
Finding Sparse Cuts via Cheeger Inequalities for Higher Eigenvalues

Anand Louis ∗, Prasad Raghavendra †, Prasad Tetali ‡, Santosh Vempala∗

Abstract

Cheeger’s fundamental inequality states that any edge-weighted graph has a vertex subset S such that
its expansion (a.k.a. conductance of S or the sparsity of the cut (S, S̄)) is bounded as follows:

φ(S)
def
=

w(S, S̄)

min{w(S), w(S̄)}
6
√

2λ2,

where w is the total edge weight of a subset or a cut and λ2 is the second smallest eigenvalue of the
normalized Laplacian of the graph. We study three natural generalizations of the sparsest cut in a graph:

• a partition of the vertex set into k parts that minimizes the sparsity of the partition (defined as the
ratio of the weight of edges between parts to the total weight of edges incident to the smallest k − 1
parts);

• a collection of k disjoint subsets S1, . . . , Sk that minimize maxi∈[k] φ(Si);

• a subset of size O(1/k) of the graph with minimum expansion.

Our main results are extensions of Cheeger’s classical inequality to these problems via higher eigenvalues
of the graph Laplacian. In particular, for the sparsest k-partition, we prove that the sparsity is at most
8
√
λk log k where λk is the kth smallest eigenvalue of the normalized Laplacian matrix. For the k sparse

cuts problem we prove that there exist ck disjoint subsets S1, . . . , Sck, such that

max
i
φ(Si) 6 C

√
λk log k

where c, C are suitable absolute constants; this leads to a similar bound for the small-set expansion
problem, namely for any k, there is a subset S whose weight is at most a O(1/k) fraction of the total
weight and φ(S) 6 C

√
λk log k. The latter two results are the best possible in terms of the eigenvalues up

to constant factors. Our results are derived via simple and efficient algorithms, and can themselves be
viewed as generalizations of Cheeger’s method.

∗Supported by National Science Foundation awards AF-0915903 and AF-0910584.
†Supported by National Science Foundation Career Award and Alfred P. Sloan Fellowship.
‡Supported by National Science Foundation awards DMS-1101447 and AF-0910584.

1



1 Introduction

Given an edge-weighted graph G = (V,E), a fundamental problem is to find a subset S of vertices such that
the total weight of edges leaving it is as small as possible compared to its size. This latter quantity, called
expansion or conductance of the subset or sparsity of the corresponding cut is defined as:

φG(S)
def
=

w(S, S̄)

min{w(S), w(S̄)}

where by w(S) we denote the total weight of edges incident to vertices in S and w(S, T ) is the total weight of
edges between vertex subsets S and T . The expansion of the graph G is defined as

φG
def
= min

S:w(S)61/2
φG(S).

Finding the optimal subset that minimizes expansion φG(S) is known as the sparsest cut problem. The
expansion of a graph and the problem of approximating it (sparsest cut problem) have been highly influential
in the study of algorithms and complexity, and have exhibited deep connections to many other areas of
mathematics. In particular, motivated by its applications and the NP-hardness of the problem, the study of
approximation algorithms for sparsest cut has been a very fruitful area of research.

In this line, the fundamental Cheeger’s inequality (shown for graphs in [Alo86, AM85]) establishes a
bound on expansion via the spectrum of the graph.

Theorem 1.1 (Cheeger’s Inequality ([Alo86, AM85])). For any graph G,

λ2

2
6 φG 6

√
2λ2

where λ2 is the second smallest eigenvalue of the normalized Laplacian 1 of G.

The proof of Cheeger’s inequality is algorithmic, using the eigenvector corresponding to the second smallest
eigenvalue. This theorem and its many (minor) variants have played a major role in the design of algorithms
as well as in understanding the limits of computation.

Our work is motivated by extensions of the sparsest cut problem to more than one subset. In this work,
we study multiple natural generalizations of sparsest cut problem.

All these generalizations are parametrized by a positive integer k, and reduce to the sparsest cut problem
when restricted to the case k = 2. A natural question is whether these problems are connected to higher
eigenvalues of the graph. We obtain upper and lower bounds for these generalizations of sparsest cut using
higher eigenvalues. In the rest of the section, we briefly describe each generalization and present our results.

Sparsest k-partition Given a weighted undirected graph G = (V,E) and an integer k > 1, find the
k-partition with the least sparsity, where the sparsity of a k-partition P = {S1, . . . , Sk} of the vertex set V
into k parts is defined as the ratio of the weight of edges between different parts to the sum of the weights of
smallest k − 1 parts in P, i.e.,

φk−sum(P)
def
=

∑
i6=j w(Vi, Vj)

minj∈[k]w(V \Vj)
.

Variants of the sparsest k-partition have been considered in the literature. Closer to ours is the (α, ε)-
clustering problem from [KVV04] that asks for a partition where each part has conductance at least α and
the total weight of edges removed is minimized.

It is easy to see that the lower bound in Cheeger’s inequality implies a lower bound of P,

φk−sum(P) > λ2/2 ∀ partitions P
1See Section 1.2 for the definition of the normalized Laplacian of a graph.
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for the Sparsest k-partition. As it turns out, this lower bound cannot be strengthened for k > 2. To see this,
consider the following simple construction: construct a graph G by taking k − 1 cliques C1, C2, ..., Ck−1

each on (n− 1)/(k− 1) vertices along with an additional vertex v. Let the cliques C1, . . . , Ck−1 be connected
to v by a single edge. Now, the graph G will have k − 1 eigenvalues close to 1 because of the k − 1 cuts
({v}, Ci) for i ∈ [k − 1]. However, the kth eigenvalue will be close to 0, since any other cut which is not a
linear combination of these k − 1 cuts will have to cut through one of the cliques. Therefore, λk is a constant
smaller than 1/2. But minP φ

k−sum(P) = (k − 1)/((k − 2)(n/k)2) ≈ k2/n2. Thus, λk � minP φ
k−sum(P) for

small enough values of k.
Our main result is an upper bound on the Sparsest k-Partition via the higher eigenvalues. Specifically, we

show the following.

Theorem 1.2. For any edge-weighted graph G = (V,E), and any integer 1 6 k 6 |V |, there exists a
k-partition S1, . . . , Sk of the vertices such that

φk−sum({S1, . . . , Sk}) 6 8
√
λk log k

where λ1, . . . , λ|V | are the eigenvalues of the normalized Laplacian of G and c < 1, C are absolute constants.
Moreover, such a partition can be identified in polynomial time.

The proof of Theorem 1.4 is based on a recursive partitioning algorithm that might be of independent
interest.

k-sparse-cuts Given an edge weighted graph G = (V,E) and an integer k > 1, find k disjoint subsets
S1, . . . , Sk of V such that maxi φG(Si) is minimized.

Note that the sets S1, . . . , Sk need not form a partition of the set of vertices, i.e., there could be vertices
that do not belong to any of the sets. Therefore problem models the existence of several well-formed clusters
in a graph without the clusters being required to form a partition.

Along the lines of lower bound in Cheeger’s inequality, it is not hard to show that the kth smallest
eigenvalue of the normalized Laplacian of the graph gives a lower bound to the k-sparse cuts problem.
Formally, we have the following lower bound.

Proposition 1.3. For any edge-weighted graph G = (V,E), for any integer 1 6 k 6 |V |, and for any k
disjoint subsets S1, . . . , Sk ⊂ V

max
i
φG(Si) >

λk
2

where λ1, . . . , λ|V | are the eigenvalues of the normalized Laplacian of G.

Complementing the lower bound, we show the following upper bound on k-sparse cuts problem in terms
of λk.

Theorem 1.4. For absolute constants c, C, the following holds: For every edge-weighted graph G = (V,E),
and any integer 1 6 k 6 |V |, there exist c · k disjoint subsets S1, . . . , Sc·k of vertices such that

max
i
φG(Si) 6 C

√
λk log k

where λ1, . . . , λ|V | are the eigenvalues of the normalized Laplacian of G. Moreover, the sets S1, . . . , Sk
satisfying the inequality can be identified in polynomial time.

The proof of Theorem 1.4 is algorithmic and is based on spectral projection. Starting with the embedding
given by the smallest k eigenvectors of the (normalized) Laplacian of the graph, a simple randomized rounding
procedure is used to produce k vectors having disjoint support, and then a Cheeger cut is obtained from each
of these vectors. The running time is dominated by the time taken to compute the smallest k eigenvectors of
the normalized Laplacian.
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In general, one can not prove an upper bound better than O(
√
λk log k) for k sparse-cuts. This bound is

matched by the family of Gaussian graphs. For a constant ε ∈ (−1, 1), let Nk,ε denote the infinite graph over
Rk where the weight of an edge (x, y) is the probability that two standard Gaussian random vectors X,Y
with correlation 2 1− ε equal x and y respectively. The first k eigenvalues of the Laplacian of Nk,ε are at
most ε ([RST10b]). The following Lemma bounds the expansion of small sets in Nk,ε.

Lemma 1.5 ([Bor85]). For any set S ⊂ Rk with Gaussian probability measure at most 1/k, φNk,ε
(S) =

Ω(
√
ε log k).

For any k disjoint subsets S1, . . . , Sk of the Gaussian graph Nk,ε, at least one of the sets has measure
smaller than 1

k , thus implying maxi φNk,ε
(Si) = Ω(

√
ε log k) = Ω(

√
λk log k).

It is natural to wonder if the above bounds extend to the case when the k-sets are required to form a
partition. First, it is easy to see that Theorem 1.4 also implies an upper bound of O(

√
λk log k) on maxi φ(Si)

for the case when the sets are required to form a partition of the vertex set.

Corollary 1.6. For any edge-weighted graph G = (V,E) and any integer 1 6 k 6 |V |, there exists a partition
of the vertex set V into ck parts S1, . . . , Sck such that

max
i
φ(Si) 6 C

√
λk log k

for absolute constants c, C.

Complementing the above bound, we show that for a k- partition S1, S2, . . . , Sk, the quantity maxi φG(Si)
cannot be bounded by O(

√
λkpolylogk) in general. We view this as further evidence suggesting that the

k-sparse-cuts problem is the right generalization of sparsest cut to multiple subsets.

Theorem 1.7. There exists a family of graphs such that for any k-partition {S1, . . . , Sk} of the vertex set

max
i
φG(Si) > C min

{
k2

√
n
, n

1
12

}√
λk.

Small-set expansion Given an edge weighted graph G = (V,E) and k > 1, find a subset of vertices S
such that w(S) 6 w(V )/k and φG(S) is minimized.

The small-set expansion problem came up in the context of understanding the Unique Games Conjecture
([RS10, ABS10]). As an immediate consequence of Theorem 1.4, we get the following optimal bound on the
small-set expansion problem.

Corollary 1.8. For any edge-weighted graph G = (V,E) and any integer 1 6 k 6 |V |, there is a subset S
with w(S) = O(1/k)w(V ) and φG(S) 6 C

√
λk log k for an absolute constant C.

1.1 Related work

The classic sparsest cut problem has been extensively studied, and is closely connected to metric geometry
[LLR95, AR98]. The lower and upper bounds on the sparsest cut given by Cheeger’s inequality yield a
O(
√

OPT) approximation algorithm for the sparsest cut problem. Leighton and Rao [LR99] gave an O(log n)
factor approximation algorithm via an LP relaxation. The same approximation factor can also be achieved
using using properties of embeddings of metrics into Euclidean space [LLR95, AR98]. This was improved to
O(
√

log n) via a semi-definite relaxation and embeddings of special metrics [ARV04]). In many contexts, and
in practice, the eigenvector approach is often preferred in spite of a higher worst-case approximation factor.

For small-set expansion, this quantity was shown to be upper bounded by O(
√
λk2 log k) in [LRTV11], and

by O(
√
λk100 logk n) in [ABS10]. Using a semidefinite programming relaxation, [RST10a] gave an algorithm

that outputs a small set with expansion at most
√

OPT log k where OPT is the sparsity of the optimal set

2ε correlated Gaussians can be constructed as follows : X ∼ N (0, 1)k and Y ∼ (1− ε)X +
√

2ε− ε2Z where Z ∼ N (0, 1)k.
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of size at most O(1/k). Bansal et.al. [BFK+11] obtained an O(
√

log n log k) approximation algorithm also
using a semidefinite programming relaxation.

A problem closely related to the sparsest k-partition problem is the (α, ε)-clustering problem that asks for
a partition where each part has conductance at least α and the total weight of edges removed is minimized.
[KVV04] give a recursive algorithm to obtain a bi-criteria approximation to the (α, ε)-clustering problem.
Indeed recursive algorithms are one of most commonly used techniques in practice for graph multi-partitioning.

In independent work, [LGT12] have obtained results similar to Theorem 1.4 with different techniques.
They also studied a close variant of the problem we consider, and show that every graph G has a k partition
such that each part has expansion at most O(k6

√
λk). Other generalizations of the sparsest cut problem

have been considered for special classes of graphs ([BLR10, Kel06, ST96]).
A randomized rounding step similar to the one in our algorithm was used previously in the context of

rounding semidefinite programs for unique games ([CMM06]).

1.2 Notation

For a graph G = (V,E), we let A be its (weighted) adjacency matrix and di be the (weighted) degree of vertex
i. We use D to denote the diagonal matrix with Dii = di. The normalized Laplacian of a graph defined as

LG
def
= D−

1
2 (D −A)D−

1
2

We let 0 = λ1 6 λ2 6 . . . λn denote the eigenvalues of LG and v′1, v
′
2, . . . , v

′
n denote the corresponding

eigenvectors. Let vi
def
= D−

1
2 v′i for each i ∈ [n]. Therefore,

v′Ti LGv′i =
∑
u∼w

(vi(u)− vj(w))2.

Since ∀i 6= j 〈v′i, v′j〉 = 0,
∑
l dlvi(l)vj(l) = 0

Given a vector x ∈ Rn and an index i ∈ [n], we define the ith level set of x to be the set {j ∈ [n]|x(j) >
xi,max}, where xi,max is the ith largest entry in x.

Given a k-partition P = {S1, . . . , Sk} we denote the sum of the weights of the edges with endpoints in
different pieces by E(P). More formally,

E(P)
def
=

1

2

∑
e∈E(Si,S̄i)

w(e)

2 Sparsest k-partition

2.1 Recursive partitioning algorithm

We propose the following recursive algorithm for finding a k-partitioning of G. Use the second eigenvector
of L to find a sparse cut (C, C̄). Let G′ = (V,E′) be the graph obtained by removing the edges in the
cut (C, C̄) from G and adding self loops at the endpoints of the edges removed. Let L′ be the normalized
Laplacian of the graph obtained. The matrix L′ is block-diagonal with two blocks for the two components of
G′. The spectrum of L′ (eigenvalues, eigenvectors) is the union of the spectra of the two blocks. The first
two eigenvalues of L′ are now 0 and we use the third largest eigenvector of L′ to find a sparse cut in G′. This
is the second eigenvector in one of the two blocks and partitions that block. We repeat the above process till
we have at least k connected components. This can be viewed as a recursive algorithm, where at each step
one of the current components is partitioned into two; the component partitioned is the one that has the
lowest second eigenvalue among all the current components. The precise algorithm appears in Figure 1.

2.2 Analysis

In this section, we analyze the recursive partitioning algorithm given in Figure 1. Our analysis will also be a
proof of Theorem 1.2. We begin with some monotonicity properties of eigenvalues.
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1. Input : Graph G = (V,E), m such that 1 < k < |V |

2. Initialize i := 2, and Gi = G, Li = normalized Laplacian matrix of Gi

(a) Find a sparse cut (Ci, C̄i) in Gi using the ith eigenvector of Li (the first i− 1 are all equal
to 0).

(b) Let Gi+1 :=
(
Gi\EGi

(C, C̄)
)
∪{{v, v}| ∃ u such that{u, v} ∈ EGi

(C, C̄)} with w({v, v}) =∑
{u,v}∈EGi

(C,C̄) w({u, v}).

(c) If i = k then output the connected components of Gi+1 and End else

(d) Let Li+1 be the normalized Laplacian matrix of Gi+1.

Figure 1: The Recursive k-partition Algorithm

Monotonicity of Eigenvalues. In this section we collect some useful properties about the behavior of
eigenvalues upon deleting edges and merging vertices.

Lemma 2.1 (Weyl’s Inequality). Given a Hermitian matrix B with eigenvalues λ1 6 λ2 6 . . . 6 λn, and a

positive semidefinite matrix E, if λ′1 6 λ′2 6 . . . 6 λ′n denote the eigenvalues of B′
def
= B − E, then λ′i 6 λi.

Proof. The ith eigenvalue of B′ can be written as

λ′i = max
S:rank(S)=i

min
x∈S

xTB′x

xTx

= max
S:rank(S)=i

min
x∈S

xTBx− xTEx
xTx

6 max
S:rank(S)=i

min
x∈S

xTBx

xTx

= λi.

Lemma 2.2. Let L be the normalized Laplacian matrix of the graph G. Let F be any subset of edges of G.
For every pair (i, j) ∈ F , remove the edge (i, j) from G and add self loops at i and j to get the graph G′.
Let L′ be the normalized Laplacian matrix of G′. Let the eigenvalues of L be 0 6 λ2 6 . . . 6 λn and let the
eigenvalues of L′ be 0 6 λ′2 6 λ′3 6 . . . 6 λ′n. Then λ′i 6 λi ∀i ∈ [n].

Proof. Let C
def
= L − L′ is the matrix corresponding to the edge subset F . It has non-negative entries along

its diagonal and non-positive entries elsewhere such that ∀i cii = −
∑
j 6=i cij . C is symmetric and positive

semi-definite as for any vector x of appropriate dimension, we have

xTCx =
∑
ij

cijxixj = −1

2

∑
i 6=j

cij(xi − xj)2 > 0.

Using Lemma 2.1, we get that λ′i 6 λi ∀i ∈ [n].

Lemma 2.2 shows that the eigenvalues of Li are monotonically non-increasing with i. This will show that
φGi

(Ci) 6
√

2λk. We are now ready to prove Theorem 1.2.

Proof of Theorem 1.2 . Let P be the partition output by the algorithm and let S(P) denote the sum of
weights of the smallest k − 1 pieces in P. Note that we need only the smaller side of a cut to bound the
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size of the cut : w(EG(S, S̄)) 6 φG w(S). We define the notion of a cut− tree T = (V (T ), E(T )) as follows:
V (T ) = {V } ∪ {Ci|i ∈ [k]} (For any cut (Ci, C̄i) we denote the part with the smaller weight by Ci and the
part with the larger weight by C̄i. We break ties arbitrarily). We put an edge between S1, S2 ∈ V (T ) if
6 ∃S ∈ V (T ) such that S1 ( S ( S2 or S2 ( S ( S1, (one can view S1 as a ’top level’ cut of S2 in the former
case).

Clearly, T is connected and is a tree. We call V the root of T . We define the level of a node in T
to be its depth from the root. We denote the level of node S ∈ V (T ) by L(S). The root is defined
to be at level 0. Observe that S1 ∈ V (T ) is a descendant of S2 ∈ V (T ) if and only if S1 ( S2. Now
E(P) = ∪iEGi(Ci, C̄i) = ∪i ∪j:L(Cj)=i EGj(Cj, C̄j). We make the following claim.

Claim 2.3.
w(∪j:L(Cj)=iE(Cj , C̄j)) 6 2

√
λk S(P)

Proof. By definition of level, if L(Ci) = L(Cj), i 6= j, then the node corresponding to Ci in the T can not be
an ancestor or a descendant of the node corresponding to Cj . Hence, Ci ∩ Cj = φ. Therefore, all the sets
of vertices in level i are pairwise disjoint. Using Cheeger’s inequality we get that E(Cj , C̄j) 6 2

√
λkw(Cj).

Therefore
w(∪j:L(Cj)=iE(Cj , C̄j)) 6 2

√
λk

∑
j:L(Cj)=i

w(Cj) 6 2
√
λkS(P)

This claim implies that φ(P) 6 2
√
λk height(T ).

The height of T might be as much as k. But we will show that we can assume height(T ) to be log k. For
any path in the tree v1, v2, . . . , vp−1, vp such that deg(v1) > 2, deg(vi) = 2 (i.e. vi has only 1 child in T ) for
1 < i < k, we have w(Cvi+1) 6 w(Cvi)/2, as vi+1 being a child of vi in the T implies that Cvi+1 was obtained
by cutting Cvi using it’s second eigenvector. Thus

∑p
i=2 w(Cvi) 6 w(Cv1). Hence we can modify the T as

follows : make the nodes v3, . . . , vp children of v2. The nodes v3, . . . , vp−1 now become leaves whereas the
subtree rooted at vp remains unchanged. We also assign the level of each node as its new distance from the
root. In this process we might have destroyed the property that a node is obtained from by cutting its parent,
but we have the property that w(∪j:L(Cj)=iE(Cj , C̄j)) 6 4

√
λkS(P) ∀i.

Claim 2.4.
w(∪j:L(Cj)=iE(Cj , C̄j)) 6 4

√
λk S(P)

Proof. If the nodes in level i are unchanged by this process, then the claim clearly holds. If any node vj
in level i moved to a higher level, then the nodes replacing vj in level i would be descendants of vj in the
original T and hence would have weight at most w(Cvj ). If the descendants of some node vj got added to
level i, then, as seen above, their combined weight would be at most w(Cvj ). Hence,

w(∪j:L(Cj)=iE(Cj , C̄j)) 6 2

2
√
λk

∑
j:L(Cj)=i

w(Cj)

 6 4
√
λk S(P)

.

Repeating this process we can ensure that no two adjacent nodes in the T have degree 2. Hence, there are
at most log k vertices along any path starting from the root which have exactly one child. Thus the height of

the new cut− tree is at most 2 log k. Thus E(P) 6 8
√
λk log k S(P) and hence φk−sum 6 E(P)

S(P) 6 8
√
λk log k.
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3 k sparse-cuts

3.1 Gaussian Projection Algorithm

Our algorithm for finding Θ(k) sparse cuts appears in Figure 2.

Input : Graph G = (V,E), parameter k.

1. Spectral projection. Let V = [v1, . . . , vk] be an n× k matrix where vi is as defined in Section 1.2;
let u1, . . . , un be the rows of V .

2. Randomized rounding. Pick k independent Gaussian vectors g1, g2, . . . , gk ∼ N (0, 1)k. Construct
vectors h1, h2, . . . , hk ∈ Rn as follows:

hi(j) =

{
〈uj , gi〉 if i = argmaxi∈[k]{〈uj , gi〉}
0 otherwise.

3. Cheeger cuts. For j = 1, . . . , k, sort the cooordinates of hj according to their magnitude, and pick
the level set having least expansion .

4. Output all subsets with expansion smaller than C
√
λk log k for an appropriately chosen constant C.

Figure 2: The Many-sparse-cuts Algorithm

The first and third steps are clearly direct generalizations of Cheeger’s method for finding a sparse cut.
However, the intermediate step of applying a random transformation and rounding appears to be essential to
prove a worst-case guarantee.

3.2 Analysis

In this section, we will present the analysis of the Gaussian Projection algorithm presented in Figure 2. We
begin with an outline of the argument.

3.2.1 Proof Outline

Notice that the vectors h1, h2, . . . , hk have disjoint support since for each coordinate j, exactly one of the
〈uj , gi〉 is maximum. Therefore, the Cheeger cuts obtained by the vectors hi yield k disjoint sets. It is
sufficient to show that a constant fraction of the sets so produced have small expansion.

As a first attempt to proving the upper bound in Theorem 1.4, one could first try to bound the Rayleigh
quotient of the vectors {hi} by O(λk log k) (say for a constant fraction of vectors hi). This would imply
that the corresponding sets would have value O(

√
λk log k) by following the proof of Cheeger’s inequality.

Unfortunately, we note that the Rayleigh quotients of the vectors obtained could themselves be as high as
Ω(
√
λk log k), and using the proof of Cheeger’s inequality this would at best yield a bound of O((λk log k)

1
4 )

on the expansion of the sets obtained. Therefore, in our proof we directly analyze the quality of the Cheeger
cuts finally output by the algorithm.

We will show that for each i ∈ {1, . . . , k}, the vector hi has a constant probability of yielding a cut with
small expansion. The outline of the proof is as follows. Let f denote the vector h1. The choice of the index 1
is arbitrary and the same analysis is applicable to all other indices i ∈ [k].

The quality of the Cheeger cut obtained from f can be upper bounded using the following standard
lemma. A proof of this lemma can be found in [Chu97].

8



Lemma 3.1. Let x ∈ Rn be a vector such that
∑

i∼j |xi−xj |∑
i dixi

6 δ. Then one of the level sets, say S, of the

vector x has φG(S) 6 2δ.

Applying Lemma 3.1, the expansion of the set retrieved from f = h1 is upper bounded by,∑
(i,j)∈E |f2

i − f2
j |∑

i dif
2
i

.

Both the numerator and denominator are random variables depending on the choice of random Gaussians
g1, . . . , gk. It is a fairly straightforward calculation to bound the expected value of the denominator.

Lemma 3.2.

2 log k 6 E

[∑
i

dif
2
i

]
6 4 log k.

Bounding the expected value of the numerator is more subtle. We show the following bound on the
expected value of the numerator.

Lemma 3.3.

E

∑
i∼j
|f2
i − f2

j |

 6 c(
√
λk log

3
2 k).

where c is an absolute constant.

Notice that the ratio of their expected values is O(
√
λk log k), as intended. To control the ratio of the two

quantities, the numerator is to be bounded from above, and the denominator is to be bounded from below. A
simple Markov inequality can be used to upper bound the probability that the numerator is much larger than
its expectation. To control the denominator, we bound its variance. Specifically, we will show the following
bound on the variance of the denominator.

Lemma 3.4.
Var

∑
i

dif
2
i 6 28 log2 k.

The above moment bounds are sufficient to conclude that with constant probability, the ratio
∑

(i,j)∈E |f
2
i −f

2
j |∑

i dif
2
i

is within a constant factor of O(
√
λk log k). Therefore, with constant probability over the choice of the

Gaussians g1, . . . , gk, Ω(k) of the vectors h1, . . . hk yield sets of expansion O(
√
λk log k).

3.2.2 Technical Preliminaries

Spectral Embedding. Let {ui|i ∈ V } be the spectral embedding obtained from the spectral projection
step of the Algorithm in Figure 2. This embedding satisfies the following properties.

Lemma 3.5. (Spectral embedding)

1. ∑
i∼j‖ui − uj‖2∑

i di‖ui‖2
6 λk

2. ∑
i

di‖ui‖2 = k

3. ∑
i,j

didj〈ui, uj〉2 = k.

9



Proof of (3).

∑
i,j

didj〈ui, uj〉2 =
∑
i,j

didj

(
k∑
t=1

ui(t)uj(t)

)2

=
∑
i,j

didj
∑
t1,t2

ui(t1)uj(t1)ui(t2)uj(t2)

=
∑
t1,t2

∑
i,j

didjui(t1)uj(t1)ui(t2)uj(t2)

=
∑
t1,t2

(∑
i

diui(t1)ui(t2)

)2

Since
√
diui(t1) is the entry to corresponding to vertex i in the tth1 eigenvector,

∑
i diui(t1)ui(t2) is equal

to the inner product of the tth1 and tth2 eigenvectors of L, which is equal to 1 only when t1 = t2 and is equal
to 0 otherwise. Therefore, ∑

i,j

didj〈ui, uj〉2 =
∑
t1,t2

I [t1 = t2] = k

Next, we recall the one-sided Chebychev inequality.

Fact 3.6 (One-sided Chebychev Inequality). For a random variable X with mean µ and variance σ2 and
any t > 0,

P [X < µ− tσ] 6
1

1 + t2
.

Properties of Gaussian Variables. The next few facts are folklore about Gaussians. Let t1/k denote

the (1/k)th cap of a standard normal variable, i.e., t1/k ∈ R is the number such that for a standard normal

random variable X, P
[
X > t1/k

]
= 1/k.

Fact 3.7. For a standard normal random variable X and for every k > 0,

t1/k ≈
√

2 log k − log log k

Fact 3.8. Let X1, X2, . . . , Xk be k independent standard normal random variables. Let Y be the random

variable defined as Y
def
= max{Xi|i ∈ [k]}. Then

1. t1/k 6 E [Y ] 6 2
√

log k

2. E
[
Y 2
]
6 4 log k

3. E
[
Y 4
]
6 4e log2 k

4. For any constant ε, P
[
Y 6 (1− ε)t1/k

]
6 1

ek2ε

Proof. For any Z1, . . . , Zk ∈ R+ and any p ∈ Z+, we have maxi Zi 6 (
∑
i Z

p
i )

1
p . Now Y 4 = (maxiXi)

4 6
maxiX

4
i .

E
[
Y 4
]

6 E

(∑
i

X4p
i

) 1
p

 6

(
E

[∑
i

X4p
i

]) 1
p

( Jensen’s Inequality )

6

(∑
i

(E
[
X2
i

]
)

(4p)!

(2p)!22p

) 1
p

6 4p2k
1
p (using (4p)!/(2p)! 6 (4p)2p )

10



Picking p = log k gives E
[
Y 4
]
6 4e log2 k.

Therefore E
[
Y 2
]
6
√
E [Y 4] 6 4 log k and E [Y ] 6

√
E [Y 2] 6 2

√
log k.

And,

P
[
Y 6 (1− ε)t1/k

]
6

(
1− 1

k1−2ε

)k
6

1

ek2ε

Fact 3.9. Let X1, . . . , Xk and Y1, . . . , Yk be i.i.d. standard normal random variables such that for all i ∈ [k],
the covariance of Xi and Yi is at least 1− ε2. Then

P [argmaxiXi 6= argmaxiYi] 6 c1

(
ε
√

log k
)

for some absolute constant c1.

We refer the reader to [CMM06] for the proof of a more general claim.

3.2.3 Main Proofs

Let f denote the vector h1. The choice of the index 1 is arbitrary and the same analysis is applicable to all
other indices i ∈ [k]. We first separately bound the expectations of the numerator and denominator of the
sparsity of each cut, and then the variance of the denominator. The proofs of these bounds will follow their
application in the proof of our main theorem.

Expectation of the Denominator. Bounding the expectation of the denominator is a straightforward
calculation as shown below.

Lemma 3.10 (Restatement of Lemma 3.2).

2 log k 6 E

[∑
i

dif
2
i

]
6 4 log k.

Proof of Lemma 3.2. For any i ∈ [n], recall that

fi =

{
‖ui‖〈ũi, g1〉 if 〈ũi, g1〉 > 〈ũi, gj〉 ∀j ∈ [k]

0 otherwise.

The first case happens with probability 1/k and so fi = 0 with the remaining probability. Therefore, using
Fact 3.8,

2‖ui‖2 log k/k 6 E
[
f2
i

]
6 4‖ui‖2 log k/k

and hence

2 log k 6 E

[∑
i

dif
2
i

]
6 4 log k

using
∑
i di‖ui‖2 = k from Lemma 3.5.

Expectation of the Numerator. For bounding the expectation of the numerator we will need some
preparation. We will make use of the following proposition which relates distance between two vectors to the
distance between the unit vectors in the corresponding directions.

Proposition 3.11. For any two non zero vectors ui and uj, if ũi = ui/‖ui‖ and ũj = uj/‖uj‖ then

‖ũi − ũj‖
√
‖ui‖2 + ‖uj‖2 6 2‖ui − uj‖

11



Proof. Note that 2‖ui‖‖uj‖ 6 ‖ui‖2 + ‖uj‖2. Hence,

‖ũi − ũj‖2(‖ui‖2 + ‖uj‖2) = (2− 2〈ũi, ũj〉)(‖ui‖2 + ‖uj‖2)

6 2(‖ui‖2 + ‖uj‖2 − (‖ui‖2 + ‖uj‖2)〈ũi, ũj〉)

If 〈ũi, ũj〉 > 0, then

‖ũi − ũj‖2(‖ui‖2 + ‖uj‖2) 6 2(‖ui‖2 + ‖uj‖2 − 2‖ui‖‖uj‖〈ũi, ũj〉) 6 2‖ui − uj‖2

Else if 〈ũi, ũj〉 < 0, then

‖ũi − ũj‖2(‖ui‖2 + ‖uj‖2) 6 4(‖ui‖2 + ‖uj‖2 − 2‖ui‖‖uj‖〈ũi, ũj〉) 6 4‖ui − uj‖2

We will also make use of the following propositions which bounds the expected value of a conditioned
random variable.

Proposition 3.12. For indices i 6= j

E
[
〈ui, g1〉2|fj > 0

]
P [fj > 0] 6

4

k
‖ui‖2 log k

Proof.

E
[
〈ui, g1〉2|fj > 0

]
P [fj > 0] 6 E

[
max
p∈[k]
〈ui, gp〉2|〈uj , g1〉 > 〈uj , gl〉∀l ∈ [k]

]
P [〈uj , g1〉 > 〈uj , gl〉∀l ∈ [k]]

=
1

k

∑
q∈[k]

E
[
max
p∈[k]
〈ui, gp〉2|〈uj , gq〉 > 〈uj , gl〉∀l ∈ [k]

]
P [〈uj , gq〉 > 〈uj , gl〉∀l ∈ [k]]

=
1

k
E
[
max
p∈[k]
〈ui, gp〉2

]
=

4

k
‖u2

i ‖ log k

Similarly, we also prove the following proposition.

Proposition 3.13. For indices i 6= j

E
[
〈ui, g1〉2|fi > 0 and fj = 0

]
P [fj = 0] 6 4

(
1− 1

k

)
‖ui‖2 log k

We will need another lemma that is a direct consequence of Fact 3.9 about the maximum of k i.i.d normal
random variables.

Proposition 3.14. For any i, j ∈ [n],

P [fi > 0 and fj = 0] 6 c1

(
‖ũi − ũj‖

√
log k

k

)
.

12



We are now ready to bound the expectation of the numerator, we restate the lemma for the convenience
of the reader.

Lemma 3.15. (Restatement of Lemma 3.3)

E

∑
i∼j
|f2
i − f2

j |

 6 8(2c1 + 1)(
√
λk log

3
2 k).

Proof of Lemma 3.3. From Fact 3.8, E
[
f2
i |fi > 0

]
6 4‖ui‖2 log k. Therefore,

E
[
|f2
i − f2

j ||fi, fj > 0
]

= E
[
|〈ui, g1〉2 − 〈uj , g1〉2||fi, fj > 0

]
= E [|〈ui − uj , g1〉〈ui + uj , g1〉||fi, fj > 0]

6
√

E [〈ui − uj , g1〉2|fi, fj > 0]
√

E [〈ui + uj , g1〉2|fi, fj > 0]

Now,

E
[
〈ui − uj , g1〉2|fi, fj > 0

]
P [fi, fj > 0] =

∫
fi,fj>0

〈ui − uj , g1〉2

6
∫
fi>0

〈ui − uj , g1〉2 = E
[
〈ui − uj , g1〉2|fi > 0

]
P [fi > 0]

=
1

k

∑
p∈[k]

E
[
max
l
〈ui − uj , gl〉2|〈ui, gp〉 > 〈ui, gl〉∀l ∈ [k]

]
P [〈ui, gp〉 > 〈ui, gl〉∀l ∈ [k]]

=
1

k
E
[
max
l
〈ui − uj , gl〉2

]
6

4

k
‖ui − uj‖2 log k

Similarly, we get

E
[
〈ui + uj , g1〉2|fi, fj > 0

]
P [fi, fj > 0] 6

4

k
‖ui + uj‖2 log k

Therefore, we get

E
[
|f2
i − f2

j ||fi, fj > 0
]
P [fi, fj > 0] 6

4

k
‖ui − uj‖‖ui + uj‖ log k

From Proposition 3.14,

P [fi > 0 and fj = 0] = P [fj > 0 and fi = 0] 6 c1(‖ũi − ũj‖
√

log k/k).

Therefore,

E
[
f2
i − f2

j |fi > 0, fj = 0
]
P [fi > 0, fj = 0] = E

[
〈u1, g〉2|fi > 0, fj = 0

]
P [fj = 0]

P [fi > 0, fj = 0]

P [fj = 0]

6 4(1− 1

k
)‖ui‖2 log k

P [fi > 0, fj = 0]

1− 1/k
( Proposition 3.13 )

=
4c1
k

log
3
2 k‖ui‖2‖ũi − ũj‖

Similarly,

E
[
f2
j − f2

i |fj > 0, fi = 0
]
P [fj > 0, fi = 0] 6

4c1
k

log
3
2 k‖uj‖2‖ũi − ũj‖

13



Next,

E

∑
i∼j
|f2
i − f2

j |

 6
4 log k

k

∑
i∼j

(
‖ui − uj‖‖ui + uj‖+ c1(‖ui‖2 + ‖uj‖2)‖ũi − ũj‖

√
log k

)
6

4 log k

k

∑
i∼j

(
‖ui − uj‖(‖ui‖+ ‖uj‖) + 2c1‖ui − uj‖

√
‖ui‖2 + ‖uj‖2

√
log k

)
( from Lemma 3.11)

6
4(2c1 + 1) log

3
2 k

k

∑
i∼j
‖ui − uj‖(‖ui‖+ ‖uj‖)

6
4(2c1 + 1) log

3
2 k

k

√∑
i∼j

(‖ui − uj‖)2

√∑
i∼j

(‖ui‖+ ‖uj‖)2 (Cauchy-Schwartz inequality)

6
4(2c1 + 1) log

3
2 k

k

√
λk
∑
i

di‖ui‖2
√

4
∑
i

di‖ui‖2

=
8(2c1 + 1) log

3
2 k

k

√
λk
∑
i

di‖ui‖2

= 8(2c1 + 1) log
3
2 k
√
λk

Variance of the Denominator. Here too we will need some groundwork. Let G denote the Gaussian
space. The Hermite polynomials {Hi}i∈Z>0

form an orthonormal basis for real valued functions over the
Gaussian space G, i.e., Eg∈G [Hi(g)Hj(g)] = 1 if i = j and 0 otherwise. The k-wise tensor product of the
Hermite basis forms an orthonormal basis for functions over Gk. Specifically, for each α ∈ Zk>0 define the
polynomial Hα as

Hα(x1, . . . , xk) =

k∏
i=1

Hαi(xi).

The functions {Hα}α∈Zk
>0

form an orthonormal basis for functions over Gk. The degree of the polynomial

Hα(x) denote by |α| is |α| =
∑
i αi.

The Hermite polynomials are known to satisfy the following property (see e.g. the book of Ledoux and
Talagrand [LT91], Section 3.2).

Fact 3.16. Let (gi, hi)
k
i=1 be k independent samples from two ρ-correlated Gaussians, i.e., E[g2

i ] = E[h2
i ] = 1,

and E[gihi] = ρ. Then for all α ∈ Zk>0,

E[Hα(g1, . . . , gk)Hα′(h1, . . . , hk)] = ρ|α| if α = α′ and 0 otherwise

Let A : Gk −→ R be the function defined as follows,

A(x) =

{
x2

1 if (x1 > xi∀i ∈ [k]) or (x1 6 xi∀i ∈ [k])

0 otherwise

We know that

E[A] 6
4 log k

k
and E[A2] 6

16 log2 k

k
(Fact 3.8).
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Lemma 3.17. Let u, v be unit vectors and g1, . . . , gk be i.i.d Gaussian vectors. Then,

E[A(〈u, g1〉, . . . , 〈u, gk〉)A(〈v, g1〉, . . . , 〈v, gk〉)] 6
16 log2 k

k

(
〈u, v〉2 +

1

k

)
Proof. The function A on the Gaussian space can be written in the Hermite expansion A(x) =

∑
αAαHα(x)

such that ∑
α

A2
α = E[A2] 6

16 log2 k

k
.

Using Fact 3.16, we can write

E[A(〈u, g1〉, . . . , 〈u, gk〉)A(〈v, g1〉, . . . , 〈v, gk〉)] = (E[A])2 +
∑

α∈Zk
>0
,|α|>0

A2
αρ
|α|

where ρ = 〈u, v〉. Since A is an even function, only the even degree coefficients are non-zero, i.e., Aα = 0 for
all |α| odd. Along with ρ 6 1, this implies that

E[A(〈u, g1〉, . . . , 〈u, gk〉)A(〈v, g1〉, . . . , 〈v, gk〉)] 6 (E[A])2 + ρ2

 ∑
α,|α|>2

A2
α

 where ρ = 〈u, v〉

6
16 log2 k

k2
+ 〈u, v〉2 16 log2 k

k

Next we bound the variance of the denominator.

Proof of Lemma 3.4.

E

∑
i,j

didjf
2
i f

2
j

 =
∑
i,j

didj‖ui‖2‖uj‖2 E

[
f2
i

‖ui‖2
f2
j

‖uj‖2

]

6
∑
i,j

didj‖ui‖2‖uj‖2 E [A(〈ũi, g1〉, . . . , 〈ũi, gk〉)A(〈ũj , g1〉, . . . , 〈ũj , gk)〉)]

6
∑
i,j

didj‖ui‖2‖uj‖2 ·
(

16 log2 k

k
(〈ũi, ũj〉2 +

1

k
)

)
(Lemma 3.17)

6
16 log2 k

k
·

∑
i,j

didj〈ui, uj〉2 +
1

k
(
∑
i

di‖ui‖2)2


6 32 log2 k

Therefore

Var
∑
i

dif
2
i = E

∑
i,j

didjf
2
i f

2
j

−(E[∑
i

dif
2
i

])2

6 28 log2 k.
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Putting It Together

Proof of Theorem 1.4. Now, for each l ∈ [k], from Lemma 3.2 we get that E
[∑

i dihl(i)
2
]

= Θ(log k) and

from Lemma 3.4 we get that Var
∑
i hl(i)

2 = Θ(log2 k). Therefore, from the One-sided Chebyshev inequality
(Fact 3.6), we get

P

[∑
i

dihl(i)
2 >

E
[∑

i dihl(i)
2
]

2

]
>

(
E[

∑
i dihl(i)

2]
2

)2

(
E[

∑
i dihl(i)2]

2

)2

+ Var
∑
i hl(i)

2

> c′

where c′ is some absolute constant.

Therefore, with constant probability, for Ω(k) indices l ∈ [k],
∑
i dihl(i)

2 >
E[

∑
i dihl(i)

2]
2 . Also, for each l,

with probability 1− c′/2 ,
∑
i∼j |hl(i)2 − hl(j)2| 6 2/c′ E

[∑
i∼j |hl(i)2 − hl(j)2|

]
. Therefore, with constant

probability, for a constant fraction of the indices l ∈ [k], we have

∑
i∼j |hl(i)2 − hl(j)2|∑

i dihl(i)
2

6
4

c′

E
[∑

i∼j |hl(i)2 − hl(j)2|
]

E [
∑
i dihl(i)

2]
= O(

√
λk log k)

Applying Lemma 3.1 on the vectors with those indices will give Ω(k) disjoint sets S1, . . . , Sck such that
φG(Si) = O(

√
λk log k) ∀i ∈ [ck]. This completes the proof of Theorem 1.4.

3.3 Lower bound for k Sparse-Cuts

In this section, we prove a lower bound for the k-sparse cuts in terms of higher eigenvalues (Proposition 1.3)
thereby generalizing the lower bound side of the Cheeger’s inequality.

Proposition 3.18 (Restatement of Proposition 1.3). For any edge-weighted graph G = (V,E), for any
integer 1 6 k 6 |V |, and for any k disjoint subsets S1, . . . , Sk ⊂ V

max
i
φG(Si) >

λk
2

where λ1, . . . , λ|V | are the eigenvalues of the normalized Laplacian of G.

Proof. Let α denote maxi φG(Si). Let T
def
= V \(∪iSi). Let G′ be the graph obtained by shrinking each piece

in the partition {T, Si|i ∈ [k]} of V to a single vertex. We denote the vertex corresponding to Si by si ∀i and
the vertex corresponding to T by t. Let L′ be the normalized Laplacian matrix corresponding to G′. Note
that, by construction, the expansion of every set in G′ not containing t is at most α.

Let U
def
= {D 1

2XSi
|i ∈ [k]}. Here XS is the incidence vector of the set S ⊂ V . Since all the vectors in U

are orthogonal to each other, we have

λk(L) = min
S:rank(S)=k

max
x∈S

xTLx
xTx

6 max
x∈span(U)

xTLx
xTx

= max
y∈Rk∗{0}

∑
i,j w

′
ij(yi − yj)2∑
i w
′
iy

2
i

For any x ∈ R, let x+ def
= max{x, 0} and x−

def
= max{−x, 0}. Then it is easily verified that for any

yi, yj ∈ R, (yi − yj)2 6 2((y+
i − y

+
j )2 + (y−i − y

−
j )2). Therefore,∑

i

∑
j>i w

′
ij(yi − yj)2 6 2(

∑
i

∑
j>i w

′
ij(y

+
i − y

+
j )2 +

∑
i

∑
j>i w

′
ij(y

−
j − y

−
i )2)

6 2(
∑
i

∑
j>i w

′
ij |(y

+
i )2 − (y+

j )2|+
∑
i

∑
j>i w

′
ij |(y

−
j )2 − (y−i )2)|
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Without loss of generality, we may assume that y+
1 > y+

2 > . . . > y+
k > yt = 0. Let Ti = {s1, . . . , si} for each

i ∈ [k]. Therefore, we have

∑
i

∑
j>i

w′ij |(y+
i )2−(y+

j )2| 6
k∑
i=1

((y+
i )2−(y+

i+i)
2)w′(E(Ti, T̄i)) 6 α

k∑
i=1

((y+
i )2−(y+

i+i)
2)w′(Ti) = α

k∑
i

w′i(y
+
i )2

Here we are using the fact that w′(E(Ti, T̄i)) 6 αw′(Ti) which follows from the definition of α and that
w′(Ti+1)− w′(Ti) = w′i+1. Similiarly, we get that∑

i

∑
j>i

w′ij |(y−j )2 − (y−i )2)| 6 α
∑
i

w′i(y
−
i )2 .

Putting these two inequalities together we get that∑
j>i

w′ij(yi − yj)2 6 2α
∑
i

w′iy
2
i .

Therefore, λk(L) 6 2 maxi φG(Si).

4 Gap examples

In this section, we present constructions of graphs that serve as lower-bounds against natural classes of
algorithms. We begin with a family of graphs on which the performance of recursive partitioning algorithms
is poor for the k-Sparse cuts problem.

4.1 Recursive Algorithms

Recursive algorithms are one of most commonly used techniques in practice for graph multi-partitioning.
However, we show that partitioning a graph into k pieces using a simple recursive algorithm can yield as
many k(1− o(1)) sets with expansion much larger than

√
λkpolylogk. Thus this is not an effective method

for finding many sparse cuts.
The following construction (Figure 3) shows that partition of V obtained using the recursive algorithm in

Figure 1 can give as many as k(1− o(1)) sets have expansion Ω(1) while λk 6 O(k2/n2).

Figure 3: Recursive algorithm can give many sets with very small expansion

In this graph, there are p
def
= kε sets Si for 1 6 i 6 kε. We will fix the value of ε later. Each of the Si has

k1−ε cliques {Sij : 1 6 j 6 k1−ε} of size n/k which are sparsely connected to each other. The total weight
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of the edges from Sij to Si\Sij is equal to a constant c. In addition to this, there are also k − kε vertices
vi : 1 6 i 6 k − kε. The weight of edges from Si to vj is equal to k−ε.

Claim 4.1. 1. φ(Sij) 6 (c+ 1)k2/n2 ∀i, j

2. φ(Si) 6 1/(c+ 1)φ(Sij) ∀i, j

3. λk = O(m2/n2)

Proof. 1.

φ(Sij) =
c+ (m−mε)m−ε

m1−ε

( nm )2 + c+ (m−mε)m−ε

m1−ε

6
(c+ 1)m2

n2

2. w(Si) =
∑
j w(Sij), but for each Sij only 1/(c+ 1) fraction of edges incident at Sij are also incident at

Si. Therefore, φ(Si) 6 1/(c+ 1)φ(Sij).

3. Follows from (1) and Proposition 1.3.

For appropriate values of ε and k, the partition output by the recursive algorithm will be {Si : i ∈
[kε]} ∪ {vi : i ∈ [k − kε]}. Hence, k(1− o(1)) sets have expansion equal to 1.

4.2 k-partition

In this section, we give a constructive proof of Theorem 1.7, i.e., we construct a family of graphs such that
for any k-partition {S1, . . . , Sk} of the graph, maxi φ(Si) > Θ(k2

√
p
n ). We view this as further evidence

suggesting that the k- sparse-cuts problem is the right generalization of sparsest cut.

Figure 4: k-partition can have sparsity much larger than Ω(
√
λkpolylogk)

Lemma 4.2. For the graph G in Figure 4, and for any k-partition S1, . . . , Sk of its vertex set,

maxi φG(Si)√
λk

= Θ(k2

√
p

n
)
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Proof. In Figure 4, ∀i ∈ [k], Si is a clique of size (n − 1)/k (pick n so that k|(n − 1)). There is an
edge from central vertex v to every other vertex of weight pn. Here p is some absolute constant. Let

P ′ def
= {S1 ∪ {v}, S2, S3, . . . , Sk}. For n > k3, it is easily verified that the optimum k-partition is isomorphic

to P ′. For k < o(n
1
3 ), we have

max
Si∈P′

φG(Si) = φG(S1 ∪ {v}) =
pnk(

n−1
k

)2
+ pnk

= Θ

(
pk3

n

)
Applying Proposition 1.3 to S1, . . . , Sk, we get that λk = O(pk2/n). Thus we have the lemma.
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