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Abstract. We consider two generalizations of the problem of finding a sparsest cut in a graph. The
first is to find a partition of the vertex set into m parts so as to minimize the sparsity of the partition
(defined as the ratio of the weight of edges between parts to the total weight of edges incident to
the smallest m − 1 parts). The second, that has appeared in the context of understanding the unique
games conjecture, is to find a subset of minimum sparsity that contains at most a 1/m fraction of the
vertices. Our main results are extensions of Cheeger’s classical inequality to these problems via higher
eigenvalues of the graph Laplacian. In particular, for the sparsest m-partition, we prove that the sparsity
is at most 8

√
1− λm logm where λm is the mth largest eigenvalue of the normalized adjacency matrix.

For sparsest small-set, we bound the sparsity by O(
√

(1− λm2) logm). Our results are algorithmic,
with the first using a recursive spectral decomposition and the second using a convex relaxation.

1 Introduction

The expansion of a graph is a fundamental and widely studied parameter with many important algorithmic
applications [LR99,ARV04,KRV06,She09]. Given an undirected graph G = (V,E), with nonnegative weights
w : E → R+ on the edges, the expansion of a subset of vertices S ⊂ V is defined as:

φG(S)
def
=

w(S, V \ S)

min{w(S), w(V \ S)}

where by w(S) we denote the total weight of edges incident to vertices in S and for two subsets S, T , we
denote the total weight of edges between them by w(S, T ). The degree of a vertex v, denoted by dv is defined

as dv
def
=

∑
u∼v w(u, v). The expansion of the graph is φG

def
= minS⊂V φ(S).

Cheeger’s inequality connects this combinatorial parameter to graph eigenvalues. Let λi denote the ith

largest eigenvalue of the normalized adjacency matrix of G, defined as B
def
= D−1A where A is the adjacency

matrix of G and D is a diagonal matrix with D(i, i) equal to the (weighted) degree of vertex i (each row of
B sums to 1).

Theorem 1 (Cheeger’s Inequality ([Alo86,AM85])). Given a graph G, and its row-normalized adja-
cency matrix B (each row of B sums to 1), let the eigenvalues of B be 1 ≥ λ2 ≥ λ3 ≥ . . . ≥ λn. Then

2
√

1− λ2 ≥ φG ≥
1− λ2

2
.

It is sometimes convenient to re-state this inequality in terms of the eigenvalues of the normalized Laplacian

of G, the matrix L
def
= I −B. The eigenvalues of L are 1− λi.

The proof of Cheeger’s inequality is algorithmic and uses the second eigenvector of the normalized ad-
jacency matrix. It gives an efficient algorithm for finding an approximate sparsest cut, i.e., a cut whose
sparsity is bounded as in the inequality. Finding a sparse cut is a fundamental algorithmic problem, and the
algorithm based on the second eigenvector is popular in theory and in practice.

Here we consider two natural generalizations of the sparsest cut problem.



1.1 Generalizations of Sparsest cut

Our first problem is an extension of sparsest cut to partitions with more than two parts.
Sparsest m-partition: Given a weighted undirected graph G = (V,E) and an integer m > 1, the sparsity
of an m-partition P = {V1, . . . , Vm} of the vertex set V into m parts is the ratio of the weight of edges
between different parts to the sum of the weights of smallest m− 1 parts in P, i.e.,

φsumG,m(P)
def
=

∑
i 6=j w(Vi, Vj)

minj∈[m]w(V \Vj)

The sparsest m-partition has value φsumG,m
def
= minP φ

sum
G,m(P).

Variants of such a definition have been considered in the literature. The m-cut problem asks for the
minimum weight of edges whose deletion leaves m disjoint parts. Closer to ours is the (α, ε)-clustering
problem from [KVV04] that asks for a partition where each part has conductance at least α and the total
weight of edges removed is minimized.

The second extension we consider is obtained by restricting the size of the set.
Sparsest Small Set: Given a graph G = (V,E) and an integer m > 0, the small-set sparsity of G is defined
as

φsmallG,m
def
= min

S⊂V,w(S)≤w(V )/m

w(S, V \ S)

w(S)

The problem is to find a sparsest small set.
The sparsest small set problem has been shown to be closely related to the Unique Games problem (see
[RS10,ABS10] ). Recently, Arora et. al. ([ABS10]) showed that φsmallG,m ≤ C

√
(1− λm100) logm n where C is

some absolute constant. They also give a polynomial time algorithm to compute a small set with sparsity
satisfying this bound.

Both of the problems are NP -hard since they are generalizations of sparsest cut.

1.2 Our results

For sparsest m-partition, we give the following bound using the mth largest eigenvalue of the normalized
adjacency matrix of G.

Theorem 2. For any edge-weighted graph G = (V,E) and integer |V | ≥ m > 0, there exists an m-partition
P of V such that

φsumG,m(P) ≤ 8
√

1− λm logm,

where λm is the mth largest eigenvalue of the normalized adjacency matrix of G. Moreover, an m-partition
with this sparsity bound can be computed in polynomial time.

The above result is a generalization of the upper bound in Cheeger’s inequality (where m = 2). Our proof
is based on a recursive partitioning algorithm that might be of independent interest. We remark that the
dependence on m is necessary and cannot be improved to something smaller than

√
logm. Moreover, notice

that the lower bound of Ω(1− λ2) in Cheeger’s inequality cannot be strengthened for m > 2: Consider the
graph G constructed by taking m−1 cliques C1, C2, ..., Cm−1 each on (n−1)/(m−1) vertices. Let v be the
remaining vertex. Let C1, . . . , Cm−1 be connected to v by a single edge. Now, G will have m− 1 eigenvalues
close to 1 because of the m−1 cuts ({v}, Ci) for i ∈ [m−1], but the mth eigenvalue will be close to 0, as any
other cut which is not a linear combination of these m− 1 cuts will have to cut through one of the cliques.
Therefore, λm must be a constant smaller than 1/2. But φsumG,m = (m− 1)/((m− 2)(n/m)2) ≈ m2/n2. Thus,
1− λm � φsumG,m for small enough values of m.

For the sparsest small-set problem, we present the following bound.

Theorem 3. Given a graph G = (V,E) and an integer |V | > m > 1, there exists a non-empty subset S ⊂ V
such that |S| ≤ 2|V |

m and

φ(S) ≤ C
√

(1− λm2) logm

where C is a fixed constant. Moreover, such a set can be computed in polynomial time.



The result is a consequence of the rounding technique of [RST10a] and a relation between eigenvalues and
the SDP relaxation observed by [Ste10].

A lower bound of (1 − λ2)/2 for φsmallG,m follows from Cheeger’s inequality. Furthermore, it is easy to see
that this bound cannot be improved in general. Specifically, consider the graph G constructed by adding
an edge between a copy of Kbn/mc and a copy of Kdn(1−1/m)e. In this graph, φsmallG,m ≈ 1/(n/m)2 = m2/n2,

whereas G has only 1 eigenvalue close to 1 and λm ≈ 0 for m > 3. Therefore, 1 − λm � φsmallG,m for small
enough values of m.

We believe that there is room for improvement in both our theorems, and especially for the sparsest
small-set, we believe that the dependence should be on a lower eigenvalue (m instead of m2). We make the
following conjecture:

Conjecture 1. There is a fixed constant C such that for any graph G = (V,E) and any integer |V | > m > 1,

φsumG,m, φ
small
G,m ≤ C

√
(1− λm) logm,

where λm is the mth largest eigenvalue of the normalized adjacency martix of G.

The bounds in this conjecture are matched by the Gaussian graphs. For a constant ε ∈ (−1, 1), let Nk,ε
denote the infinite graph over Rk where the weight of an edge (x, y) is the probability that two standard
Gaussian random vectors X,Y with correlation 3 ε equal x and y respectively. The first k eigenvalues of Nk,ε
are at least 1− ε (see [RST10b]). The following lemma bounds the expansion of small sets in Nk,ε.

Lemma 1 ([Bor85,RST10b]). For m < k we have

φsmallNk,ε,m
≥ Ω(

√
ε logm)

Therefore, for any value of m < k, Nk,ε has φsmallNk,ε,m
≥ Ω(

√
(1− λm) logm).

2 Monotonicity of Eigenvalues

In this section we collect some useful properties about the behavior of eigenvalues upon deleting edges and
merging vertices.

Lemma 2 (Weyl’s Inequality). Given a Hermitian matrix B with eigenvalues λ1 ≥ λ2 ≥ . . . ≥ λn, and

a positive semidefinite matrix E, if λ′1 ≥ λ′2 ≥ . . . ≥ λ′n denote the eigenvalues of B′
def
= B+E, then λ′i ≥ λi.

Proof. The ith eigenvalue of B′ can be written as

λ′i = max
S:rank(S)=i

min
x∈S

xTB′x

xTx

= max
S:rank(S)=i

min
x∈S

xTBx+ xTEx

xTx

≥ max
S:rank(S)=i

min
x∈S

xTBx

xTx

= λi.

Lemma 3. Let B be the row normalized matrix of the graph G. Let F be any subset of edges of G. For every
pair (i, j) ∈ F , remove the edge (i, j) from G and add self loops at i and j to get the graph G′. Let B′ be the
row-normalized matrix of G′. Let the eigenvalues of B be 1 ≥ λ2 ≥ . . . ≥ λn and let the eigenvalues of B′ be
1, λ′2, λ

′
3, λ
′
4 ≥ . . . ≥ λ′n. Then λ′i ≥ λi ∀i ∈ [n].

3 ε correlated Gaussians can be constructed as follows : X ∼ N(0, 1)k and Y ∼ (1 − ε)X +
√

2ε− ε2Z where
Z ∼ N(0, 1)k.



Proof. Let D
1
2 be the diagonal matrix whose (i, i)th entry is

√
di. Observe that DB = BTD. Therefore

Q
def
= D

1
2BD−

1
2 is a symmetric matrix where Moreover, the eigenvalues of Q and B are the same: if ν is an

eigenvector of Q with eigenvalue λ, i.e. D
1
2BD−

1
2 ν = λν, then B(D−

1
2 ν) = λ(D−

1
2 ν).

Hence, the eigenvalues of Q are 1 ≥ λ2 ≥ . . . ≥ λn and the eigenvalues of Q′
def
= D

1
2B′D

−1
2 are 1 ≥ λ′2 ≥

λ′3 ≥ λ′4 ≥ . . . ≥ λ′n.

C
def
= D

1
2 (B′−B)D−

1
2 is the matrix corresponding to the edge subset F . It has non-negative entries along

its diagonal and non-positive entries elsewhere such that ∀i cii = −
∑
j 6=i cij . C is symmetric and positive

semi-definite as for any vector x of appropriate dimension, we have

xTCx =
∑
ij

cijxixj = −1

2

∑
i 6=j

cij(xi − xj)2 ≥ 0.

Using Lemma 2, we get that λ′i ≥ λi ∀i ∈ [n].

Lemma 4. Let B be the row normalized matrix of the graph G. Let S be a non-empty set of vertices of
G. Let G′ be the graph obtained from G by shrinking4 S to a single vertex. Let B′ be the row normalized
adjacency matrix of G′. Let the eigenvalues of B be 1 ≥ λ2 ≥ . . . ≥ λn and let the eigenvalues of B′ be
1, λ′2, λ

′
3, λ
′
4 ≥ . . . ≥ λ′n−|S|+1. Then λi ≥ λ′i for 1 ≤ i ≤ n− |S|+ 1.

Proof. Let D
1
2 be the diagonal matrix whose (i, i)th entry is

√
di. Observe that DB = BTD. Therefore

Q
def
= D

1
2BD−

1
2 is a symmetric matrix where Moreover, the eigenvalues of Q and B are the same: if ν is an

eigenvector of Q with eigenvalue λ, i.e. D
1
2BD−

1
2 ν = λν, then B(D−

1
2 ν) = λ(D−

1
2 ν). The ith eigenvalue of

B can be written as

λi = max
S:rank(S)=i

min
x∈S

xTBx

xTx

and hence

λi = max
S:rank(S)=i

min
x∈S

1− xTD
1
2 (I −B)D−

1
2x

xTx
= max
S:rank(S)=i

min
x∈S

1−
∑
i

∑
j>i dibij(xi − xj)2∑

i dix
2
i

Let s = |S|. Let v1, v2, . . . , vn be the vertices ofG, let S = {vn−s+1, vn−s+2, . . . vn} and v1, v2, . . . , vn−s, v
′
n−s+1

be the vertices of G′ where v′n−s+1 is the vertex obtained by shrinking S to a single vertex. If d′i denotes the
degree of ith vertex in G′ then d′i = di for 1 ≤ i ≤ n− s and d′n−s+1 =

∑
i∈S di.

Let T k be a variable denoting a subspace of Rk.

λ′i = max
Tn−s+1:rank(Tn−s+1)=i

min
x∈Tn−s+1

xTB′x

xTx

= max
Tn−s+1:rank(Tn−s+1)=i

min
x∈Tn−s+1

1−
∑n−s+1
i=1

∑
j>i d

′
ib
′
ij(xi − xj)2∑

i d
′
ix

2
i

= max
Tn−s+1:rank(Tn−s+1)=i

min
x∈Tn−s+1

1−
∑n−s
i=1

∑
j>i dibij(xi − xj)2∑n−s

i=1 dix
2
i + (

∑n
i=n−s+1 di)x

2
n−s+1

≤ max
Tn:rank(Tn)=i

min
x∈Tn

1−
∑n−s
i=1

∑
j>i dibij(xi − xj)2 +

∑n
i=n−s+1

∑
j>i dibij(xi − xj)2∑

i dix
2
i

= λi

4 A vertex set S is said to be shrunk to a vertex vS , if all the vertices in S are removed from G and in its place a new
vertex vS is added. All the edges in E(S, S̄) are now incident on vS and all the internal edges in S now become
self loops on vS .



3 Sparsest m-partition

Let A denote the adjacency matrix of the graph. We normalize A by scaling the rows so that the row sums
are equal to one. Let B denote this row-normalized matrix.

We propose the following recursive algorithm for finding an m-partitioning of G. Use the second eigen-
vector of G to find a sparse cut (C, C̄). Let G′ = (V,E′) be the graph obtained by removing the edges in
the cut (C, C̄) from G, i.e. E′ = E\E(C, C̄). We obtain the matrix B′ as follows: For all edges (i, j) ∈ E′,
b′ij = bij . For all other i, j such that i 6= j, b′ij = 0. For all i, b′ii = 1 −

∑
j 6=i b

′
ij . Note that B′ corresponds

to the row-normalized adjacency matrix of G′, if ∀(i, j) ∈ E(C, C̄) we add self loops at vertex i and vertex
j in G′. The matrix B′ is block-diagonal with two blocks for the two components of G′. The spectrum of
B′ (eigenvalues, eigenvectors) is the union of the spectra of the two blocks. The first two eigenvalues of
B′ are now 1 and we use the third largest eigenvector of G′ to find a sparse cut in G′. This is the second
eigenvector in one of the two blocks and partitions that block. We repeat the above process till we have
at least m connected components. This can be viewed as a recursive algorithm, where at each step one of
the current components is partitioned into two; the component partitioned is the one that has the highest
second eigenvalue among all the current components. The precise algorithm appears in Figure 1.

1. Input : Graph G = (V,E), m such that 1 < m < |V |
2. Initialize i := 2, and Gi = G, Bi = row-normalized matrix of G

(a) Find a sparse cut (Ci, C̄i) in Gi using the ith eigenvector of Bi (the first i− 1 are all equal to 1).
(b) Let Gi+1 := Gi\EGi(C, C̄)
(c) If i = m then output the connected components of Gi+1 and End else

i. Construct Bi+1 as follows
A. ∀(j, k) ∈ EGi+1 , Bi+1(j, k) = Bi(j, k)
B. For all other j, k, j 6= k, Bi+1(j, k) = 0
C. ∀j, Bi+1(j, j) = 1−

∑
k 6=j Bi+1(j, k)

ii. i := i+ 1
iii. Repeat from Step (a)

Fig. 1. The Recursive Algorithm

We now analyze the algorithm. Our analysis will also be a proof of Theorem 2.
The matrix Bi for i > 2 is not the row-normalized matrix of Gi, but can be viewed as a row normalized

matrix of Gi with a self loop on vertices i and j for each edge (i, j) ∈ EGi(Ci, C̄i). The next theorem is a
generalization of Cheeger’s inequality to weighted graphs, which relates the eigenvalues of B to the sparsity
of G.

Theorem 4 ([KVV04]). Suppose B is a N ∗N matrix with nonnegative entries with each row sum equal
to 1 and suppose there are positive real numbers π1, π2, . . . , πN summing to 1 such that πibij = πjbji ∀i, j. If
v is the right eigenvector of B corresponding to the 2nd largest eigenvalue λ2 and i1, i2 . . . , iN is an ordering
of 1, 2, . . . , N such that v1 ≥ v2 ≥ . . . ≥ vN , then

2
√

1− λ2 ≥ min
l:1≤l≤N

∑
1≤u≤l;l+1≤v≤N πiubiuiv

min{
∑

1≤u≤l πiu ,
∑
l+1≤v≤N πiv}

≥ 1− λ2
2

Lemma 2 shows that the eigenvalues of Bi are monotonically nondecreasing with i. This will show that
φGi(Ci) ≤ 2

√
1− λm.

We can now prove the main theorem.

Proof (of Theorem 2 ). Let P be the set of partitions output by the algorithm and let S(P) denote the sum
of weights of the smallest m − 1 pieces in P. Note that we need only the smaller side of a cut to bound
the size of the cut : |EG(S, S̄)| ≤ φG|S|. We define the notion of a cut-tree T = (V (T ), E(T )) as follows:



V (T ) = {V } ∪ {Ci|i ∈ [m]} (For any cut (Ci, C̄i) we denote the part with the smaller weight by Ci and
the part with the larger weight by C̄i. We break ties arbitrarily). We put an edge between S1, S2 ∈ V (T ) if
6 ∃S ∈ V (T ) such that S1 ( S ( S2 or S2 ( S ( S1, (one can view S1 as a ’top level’ cut of S2 in the former
case).
Clearly, T is connected and is a tree. We call V the root of T . We define the level of a node in T to be its
depth from the root. We denote the level of node S ∈ V (T ) by L(S). The root is defined to be at level 0.
Observe that S1 ∈ V (T ) is a descendant of S2 ∈ V (T ) if and only if S1 ( S2. Now E(P) = ∪iEGi(Ci, C̄i) =
∪i ∪j:L(Cj)=i EGj (Cj , C̄j) . We make the following claim.

Claim.
w(∪j:L(Cj)=iE(Cj , C̄j)) ≤ 2

√
1− λmS(P)

Proof. By definition of level, if L(Ci) = L(Cj), i 6= j, then the node corresponding to Ci in the T can not be
an ancestor or a descendant of the node corresponding to Cj . Hence, Ci ∩ Cj = φ. Therefore, all the sets of
vertices in level i are pairwise disjoint. Using Cheeger’s inequality we get that E(Cj , C̄j) ≤ 2

√
1− λmw(Cj).

Therefore
w(∪j:L(Cj)=iE(Cj , C̄j)) ≤ 2

√
1− λm

∑
j:L(Cj)=i

w(Cj) ≤ 2
√

1− λmS(P)

This claim implies that φ(P) ≤ 2
√

1− λmheight(T ).
The height of T might be as much as m. But we will show that we can assume height(T ) to be logm. For
any path in the tree v1, v2, . . . , vk−1, vk such that deg(v1) > 2, deg(vi) = 2 (i.e. vi has only 1 child in T ) for
1 < i < k, we have w(Cvi+1

) ≤ w(Cvi)/2, as vi+1 being a child of vi in the T implies that Cvi+1
was obtained

by cutting Cvi using it’s second eigenvector. Thus
∑k
i=2 w(Cvi) ≤ w(Cv1). Hence we can modify the T as

follows : make the nodes v3, . . . , vk children of v2. The nodes v3, . . . , vk−1 now become leaves whereas the
subtree rooted at vk remains unchanged. We also assign the level of each node as its new distance from
the root. In this process we might have destroyed the property that a node is obtained from by cutting its
parent, but we have the proprety that w(∪j:L(Cj)=iE(Cj , C̄j)) ≤ 4

√
1− λmS(P) ∀i.

Claim.
w(∪j:L(Cj)=iE(Cj , C̄j)) ≤ 4

√
1− λmS(P)

Proof. If the nodes in level i are unchanged by this process, then the claim clearly holds. If any node vj
in level i moved to a higher level, then the nodes replacing vj in level i would be descendants of vj in the
original T and hence would have weight at most w(Cvj ). If the descendants of some node vj got added to
level i, then, as seen above, their combined weight would be at most w(Cvj ). Hence,

w(∪j:L(Cj)=iE(Cj , C̄j)) ≤ 2

2
√

1− λm
∑

j:L(Cj)=i

w(Cj)

 ≤ 4
√

1− λmS(P)

.

Repeating this process we can ensure that no two adjacent nodes in the T have degree 2. Hence, there are
at most logm vertices along any path starting from the root which have exactly one child. Thus the height

of the new cut-tree is at most 2 logm. Thus E((P)) ≤ 8
√

1− λm logmS(P) and hence φsumG,m ≤
E((P))
S(P) ≤

8
√

1− λm logm.

4 Finding Sparsest Small Sets

Given an integer m and an undirected graph G = (V,E), we wish to find the set S ⊂ V of size at most
|V |/m and having minimum expansion. This is equivalent to finding the vector x ∈ {0, 1}|V | which min-

imizes
∑
i∼j w(i,j)(x(i)−x(j))2∑

i dix(i)
2 and has at most |V |/m non-zero entries. Ignoring the sparsity constraint, the

minimization is equivalent to minimizing
∑
i∼j w(i,j)‖vi−vj‖2∑

i di‖vi‖2
over all collections of vectors {vi|i ∈ [n]} . The

challenge is to deal with the sparsity constraint. Since any x ∈ {0, 1}|V | having at most |V |/m non-zero



min

∑
ij w(i, j)‖vi − vj‖2∑

i di‖vi‖2∑
i,j

(vTi vj)
2 ≤ n2

m2∑
i

‖vi‖2 = n

Fig. 2. A convex relaxation for sparsest small set

entries satisfies
∑
i,j x(i)x(j) ≤ n2/m2 we can relax the sparsity constraint to

∑
i,j < vi, vj >

2≤ n2/m2

while maintaining
∑
i‖vi‖2 = n. This convex relaxation of the problem is shown in Figure 2.

It was pointed out to us by [Ste10] that eigenvectors of the graph form a feasible solution to this convex
relaxation. Here we present a proof of the same.

Let w1, w2, . . . , wn denote the eigenvectors of DBD−1 and let 1 ≥ λ2 ≥ λ3 ≥ . . . ≥ λn be the respective
eigenvalues. Let F be the m2 ∗ n dimensional matrix which has w1, w2, . . . , wm2 as its row vectors, i.e.

F = [w1 w2 . . . wm2 ]T . Let f1, f2, . . . , fn be the columns of F . We define vi
def
= (

√
n
m2 fi). We will show that

{vi|i ∈ [n]} forms a feasible solution for the convex program, and that the cost of the solution is bounded
by 1− λm2 .

Lemma 5. The vectors vi, i ∈ [n] satisfy
∑
ij〈vi, vj〉2 ≤

n2

m2 .

Proof. ∑
i,j

〈vi, vj〉2 =
n2

m4

∑
i,j

(
∑
t

fitfjt)
2

=
n2

m4

∑
i,j

∑
t1,t2

fit1fjt1fit2fit2

=
n2

m4

∑
t1,t2

〈wt1 ⊗ wt1 , wt2 ⊗ wt2〉

=
n2

m4

∑
t1,t2

〈wt1 , wt2〉2

=
n2

m2
.

Lemma 6.
∑
i‖vi‖2 = n

Proof. ∑
i

〈vi, vi〉 =
n

m2

∑
i

〈fi, fi〉

=
n

m2

∑
i

(
∑
t

f2it)

=
n

m2

∑
t

||wt||22

=
n

m2
m2

= n.

Lemma 7.
∑
ij wij‖vi−vj‖

2∑
i di‖vi‖2

≤ 1− λm2



Proof. ∑
ij wij‖vi − vj‖2∑

i di‖vi‖2
=

∑
l

∑
ij wij‖vli − vlj‖2∑
l

∑
i di‖vli‖2

≤ max
l

∑
ij wij‖vli − vlj‖2∑

i di‖vli‖2
≤ 1− λm2 .

Lemmas 5 and 6 show that the {vi|i ∈ [n]} form a feasible solution to the convex program and Lemma
7 shows that the cost of this solution is at most

√
1− λm2 .

We use the rounding scheme of [RST10a] to round this solution of the convex program to get a set S of
size 2n/m and φ(S) ≤ O(

√
(1− λm2) logm). We give the rounding procedure in Figure 3.

1. For each i ∈ [n] define functions fi
def
= ||vi||

√
Φ(x− v∗i ) where Φ(x) is probability density function of

gaussian with mean 0 and variance 1/
√

logm and v∗i denotes the unit vector along the direction of vi.

2. Sample t ∈ N (0, 1)m
2

.

3. Compute θ = 2m ∗
∑

i fi(t) and define xi
def
= max{fi(t)− θ, 0} for each i ∈ [n].

4. Do a Cheeger rounding on X
def
= [x1x2 . . . xn]T .

Fig. 3. The Rounding Algorithm

For any fi and fj defined as above, their inner product is defined as 〈fi, fj〉
def
=

∫∞
−∞ fi(x)fj(x)dx. The

following lemma is a slightly modified version of a similar lemma in [RST10a] to suit our requirements. For
completeness we give the proof in Appendix A.

Lemma 8. 1.
∑
i,j wi,j‖fi−fj‖

2∑
i di‖fi‖2

≤
∑
i,j wi,j‖vi−vj‖

2∑
i di‖vi‖2

2.
∑
i,j〈fi, fj〉 ≤ 2n/m

Lemma 9 ([RST10a]).

1. E(support(X)) ≤ 2n/m

2.
∑
i,j wi,j(xi−xj)

2∑
i dix

2
i

≤
∑
i,j wi,j‖fi−fj‖

2∑
i di‖fi‖2

Proof (of Theorem 3).
Lemma 8 shows that {fi|i ∈ [n]} satisfy a stronger sparsity condition than the one in Figure 2 and the

value of the objective function of the convex program on {fi|i ∈ [n]} is at most O(logm) times the value of
the objective function on {vi|i ∈ [n]}.

Lemma 9 shows that X has at most 2n/m non-zero entries and together with Lemma 8 implies that cost
of the objective function of the convex program on X is at most O(logm) times the cost of the objective
function on {vi|i ∈ [n]}.

Performing a Cheeger rounding onX will yield a set of size at most 2n/m and expansionO(

√
logm

∑
i,j wi,j‖vi−vj‖2∑

i di‖vi‖2
) ≤

O(
√

(1− λm2) logm), where the inequality follows from Lemma 7.
Thus we have Theorem 3.
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A Proof of Lemma 8

We first state some known facts about Gaussians.

Fact 5 Let Φσ(u) be the probability function of a multi-dimensional gaussian centered at u ∈ Rn and having
variance σ in each coordinate. Let δn denote the standard Lebesgue measure on Rn. Then∫ √

Φσ(u)Φσ(v)dδn = e−‖u−v‖
2/8σ2

The following fact shows that in order for a mapping to preserve distances it is enough to preserve lengths
and distances of unit vectors.

Fact 6 For any two vectors u, v ∈ Rn, we have

‖u− v‖2 = (‖u‖ − ‖v‖)2 + ‖u‖‖v‖‖u∗ − v∗‖2

We state Lemma 8 again.

Lemma 10. 1.
∑
i,j wi,j‖fi−fj‖

2∑
i di‖fi‖2

≤
∑
i,j wi,j‖vi−vj‖

2∑
i di‖vi‖2

2.
∑
i,j〈fi, fj〉 ≤ 2n/m

Proof. 1. Since ‖vi‖ = ‖fi‖ ∀i ∈ [n] it suffices to show that we have ‖fi − fj‖2 ≤ O(logm‖vi − vj‖2)
∀i, j ∈ [n]. Using Fact 5,

‖f∗i − f∗j ‖ = 2− 2e− logm‖v∗i−v
∗
j ‖

2/8 ≤ logm‖v∗i − v∗j ‖2/4
Now, using Fact 6

‖fi − fj‖2 = (‖vi‖ − ‖vj‖)2 + ‖vi‖‖vj‖‖f∗i − f∗j ‖2

= (‖vi‖ − ‖vj‖)2 + logm‖vi‖‖vj‖‖v∗i − v∗j ‖2/4
≤ logm‖vi − vj‖2/4.

The last inequality uses Fact 6 again. This proves the first part.



2. For the second part, we use the fact that ecx ≤ 1− (1− ec)x.

〈f∗i , f∗j 〉 = e− logm(1−〈v∗i ,v
∗
j 〉)

≤ e− logm(1−|〈v∗i ,v
∗
j 〉)|

≤ 1− (1− e− logm)(1− |〈v∗i , v∗j 〉|)
≤ e− logm + |〈v∗i , v∗j 〉|.

Now, ∑
i,j

〈fi, fj〉 ≤
∑
i,j

‖vi‖‖vj‖(1/m+ 〈v∗i , v∗j 〉)

= 1/m(
∑
i

‖fi‖)2 +
∑
i,j

|〈vi, vj〉|

By Jensen’s inequality, the first term contributes not more than
∑
i‖fi‖2. The constraints in the convex

program imply that
∑
i,j |〈vj , vj〉| ≤ n/m. Putting these together we get the second part of the lemma.


