k − 2

)
ways to choose our

vertex t and its neighbors. In each case the probability of these neighbors to send edges to the
vertex t equals

O

(
(a(a+ 1) . . . (a+ l − 2))

(3a+ 2)(4a+ 3) . . . (l(a+ 1) + a)

)
= O

(
Γ(a+ l − 1)

(a+ 1)lΓ(l + 1 + a/(a+ 1))

)
= O

 l−2+ a2

a+1

(a+ 1)l

 ,

so

ENl+k−1(l, k) = O

 lk−4+ a2

a+1

(a+ 1)l

 .

This concludes the case i = l + k − 1.
For i > l + k − 1 we have

ENi+1(l, k) = ENi(l, k)

(
1− l(1 + a) + k + a− 1

(a+ 1)i+ a

)
+

(l − 2 + a)ENi(l − 1, k)

(a+ 1)i+ a
+

+
(k + al − 1)ENi(l, k − 1)

(a+ 1)i+ a
= c(l, k)

(
i+ θ

(
C(l + k)1+a

))(
1− l(1 + a) + k + a− 1

(a+ 1)i+ a

)
+

+c(l−1, k)
(
i+ θ

(
C(l + k − 1)1+a

)) (l − 2 + a)

(a+ 1)i+ a
+c(l, k−1)

(
i+ θ

(
C(l + k − 1)1+a

)) (k + al − 1)

(a+ 1)i+ a
=

= c(l, k)i− c(l, k)i
l(1 + a) + k + a− 1

(a+ 1)i+ a
+ c(l, k)θ

(
C(l + k)1+a

)(
1− l(1 + a) + k + a− 1

(a+ 1)i+ a

)
+

+c(l − 1, k)i
(l − 2 + a)

(a+ 1)i+ a
+ c(l, k − 1)i

(k + al − 1)

(a+ 1)i+ a
+

+c(l − 1, k)θ
(
C(l + k − 1)1+a

) (l − 2 + a)

(a+ 1)i+ a
+ c(l, k − 1)θ

(
C(l + k − 1)1+a

) (k + al − 1)

(a+ 1)i+ a
=

= c(l, k)(i+ 1)− c(l, k)
il(1 + a) + ik + 2ia+ a

(a+ 1)i+ a
+ c(l − 1, k)i

(l − 2 + a)

(a+ 1)i+ a
+

+c(l, k − 1)i
(k + al − 1)

(a+ 1)i+ a
+ c(l, k)θ

(
C(l + k)1+a

)(
1− l(1 + a) + k + a− 1

(a+ 1)i+ a

)
+

+c(l − 1, k)θ
(
C(l + k − 1)1+a

) (l − 2 + a)

(a+ 1)i+ a
+ c(l, k − 1)θ

(
C(l + k − 1)1+a

) (k + al − 1)

(a+ 1)i+ a
=

= c(l, k)(i+ 1)− a(k + al − 1)c(l, k − 1)

((a+ 1)i+ a)(l(1 + a) + k + 2a)
− a(l − 2 + a)c(l − 1, k)

((a+ 1)i+ a)(l(1 + a) + k + 2a)
+

+c(l, k)θ
(
C(l + k)1+a

)(
1− l(1 + a) + k + a− 1

(a+ 1)i+ a

)
+

17



+c(l − 1, k)θ
(
C(l + k − 1)1+a

) (l − 2 + a)

(a+ 1)i+ a
+ c(l, k − 1)θ

(
C(l + k − 1)1+a

) (k + al − 1)

(a+ 1)i+ a
.

We want to prove the following inequality:

Cc(l, k)
(
(l + k)1+a

) l(1 + a) + k + a− 1

(a+ 1)i+ a
>

>
a(k + al − 1)c(l, k − 1)

((a+ 1)i+ a)(l(1 + a) + k + 2a)
+

a(l − 2 + a)c(l − 1, k)

((a+ 1)i+ a)(l(1 + a) + k + 2a)
+

+Cc(l − 1, k)
(
(l + k − 1)1+a

) (l − 2 + a)

(a+ 1)i+ a
+ Cc(l, k − 1)

(
(l + k − 1)1+a

) (k + al − 1)

(a+ 1)i+ a
.

It is sufficient to show that the following inequalities hold

Cc(l, k − 1)(l + k)1+a (l(1 + a) + k + a− 1)(k + al − 1)

((a+ 1)i+ a)(l(1 + a) + k + 2a)
>

>
a(k + al − 1)c(l, k − 1)

((a+ 1)i+ a)(l(1 + a) + k + 2a)
+ Cc(l, k − 1)(l + k − 1)1+a (k + al − 1)

(a+ 1)i+ a

and
Cc(l − 1, k)(l + k)1+a (l(1 + a) + k + a− 1)(l − 2 + a)

((a+ 1)i+ a)(l(1 + a) + k + 2a)
>

>
a(l − 2 + a)c(l − 1, k)

((a+ 1)i+ a)(l(1 + a) + k + 2a)
+ Cc(l − 1, k)(l + k − 1)1+a (l − 2 + a)

(a+ 1)i+ a
.

In other words
C(l + k)1+a(l(1 + a) + k + a− 1)(k + al − 1) >

> a(k + al − 1) + C(l + k − 1)1+a(k + al − 1)(l(1 + a) + k + 2a)

and
C(l + k)1+a(l(1 + a) + k + a− 1)(l − 2 + a) >

> a(l − 2 + a) + C(l + k − 1)1+a(l − 2 + a)(l(1 + a) + k + 2a).

To prove both inequalities we make the following transformations:

(l + k)1+a(l(1 + a) + k + a− 1)− (l + k − 1)1+a(l(1 + a) + k + 2a) =

= (l + k)1+a(l(1 + a) + k + a− 1)− ((l + k)1+a − (1 + a)(l + k)a +
a(1 + a)

2
(l + k)a−1+

+O
(
(l + k)a−2)

)
(l(1 + a) + k + 2a) = −(l+ k)1+a(1 + a) + (1 + a)(l+ k)a(l(1 + a) + k + 2a)−

−a(1 + a)

2
(l + k)a−1(l(1 + a) + k + 2a) +O

(
(l + k)a−2

)
(l(1 + a) + k + 2a) =

= (l+k)a−1(1+a)

(
al2 + alk + 2al + 2ak − a(1 + a)

2
l − a

2
k − 2a2

2

)
+O

(
(l + k)a−2

)
(l(1+a)+k+2a) =

= (l + k)a−1(1 + a)

(
al2 + alk +

3

2
al +

3

2
ak − 1

2
a2l − a2

)
+O

(
(l + k)a−2

)
(l(1 + a) + k + 2a).
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If l or k is large enough, then there exists a constant C such that

C(l+k)a−1(1+a)

(
al2 + alk +

3

2
al +

3

2
ak − 1

2
a2l − a2

)
+O

(
(l + k)a−2

)
(l(1+a)+k+2a) > a.

Finally, we need to consider the finite number of small l and k. We want to find some
function f(l, k) such that

f(l, k)c(l, k)
(
(l + k)1+a

) l(1 + a) + k + a− 1

(a+ 1)i+ a
>

>
a(k + al − 1)c(l, k − 1)

((a+ 1)i+ a)(l(1 + a) + k + 2a)
+

a(l − 2 + a)c(l − 1, k)

((a+ 1)i+ a)(l(1 + a) + k + 2a)
+

+f(l − 1, k)c(l − 1, k)
(l − 2 + a)

(a+ 1)i+ a
+ f(l, k − 1)c(l, k − 1)

(k + al − 1)

(a+ 1)i+ a
.

Such function f(l, k) exists. This concludes the proof of Theorem 4.

4.2 Proof of Theorem 2

In this proof we shall use the following statement.

Statement 1. For t > 0 and fixed a > 0

Γ(t+ a)

Γ(t)
= ta (1 +O(1/t)) .

Proof. From Stirling’s formula we obtain

Γ(t+ a)

Γ(t)
=

√
t

t+ a

(t+ a)a

ea

(
t+ a

t

)t
(1 + 1/t) .

It is easy to check that
t ln
(

1 +
a

t

)
= a+O(1/t).

So (
1 +

a

t

)t
= ea(1 +O(1/t)).

We obtain
Γ(t+ a)

Γ(t)
=

√
t

t+ a
(t+ a)a (1 +O(1/t)) = ta (1 +O(1/t)) .

�
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4.2.1 Estimation of c(1, k)

Lemma 8.
c(1, k) =

Γ(2a+ 1)(1 +O(1/k))

Γ(a)ka+1
.

Proof. As we know

c(k) =
B(k − 1 + a, a+ 2)

B(a, a+ 1)
=

(a+ 1)Γ(2a+ 1)Γ(k − 1 + a)

Γ(a)Γ(k + 1 + 2a)
.

Using the recurrent relation

c(1, k) = c(1, k − 1)
a+ k − 1

k + 3a+ 1
+ c(k)

a+ k − 1

k + 3a+ 1

we obtain

c(1, k) =
k∑
j=1

c(j)(a+ j − 1) . . . (a+ k − 1)

(j + 3a+ 1) . . . (k + 3a+ 1)
=

=
(a+ 1)Γ(2a+ 1)

Γ(a)

k∑
j=1

Γ(j − 1 + a)(a+ j − 1) . . . (a+ k − 1)

Γ(j + 1 + 2a)(j + 3a+ 1) . . . (k + 3a+ 1)
=

=
(a+ 1)Γ(2a+ 1)Γ(a+ k)

Γ(a)Γ(k + 3a+ 2)

k∑
j=1

Γ(j + 3a+ 1)

Γ(j + 1 + 2a)
=

=
(a+ 1)Γ(2a+ 1)Γ(a+ k)

Γ(a)Γ(k + 3a+ 2)

k∑
j=1

ja(1 +O(1/j)) =
Γ(2a+ 1)ka+1(1 +O(1/k))

Γ(a)k2a+2
=

=
Γ(2a+ 1)(1 +O(1/k))

Γ(a)ka+1
.

�

4.2.2 Sum of c(l, k)

We want to estimate the sum
∑∞

l=1 c(l, k). First let us prove that the series
∑∞

l=1 l
Nc(l, k)

converges for all N and k.
The inequality

c(l, k) 6 C̃
pk

(1 + q)l

holds for any p > 1 and q = min{a, 1} (p−1)
p

. Here we choose C̃ so that C̃ pk

1+ap
> c(1, k) for any

k. We need to prove that

pk

(1 + q)l
(l + al + k + 2a) >

pk−1

(1 + q)l
(al + k − 1) +

pk

(1 + q)l−1
(l − 2 + a),

We make some transformations:

p(l + al + k + 2a) > (al + k − 1) + p(1 + q)(l − 2 + a),
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p(al + k + a+ 2) > (al + k − 1) + pq(l − 2 + a),

al + k + a+ 2 > min{a, 1}(l − 2 + a).

The last inequality holds. Therefore c(l, k) 6 C̃ pk

(1+q)l
and

∑∞
l=1 l

Nc(l, k) converges.
For l > 2 and any c > 0 we have

c(l, k)(l(1+a)+k+2a)
Γ(l + a+ c)

Γ(l + a− 1)
= c(l, k−1)

Γ(l + a+ c)

Γ(l + a− 1)
(al+k−1)+c(l−1, k)(l−2+a)

Γ(l + a+ c)

Γ(l + a− 1)
.

Therefore,

∞∑
l=2

c(l, k)(l(1+a)+k+2a)
Γ(l + a+ c)

Γ(l + a− 1)
=
∞∑
l=2

c(l, k−1)(al+k−1)
Γ(l + a+ c)

Γ(l + a− 1)
+
∞∑
l=1

c(l, k)
Γ(l + a+ c+ 1)

Γ(l + a− 1)
,

∞∑
l=2

c(l, k)(al+k+a−c) Γ(l + a+ c)

Γ(l + a− 1)
=
∞∑
l=2

c(l, k−1)(al+k−1)
Γ(l + a+ c)

Γ(l + a− 1)
+c(1, k)

Γ(a+ c+ 2)

Γ(a)
.

Consider the function

fc(k) =
Γ(k + a− c)

Γ(k)
= ka−c(1 +O(1/k)).

It is easy to see that
fc(k + 1)

fc(k)
= 1 +

a− c
k

.

We have
k∑
j=1

∞∑
l=2

c(l, j)(al + j + a− c) Γ(l + a+ c)

Γ(l + a− 1)
fc(j) =

=
k∑
j=1

∞∑
l=2

c(l, j − 1)(al + j − 1)
Γ(l + a+ c)

Γ(l + a− 1)
fc(j) +

k∑
j=1

c(1, j)
Γ(a+ c+ 2)

Γ(a)
fc(j),

k∑
j=1

∞∑
l=2

c(l, j)(al + j + a− c) Γ(l + a+ c)

Γ(l + a− 1)
fc(j) =

=
k−1∑
j=1

∞∑
l=2

c(l, j)(al + j)
Γ(l + a+ c)

Γ(l + a− 1)
fc(j)

(
1 +

a− c
j

)
+

k∑
j=1

c(1, j)
Γ(a+ c+ 2)

Γ(a)
fc(j),

∞∑
l=2

c(l, k)(al + k + a− c) Γ(l + a+ c)

Γ(l + a− 1)
fc(k) =

=
k−1∑
j=1

∞∑
l=2

c(l, j)
Γ(l + a+ c)

Γ(l + a− 1)

al(a− c)
j

fc(j) +
k∑
j=1

c(1, j)
Γ(a+ c+ 2)

Γ(a)
fc(j).
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If c > a then taking into account Lemma 8 and the above-mentioned asymptotics for fc(j) we
have

∞∑
l=2

c(l, k)(al + k + a− c) Γ(l + a+ c)

Γ(l + a− 1)
fc(k) 6

k∑
j=1

c(1, j)
Γ(a+ c+ 2)

Γ(a)
fc(j) = O(1).

Hence,
∞∑
l=2

c(l, k)
Γ(l + a+ c)

Γ(l + a− 1)
fc(k) = O(1/k).

We want to prove that for any 0 6 c < a+ 1 the following equality holds:
∞∑
l=2

c(l, k)
Γ(l + a+ c)

Γ(l + a− 1)
fc(k) = O

(
(ln k)da−ce

k

)
. (5)

We have already proved this statement for a 6 c < a+ 1.
Suppose that for c′ > 1 we have

∞∑
l=2

c(l, k)
Γ(l + a+ c′)

Γ(l + a− 1)
fc′(k) = O

(
(ln k)da−c

′e

k

)
.

Then
∞∑
l=2

c(l, k)(al + k + a− c′ + 1)
Γ(l + a+ c′ − 1)

Γ(l + a− 1)
fc′−1(k) =

=
k−1∑
j=1

∞∑
l=2

c(l, j)
Γ(l + a+ c′ − 1)

Γ(l + a− 1)

al(a− c′ + 1)

j
(j+a−c′)fc′(j)+

k∑
j=1

c(1, j)
Γ(a+ c′ + 1)

Γ(a)
fc′−1(j) =

= O

(
k−1∑
j=1

(ln k)da−c
′e

j

)
= O

(
(ln k)da−c

′+1e
)
.

We proved (5). In particular,

∞∑
l=2

c(l, k)
Γ(l + a)

Γ(l + a− 1)
f0(k) =

∞∑
l=2

c(l, k)(l + a− 1)f0(k) = O

(
(ln k)dae

k

)
. (6)

Put xk =
∑∞

l=2 c(l, k). For l > 2

c(l, k)(l(1 + a) + k + 2a) = c(l, k − 1)(al + k − 1) + c(l − 1, k)(l − 2 + a).

So
∞∑
l=2

c(l, k)(l(1 + a) + k + 2a) =
∞∑
l=2

c(l, k − 1)(al + k − 1) +
∞∑
l=1

c(l, k)(l − 1 + a),

∞∑
l=2

c(l, k)(al + k + a+ 1) =
∞∑
l=2

c(l, k − 1)(al + k − 1) + ac(1, k),
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(k + a+ 1)xk = (k − 1)xk−1 + ac(1, k) + a

∞∑
l=2

l(c(l, k − 1)− c(l, k)).

We have

(k + a+ 1)f−1(k)xk = (k − 1)f−1(k)xk−1 + af−1(k)c(1, k) + af−1(k)
∞∑
l=2

l(c(l, k − 1)− c(l, k)),

k∑
j=1

(j+a+1)f−1(j)xj =
k−1∑
j=1

f−1(j)(j+a+1)xj+
k∑
j=1

af−1(j)c(1, j)+
k∑
j=1

af−1(j)
∞∑
l=2

l(c(l, j−1)−c(l, j)),

(k + a+ 1)f−1(k)xk = a
k∑
j=1

f−1(j)c(1, j) + a

k∑
j=1

f−1(j)
∞∑
l=2

l(c(l, j − 1)− c(l, j)).

f−1(k)(k+a+ 1)xk = a
k∑
j=1

f−1(j)c(1, j) +a(a+ 1)
k−1∑
j=1

f−1(j)

j

∞∑
l=2

lc(l, j)−af−1(k)
∞∑
l=2

lc(l, k) =

= a
k∑
j=1

ja+1 Γ(2a+ 1)

Γ(a)ja+1
(1 +O(1/j)) +

k−1∑
j=1

O

(
(ln j)dae

j

)
+O

(
(ln k)dae

)
=

= ak
Γ(2a+ 1)

Γ(a)
+

k−1∑
j=1

O

(
(ln j)dae

j

)
+O

(
(ln k)dae

)
= ak

Γ(2a+ 1)

Γ(a)

(
1 +O

(
(ln k)da+1e

k

))
.

Here we used (6) and Lemma 8. We obtain

xk =
aΓ(2a+ 1)

Γ(a)ka+1

(
1 +O

(
(ln k)da+1e

k

))
and

∞∑
l=1

c(l, k) = c(1, k) + xk =
(a+ 1)Γ(2a+ 1)

Γ(a)ka+1

(
1 +O

(
(ln k)da+1e

k

))
.

4.2.3 Estimation of EYn(k)

Note that∑
l>1

∑
j>k

ENi+1(l, j) =
∑
l>1

∑
j>k

ENi(l, j) +
∑
l>1

(al + k − 1)ENi(l, k − 1)

(a+ 1)i+ a
+
∑
j>k

(j − 1 + a)M1
i (j)

(a+ 1)i+ a
.

Therefore we obtain∑
l>1

∑
j>k

ENn(l, j) =
n−1∑
i=1

∑
l>1

(al + k − 1)ENi(l, k − 1)

(a+ 1)i+ a
+

n−1∑
i=1

∑
j>k

(j − 1 + a)M1
i (j)

(a+ 1)i+ a
.

Let us estimate the sum
n−1∑
i=1

∑
j>k

(j − 1 + a)M1
i (j)

(a+ 1)i+ a
.
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First we compute
Ft(k) =

∑
j>k

(j − 1 + a)M1
t (j).

Let us prove by induction on k that

Fn(k) =
(a+ 1)Γ(2a+ 1)Γ(k + a)

Γ(a+ 1)Γ(k + 2a)
n

(
1 + θ

(
C(k − 1)1+a

n

))
with some constant C. For k = 1 and k = 2 we have

Fn(1) =
∑
j>1

(j − 1 + a)M1
n(j) = n(1 + a),

Fn(2) = Fn(1)− aM1
n(1) = n(1 + a)− an (1 + a)

(2a+ 1)
+O (1) =

(1 + a)2n

2a+ 1
(1 +O (1/n)) .

For k > 3 we have

M1
i+1(j) = M1

i (j)

(
1− j − 1 + a

(a+ 1)i+ a

)
+M1

i (j − 1)
j − 2 + a

(a+ 1)i+ a
.

We multiply this equality by (j − 1 + a) and sum over all j > k:

Fi+1(k) =
∑
j>k

(j − 1 + a)M1
i+1(j) =

=
∑
j>k

(j − 1 + a)M1
i (j)−

∑
j>k

M1
i (j)

(j − 1 + a)(j − 1 + a)

(a+ 1)i+ a
+
∑
j>k−1

M1
i (j)

(j + a)(j − 1 + a)

(a+ 1)i+ a
=

= Fi(k) +
∑
j>k

M1
i (j)

(j − 1 + a)

(a+ 1)i+ a
+M1

i (k − 1)
(k − 1 + a)(k − 2 + a)

(a+ 1)i+ a
=

= Fi(k)

(
1 +

1

(a+ 1)i+ a

)
+ (Fi(k − 1)− Fi(k))

(k − 1 + a)

(a+ 1)i+ a
=

= Fi(k)

(
1− k − 2 + a

(a+ 1)i+ a

)
+ Fi(k − 1)

(k − 1 + a)

(a+ 1)i+ a
.

Note that for i+1 < k−1 we have Fi+1(k) = 0. Consider i+1 > k−1. Using the inductive
assumption we get

Fi+1(k) =
(a+ 1)Γ(2a+ 1)Γ(k + a)

Γ(a+ 1)Γ(k + 2a)
i

(
1− k − 2 + a

(a+ 1)i+ a

)(
1 + θ

(
C(k − 1)1+a

i

))
+

+
(a+ 1)Γ(2a+ 1)Γ(k − 1 + a)i

Γ(a+ 1)Γ(k − 1 + 2a)

(k − 1 + a)

(a+ 1)i+ a

(
1 + θ

(
C(k − 2)1+a

i

))
=

=
(a+ 1)Γ(2a+ 1)Γ(k + a)

Γ(a+ 1)Γ(k + 2a)

(
i+ 1− a

(a+ 1)i+ a
+ i

(
1− k − 2 + a

(a+ 1)i+ a

)
θ

(
C(k − 1)1+a

i

)
+
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+
(k − 1 + 2a)i

(a+ 1)i+ a
θ

(
C(k − 2)1+a

i

))
.

And we need to show that for some constant C

a

(a+ 1)i+ a
+

(k − 1 + 2a)

(a+ 1)i+ a
C(k − 2)1+a 6

k − 2 + a

(a+ 1)i+ a
C(k − 1)1+a.

This inequality holds for sufficiently large C.
We have

n−1∑
i=1

Fi(k)

(a+ 1)i+ a
=

n−1∑
i=1

Γ(2a+ 1)Γ(k + a)

Γ(a+ 1)Γ(k + 2a)

(
1 +O

(
k1+a

i

))
=

=
Γ(2a+ 1)Γ(k + a)

Γ(a+ 1)Γ(k + 2a)
n

(
1 +O

(
k1+a

n

))
.

Let us estimate the sum
n−1∑
i=1

∑
l>1

(al + k − 1)ENi(l, k − 1)

(a+ 1)i+ a
.

We start with the sum ∑
l>1

(al + k − 1)ENi(l, k − 1).

It is easy to see that
ENi(l, k) = O(c(l, k)i).

To verify this, one can follow the proof of Theorem 4 and make sure that it works for the
inequality

ENi(l, k) < C̃c(l, k)((a+ 1)i+ a)

with some constant C̃ – note that the analog of Lemma 1 is also needed.
Therefore∑

l>1

(al − 1)ENi(l, k − 1) = O

(∑
l>1

(al − 1)c(l, k − 1)i

)
= O

(
(ln k)daei

ka+1

)
.

Using (5) we obtain∑
l>1

kENi(l, k − 1) =
∑
l>1

kc(l, k − 1)i
(
1 +O

(
(l + k)1+a/i

))
=

=
(a+ 1)Γ(2a+ 1)

Γ(a)ka
i

(
1 +O

(
(ln k)da+1e

k

)
+O

(
k1+a

i

))
.

Here we used the following estimate:

∑
l>1

kc(l, k−1)(l+k)1+a = O

(
k∑
l=1

k2+ac(l, k − 1) +
∑
l>k

kc(l, k − 1)l1+a

)
= O(k)+O(1) = O(k).
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So we have

n−1∑
i=1

∑
l>1

(al + k − 1)ENi(l, k − 1)

(a+ 1)i+ a
=

Γ(2a+ 1)

Γ(a)ka
n

(
1 +O

(
(ln k)da+1e

k

)
+O

(
k1+a

n

))
.

Hence∑
l>1

∑
j>k

ENn(l, j) =
aΓ(2a+ 1)

Γ(a+ 1)ka
n

(
1 +O

(
(ln k)da+1e

k

))
+

Γ(2a+ 1)Γ(k + a)

Γ(a+ 1)Γ(k + 2a)
n

(
1 +O

(
k1+a

n

))
=

=
(a+ 1)Γ(2a+ 1)

Γ(a+ 1)ka
n

(
1 +O

(
(ln k)da+1e

k

)
+O

(
k1+a

n

))
.

Consider vertices with loops. For k = 0, we have

∑
l>1

∑
j>0

EPn(l, j) =
n∑
i=1

a

(1 + a)i− 1
= O(lnn).

For k > 2, we have∑
l>1

∑
j>k

EPi+1(l, j) =
∑
l>1

∑
j>k

EPi(l, j) +
∑
l>1

(al + k − 2a− 1)EPi(l, k − 1)

(a+ 1)i+ a
.

Therefore, we obtain

∑
l>1

∑
j>k

EPn(l, j) =
n−1∑
i=1

∑
l>1

(al + k − 2a− 1)EPi(l, k − 1)

(a+ 1)i+ a
6

n−1∑
i=1

∑
l>1

(al + k − 2a− 1)p(l, k − 1)

(a+ 1)i
.

From the recurrent relation for p(l, k) it follows that

p(l, k) = O

(
1

l2

)
,

and
p(l, k) = O

(
k

l3

)
.

To obtain the second estimate consider q(l, k) = p(l, k)/k. For k > 1 we have

q(l, k)(l + al + k − 1− a) = q(l, k − 1)
(k − 1)(al + k − 2a− 1)

k
+ q(l − 1, k)(l − 2 + a),

q(l, k)(l+ al+ k− 1− a)− q(l, k− 1)

(
al + k − 2a− 2− al − 2a− 1

k

)
= q(l− 1, k)(l− 2 + a).

Thus, q(l, k) = O(q(l)), where

q(l)(l + a+ 1 + (al − 2a− 1)) = q(l − 1)(l − 2 + a).

26



From this equality it follows that q(l) = O
(

1
l3

)
.

We can estimate the following sum:∑
l>1

(al + k − 2a− 1)p(l, k − 1)

(a+ 1)
= O (k) .

Hence ∑
l>1

∑
j>k

EPn(l, j) = O(k lnn).

Now we are ready to estimate EYn(k):

EYn(k) =
∑
l>1

∑
j>k

ENn(l, j) +
∑
l>1

∑
j>k

EPn(l, k) =

=
(a+ 1)Γ(2a+ 1)

Γ(a+ 1)ka
n

(
1 +O

(
(ln k)da+1e

k

)
+O

(
k1+a

n

))
+O(k lnn) =

=
(a+ 1)Γ(2a+ 1)

Γ(a+ 1)ka
n

(
1 +O

(
(ln k)da+1e

k

)
+O

(
k1+a

n

))
.

This concludes the proof of Theorem 2.

4.3 Proof of Lemma 2

It is easy to see that EPn(0, k) = EPn(1, k) = 0. For all k > 0 we have EPn(2, k) = 0. For
k = 0 we have

EPn(2, 0) =
n∑
i=1

a

(a+ 1)i− 1

n∏
j=i+1

(1 + a)j − 2− a
(1 + a)j − 1

=
n∑
i=1

a

(a+ 1)i− 1

Γ
(
n− 1

a+1

)
Γ
(
i+ a

a+1

)
Γ
(
n+ a

a+1

)
Γ
(
i− 1

a+1

) =

=
1

n
(1 +O(1/n))

n∑
i=1

ai

(a+ 1)i− 1
(1 +O(1/i)) = O(1).

The rest of the proof is by induction. Consider l > 3, k > 1. Suppose that for i < l and
j < k we have EPn(i, j) 6 p(i, j). We use the following equality

EPi+1(l, k) = EPi(l, k)

(
1− l(a+ 1) + k − a− 1

(a+ 1)i+ a

)
+ EPi(l, k − 1)

al + k − 2a− 1

(a+ 1)i+ a
+

+ EPi(l − 1, k)
l − 2 + a

(a+ 1)i+ a
. (7)

Note that if we have at least one vertex with a loop, with first degree l and second degree k
in the graph H i

a,1, then we have at least l + k − 1 edges in this graph. Therefore EPi(l, k) = 0
if i < l + k − 1. Consider the case i = l + k − 1. Using (7), we get (for k > 1)

EPl+k−1(l, k) =
(l − 2 + a)EPl+k−2(l − 1, k)

(a+ 1)(l + k − 2) + a
+

(al + k − 2a− 1)EPl+k−2(l, k − 1)

(a+ 1)(l + k − 2) + a
6

27



6
(l − 2 + a)p(l − 1, k)

(a+ 1)(l + k − 2) + a
+

(al + k − 2a− 1)p(l, k − 1)

(a+ 1)(l + k − 2) + a
=

=
(l + al + k − 1− a)p(l, k)

(a+ 1)(l + k − 2) + a
6 p(l, k).

The last inequality holds for k > 1/a. Consider the case k < 1/a. As in proof of Theorem 4,
at first we estimate p(l, k):

p(l, k) = Ω

 lk+ a2

a+1

(1 + a)l

 .

For k = 0 we have
p(l, 0) = p(l − 1, 0)

l − 2 + a

(1 + a)(l − 1− 1
a+1

)
.

Therefore,

p(l, 0) = Ω

 l
a2

a+1

(1 + a)l

 .

For k > 1 we have

p(l, k) = p(l, k − 1)
al + k − 2a− 1

l(1 + a) + k − 1− a
+ p(l − 1, k)

l − 2 + a

l(1 + a) + k − 1− a
.

Again, it is sufficient to prove that there exists a positive function f(k) such that for big l

f(k)(l(1+a)+k−1−a)lk+ a2

a+1 6 f(k−1)(al+k−2a−1)lk+ a2

a+1
−1+f(k)(l−2+a)(a+1)(l−1)k+ a2

a+1 ,

f(k)(l(1 + a) + k − 1− a)
(
lk+ a2

a+1 − (l − 1)k+ a2

a+1

)
+ f(k)(k − a2 + 1)(l − 1)k+ a2

a+1 6

6 f(k − 1)(al + k − 2a− 1)lk+ a2

a+1
−1.

The last inequality holds for some function f(k).
We want to prove that

EPl+k−1(l, k) = O

 lk+ a2

a+1

(1 + a)l

 .

There are lk possible graphs on l + k − 1 vertices with some vertex of first degree l, second
degree k, and without a loop. And this vertex is exactly the vertex 1. The probability of this
vertex to be a vertex with first degree l and second degree k equals

O

(
lk((a+ 1) . . . (a+ l − 2))

(a+ 2) . . . ((l − 1)(a+ 1)− 1)

)
= O

 lk+ a2

a+1

(a+ 1)l

 .

This concludes the case i = l + k − 1.
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If i > l + k − 1, then

EPi+1(l, k) = EPi(l, k)

(
1− l(a+ 1) + k − a− 1

(a+ 1)i+ a

)
+

+EPi(l, k − 1)
al + k − 2a− 1

(a+ 1)i+ a
+ EPi(l − 1, k)

l − 2 + a

(a+ 1)i+ a
.

Using the recurrent relation for p(l, k) and induction on i it is easy to prove that EPn(l, k) 6
p(l, k). This concludes the proof of Lemma 2.

4.4 Proof of Theorem 3

We estimate the expectation of Xn(k) as follows:

EXn(k) =
∞∑
l=1

ENn(l, k)+
∞∑
l=1

EPn(l, k) =
∞∑
l=1

c(l, k)n+O

(
∞∑
l=1

c(l, k)(l + k)1+a

)
+O

(
∞∑
l=1

p(l, k)

)
=

=
(a+ 1)Γ(2a+ 1)n

Γ(a)ka+1

(
1 +O

(
(ln k)da+1e

k

))
+O(1) +O(1) =

=
(a+ 1)Γ(2a+ 1)n

Γ(a)ka+1

(
1 +O

(
(ln k)da+1e

k

)
+O

(
k1+a

n

))
.
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[18] A. Rudas, B. Tóth, B.Valko, Random trees and general branching processes, Random
Structures & Algorithms, 31, 186–202, 2007.

[19] M. Talagrand, Concentration of measures and isoperimetric inequalities in product spaces,
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