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MEDIUM ACCESS USING QUEUES

By Devavrat Shah§, Jinwoo Shin¶ and Prasad Tetali∥

MIT§, IBM Research¶ and Georgia Tech∥

Consider a wireless network of n nodes represented by a graph G =
(V,E) where an edge (i, j) ∈ E models the fact that transmissions
of i and j interfere with each other, i.e. simultaneous transmissions
of i and j become unsuccessful. Hence it is required that at each
time instance a set of non-interfering nodes (corresponding to an
independent set in G) access the wireless medium. To utilize wireless
resources efficiently, it is required to arbitrate the access of medium
among interfering nodes properly. Moreover, to be of practical use,
such a mechanism is required to be fully distributed as well as simple.

As the main result of this paper, we provide such a medium access
algorithm. It is randomized, fully distributed and simple: each node
attempts to access medium at each time with probability that is a
function of its local information. We establish its efficiency by showing
that the corresponding network Markov chain is positive recurrent as
long as the demand imposed on the network can be supported by the
wireless network (using any algorithm). In that sense, the proposed
algorithm is optimal in terms of utilizing wireless resources. The al-
gorithm is oblivious to the network graph structure, in contrast with
the so-called polynomial back-off algorithm that was established to
be optimal only for a certain class of graphs. The key methodologi-
cal innovations are (a) establishing the positive recurrence of coupled
Markov chains, and (b) a comparison relation between stationary dis-
tributions of Markov chains building upon the classical Markov chain
tree theorem.

1. Introduction. We consider a single-hop wireless network of n nodes
or queues represented by V = {1, . . . , n}. Time is discrete indexed by τ ∈
{0, 1, . . . }. Unit-size packets arrive at queue i as per an exogenous process.
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Let ζi(τ) denote the number of packets arriving at queue i in the time slot
[τ, τ + 1). For simplicity, we shall assume ζi(·) as an independent Bernoulli
process with rate λi, i.e. λi = P(ζi(τ) = 1) and ζi(τ) ∈ {0, 1} for all i, τ ≥ 0.1

Let Qi(τ) ∈ N be the number of packets in queue i at the beginning of time
slot [τ, τ + 1).

The work from queues is served at the unit rate subject to interference
constraints. Specifically, let G = (V,E) denote the inference graph : (i, j) ∈
E implies that queues i and j can not transmit simultaneously since their
transmissions interfere with each other. Formally, let σi(τ) ∈ {0, 1} denote
whether the queue i is (successfully) transmitting at time τ , and let σ(τ) =
[σi(τ)]. Then,

σ(τ) ∈ I(G)
∆
= {ρ = [ρi] ∈ {0, 1}n : ρi+ρj ≤ 1 for all (i, j) ∈ E}, for τ ≥ 0,

i.e. I(G) is the set of independent sets ofG. The resulting queueing dynamics
can be summarized as

Qi(τ + 1) = Qi(τ)− σi(τ)I{Qi(τ)>0} + ζi(τ), for τ ≥ 0, 1 ≤ i ≤ n.

Here I{x} = 1 if x =‘true’ and 0 if x =‘false’.
Now an algorithm, which we shall callmedium access, is required to choose

σ(τ) ∈ I(G) at the beginning of each time τ . A good medium access algo-
rithm should choose σ(τ) so as to utilize the wireless medium as efficiently
as possible. Putting it another way, it should be able to keep queues finite
for as large a set of arrival rates λ = [λi] as possible. Towards this, define
the capacity region

Λ =
{
y ∈ Rn

+ : y <
∑

σ∈I(G)

ασσ with ασ ≥ 0,
∑

σ∈I(G)

ασ ≤ 1
}
.

Since σ(τ) ∈ I(G), the effective ‘service’ rate induced by any algorithm over
time is essentially in the closure of Λ. Therefore, a medium access algorithm
can be considered optimal, if it can keep queues finite, for any λ ∈ Λ. For-
mally, if the state of the queueing system including the algorithm’s decisions
and queue-sizes can be described as a Markov chain, then the existence of
a stationary distribution for this Markov chain and its ergodicity effectively

1This Bernoulli assumption does not hurt the generality of this paper since there is a
simple algorithmic trick to justify this. For any non-Bernoulli (even adversarial) arrival
process with rate λi, store packets in a virtual ‘gate-keeper’ queue and output packets as
per a Bernoulli process with rate λi+ε. Then, the arrival dynamics of packets seen by the
network becomes a Bernoulli(-like) process. The result of this paper is easily extendable
for non-Bernoulli arrival processes using the algorithmic trick.
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implies that the queues remain finite. A sufficient condition for this is ape-
riodicity and positive recurrence of the corresponding Markov chain. This
motivates the following (first-order) performance metric for medium access
algorithms.

Definition 1 (Optimal) A medium access algorithm is called optimal2 if
for any λ ∈ Λ the (appropriately defined) underlying network Markov chain
is positive recurrent and aperiodic.

To be of practical use, the medium access algorithm ought to be simple and
fully distributed, i.e. should use only local information like queue-size, and
past collision history. In such an algorithm, each node makes the decision to
transmit or not on its own, at the beginning of each time slot. At the end of
the time slot, it learns whether attempted transmission was successful or not
(due to a simultaneous attempt of transmission by a neighbor). If a node
does not transmit, then it learns whether any of its neighbors attempted
transmission. And, ideally such an algorithm should be optimal.

1.1. Prior Work. Design of an efficient and distributed medium access
algorithm has been of interest since the ALOHA algorithm for the radio net-
work [1] and Local Area Networks [15] in the 1970s. Subsequently a variety
of the so-called back-off algorithms or similar protocols have been exten-
sively studied. Various negative and positive properties of back-off protocols
were established in various works [12, 17, 13, 23, 2, 14].

Specifically, Hastad, Leighton and Rogoff [9] studied a medium access al-
gorithm in which each node or queue attempts transmission at each time
with probability that is inversely proportional to a polynomial function of
the number of successive failures in the most recent past. They established
it to be optimal when the interference graph G is complete, or equivalently
all nodes are competing for one resource (as in the classical Ethernet/LAN).
The optimality of this polynomial back-off algorithm was further established
when it is induced by matching constraints in a bipartite graph G by Gold-
berg and MacKenzie [7]. However, the optimality of polynomial back-off or
any other fully distributed medium access algorithm remained open for gen-
eral graphs. The interested reader may find a summary of results until 2001,
on medium access on a webpage maintained by Goldberg [8].

In the past year or so, significant progress has been made towards this
open question, i.e., designing a distributed optimal medium access algorithm
for general graphs. Specifically, Rajagopalan, Shah and Shin (RSS) [18, 19]
and Jiang and Walrand (JW) [11] proposed two different medium access

2Equivalently, it is also called ‘throughput-optimal’ or ‘stability-optimal’.
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algorithms that operate in continuous time. The RSS algorithm is optimal
but requires a bit of information exchange between each pair of neighboring
nodes per unit time. The JW algorithm was established to have a weaker
form of optimality, called ‘rate stability’, by Jiang, Shah, Shin and Walrand
[10]. In summary, both algorithms stop short of being fully distributed and
optimal. More importantly, both of them operate in continuous time (which
makes analysis much easier though) and thus effectively avoiding the issue of
loss in performance due to contention present in the discrete time setup that
considered in this paper as well as most works studying back-off algorithms.

1.2. Our Contribution. The main result of this paper is a fully dis-
tributed medium access algorithm that is optimal for any interference graph
G. It resolves an important question in distributed computation that has
been of great practical interest. The proposed medium access algorithm
builds on the RSS algorithm and overcomes its two key limitations by adapt-
ing it to the discrete time setup and removing the need for any information
exchange between neighboring nodes. In what follows, we explain in detail
how we overcome such limitations.

In the proposed medium access algorithm, each node attempts trans-
mission in each time slot based on: (a) whether it managed to successfully
transmit in the previous time slot, or whether any of its neighbors attempted
to transmit in the previous time slot; (b) local queue-size and estimation of
the “weight” of the neighbors. Given this information, each node in the be-
ginning of each time slot attempts transmission with probability depending
upon (a) and (b). Specifically, if the node was successful in the previous
time, it does not transmit at this time with probability that is inversely pro-
portional to its own weight that depends on (b). Else if no other neighbor
attempted transmission in the previous time then a node attempts trans-
mission with probability 1

2 . Otherwise, with probability 1, a node does not
transmit.

In such an algorithm, the only seeming non-local information is the es-
timation of the neighbors’ weight in (b). An important contribution of this
work is the design of a non-trivial learning mechanism, based only on infor-
mation of type (a), that estimates the neighbors’ weight without any explicit
information exchange. We note that, in contrast, the RSS algorithm had re-
quired explicit information exchange for estimating the neighbors’ weight.

To establish optimality of the proposed algorithm, we show that, in essence,∑
i σi(τ) log logQi(τ) is close to maxρ∈I(G)

∑
i ρi log logQi(τ), on average

for all large enough τ . That is, effectively the distributed medium access
chooses σ(τ) that is (close to) maximum weight independent set of G when
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node weights are equal to log log of the queue-sizes. Such a property is known
(cf. [20, 22]) to imply that

∑
i F (Qi(τ)) (where F (x) =

∫ x
0 log log y dy) is

a potential (or Lyapunov, energy) function for the system state so that the
function is expected to decrease by at least a fixed amount as long as λ ∈ Λ.
This subsequently establishes that the network as a Markov chain is positive
recurrent (implying the optimality of the algorithm).

We establish the near optimality of
∑

i σi(τ) log logQi(τ) under the medium
access algorithm in two steps. To begin with, we observe that the evolution
of σ(τ) under the algorithm is a Markov chain on the space of independent
sets I(G) with time-varying transition probabilities. For this Markov chain,
at any particular time τ , let π(τ) be the stationary distribution at time τ
(given transition probabilities at time τ).

In the first step, we study this (time-varying, stationary) distribution
π(τ) and show that it is approximately ‘product-form’. To obtain such an
approximate characterization, we show that the transition probabilities of
the Markov chain are well approximated by those of a reversible Markov
chain which has a product-form stationary distribution. A novel comparison
relation between stationary distributions of two Markov chains in terms of
the relation between their transition probabilities leads to the approximate
product-form characterization of π(τ). We note that the RSS algorithm
(and similarly, the JW algorithm) had used the continuous time setting to
make sure that the corresponding Markov chain was reversible and hence
had a product-form distribution to start with; such reversibility is lost in
general in the discrete time setting of this paper. Using this approximate
product-form characterization of π(τ) in addition to the Gibbs’ maximal
principle (cf. [6]), we prove that π(τ) has the desired property; namely,
that

∑
i σi log logQi(τ) is close to maxρ∈I(G)

∑
i ρi log logQi(τ) if σ = [σi]

is given by the distribution π(τ). We call this the maximum-weight property
at stationarity.

In the second step, we show that the Markov chain, despite it being time-
varying, is always near stationarity for large enough τ by carefully estimating
the effective mixing time of the time-varying Markov chain. In other words,
the distribution of σ(τ) is close to π(τ) for large enough τ . Therefore, the
maximum-weight property at stationarity (established in the first step) im-
plies that

∑
i σi(τ) log logQi(τ) is close to maxρ∈I(G)

∑
i ρi log logQi(τ). To

guarantee the near stationarity property as a consequence of such a mixing
analysis, it is required that a design of ‘weight’ maintained by each node in
the medium access algorithm utilizes the neighbor’s weight information. As
mentioned earlier, we resolve this by developing a learning mechanism that
estimates the neighbor’s weight based on the information whether it trans-
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mitted or not thus far. The learning mechanism is a recursive updating rule
to produce a statistically optimal estimate of the underlying system state.
The success in this second step is primarily due to our novel (and highly
non-trivial) choice of parameters in the learning mechanism to incorporate
well with the mixing time analysis of the time-varying Markov chain.

Our results have two implicit methodological contributions. First is the
method (or criterion) to establish positive recurrence of two coupled Markov
chains when both components on their own are known to be positive re-
current and have complicated coupling. Second is the general comparison
relation between stationary distributions of two finite state Markov chains
building upon the classical Markov chain tree theorem.

1.3. Organization. The remainder of the paper is organized as follows.
Section 2 presents formally the medium access algorithm and a statement of
the main result. Section 3 summarizes our proof strategy for the main result
at a high level. Section 4 presents necessary preliminaries that are used to
establish the main result in Section 5. Section 6 and 7 are for providing the
detailed proof of the main lemma in Section 5.

2. Algorithm and Its Optimality. The medium access algorithm is
randomized, distributed, simple and runs in discrete time with time indexed
by τ ≥ 0. Each node i ∈ V maintains weight Wi(τ) ∈ R+ over τ ≥ 0. In
the beginning of each time slot τ ≥ 0, each node i ∈ V decides to attempt
transmission or not as follows:

1. If the transmission of node i was successful at τ − 1, then

◦ it attempts to transmit with probability 1− 1
Wi(τ)

.

2. Else if no neighbor of i attempted transmission at τ − 1, then

◦ it attempts to transmit with probability 1
2 .

3. Otherwise, it does not attempt to transmit with probability 1.

Now we describe how each node i maintains weight Wi(τ):

(1) Wi(τ) = max

{
logQi(τ), max

j∈N (i)
exp

(√
log g(Ai

j(τ))
)}

,

where by log and log log we mean [log]+ and [log log]+ respectively; g : R+ →
R+ is defined as g(x) = exp(log log4 x); by log log4 x we mean (log log x)4,
log represents loge; and N (i) = {j ∈ V : (i, j) ∈ E} represents neighbors
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of node i. Note that Wi(τ) ≥ 1 for all τ by definition. In above, Ai
j(·) is a

‘counter’ maintained by node i as a ‘long term’ estimate of weight Wj(·).
This is maintained along with another ‘counter’ Bi

j(·) by node i as a ‘short

term’ estimate of Wj(·). Initially, Ai
j(0) = Bi

j(0) = 0 for all j ∈ N (i) and

i ∈ V . For each j ∈ N (i), Ai
j(·) and Bi

j(·) are updated by node i at τ as
follows:

1. If j ∈ N (i) attempted transmission at τ − 1, then

◦ Ai
j(τ) = Ai

j(τ − 1) and Bi
j(τ) = Bi

j(τ − 1) + 1.

2. Else if Bi
j(τ − 1) ≥ 2, then

◦ Ai
j(τ) =

{
Ai

j(τ − 1) + 1 if Bi
j(τ − 1) ≥ g(Ai

j(τ − 1))

Ai
j(τ − 1)− 1 otherwise

and reset

Bi
j(τ) = 0.

3. Otherwise, Ai
j(τ) = Ai

j(τ − 1) and Bi
j(τ) = 0.

Observe that Bi
j(·) counts how long neighbor j keeps attempting trans-

mission consecutively. When j’s transmissions are successful, the random
period of consecutive transmissions is essentially distributed as per the ge-
ometric distribution with mean Wj(·) due to the nature of our algorithm.
Thus Bi

j(·) provides a short-term (or instantaneous) estimation of Wj(·). To
extract a robust estimation of Wj(·) from such short-term estimates, the
long-term estimation Ai

j(·) is maintained: it changes by ±1 using Bi
j(·) at

most once per unit time. Specifically, as per the above updates, g(Ai
j(·)) is

acting as an estimation of Wj(·). Now it is important to note that the choice
of g (defined above) plays a crucial role in the quality of estimate of Wj(·).
The change in estimation g(Ai

j(·)), when Ai
j(·) is updated by ±1, is roughly

g′(Ai
j(·)). Since Wj(·) is changing over time, it is important to have g′(·)

not too small. On the other hand, if it is too large then it is too sensitive
and could be noisy just like Bi

j(·). A priori it is not clear if there exists a

choice of any function g that allows for keeping Ai
j(·) for a good enough

estimation of W i
j (·), which subsequently leads to positive-recurrence of the

network Markov chain. Somewhat surprisingly (at least to us), we find that
indeed such a g exists and is as defined above: g(x) = exp(log log4 x). As per
our proof technique, g(x) = exp(log logα x) works for any α > 2; however
we shall stick to the choice of α = 4 in the paper. Now we are ready to state
the main result of this paper.
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Theorem 1 The medium access algorithm as described above is optimal for
any interference graph.

The nature of the proof of Theorem 1 is intrinsically technical along with
numerous detailed calculations. In particular, our non-trivial choice of func-
tion g(x) = exp(log logα x), which is a key for Theorem 1, is driven by a
serious of detailed calculations and lemmas, rather than a simple reasoning.
In the following section, we provide the technical reasons at a high level for
such a choice of function g.

3. Proof of Theorem 1: An Overview. This section provides an
overview of the proof of Theorem 1 to explain the key challenges involved in
establishing it as well as intuition behind the particular choice of function g.
The goal in this section is not to provide precise arguments but only provide
intuition so as to assist a reader in understanding the structure of the proof.
The complete proof with all details is stated in Sections 5, 6 and 7.

Theorem 1 requires establishing positive recurrence of an appropriate
Markov chain that describes the evolution of the network state under the
medium access algorithm described. To that end, define

X(τ) = (Q(τ),σ(τ),a(τ),A(τ),B(τ))

where Q(τ) represents vector of queue-sizes; a(τ) ∈ {0, 1}n denotes the
vector of transmission attempts by nodes at time τ ; σ(τ) ∈ I(G) denotes the
vector of resulting successful transmissions in time τ (clearly, σ(τ) ≤ a(τ));

and A(τ), B(τ) ∈ Z2|E|
+ denote the vector of long-term and short-term

estimations maintained at nodes as explained in Section 2. Then it follows
that under medium access algorithm X(·) is a Markov chain.

Now a generic method to establish positive-recurrence of a Markov chain
involves establishing that certain real-valued function over the state-space of
the Markov chain is Lyapunov or Potential function for the Markov chain.
Roughly speaking, this involves establishing that on average the value of
this function decreases under the dynamics of the Markov chain if its value
is high enough; Theorem 5 states the precise conditions that need to be
verified. With this eventual goal, we consider the following function that
maps state x = (Q,σ,a,A,B) to non-negative real values as

L(x) =
∑
i

F (Qi) +
∑

i;j∈N (i)

(
(Ai

j)
2 + g(−1)(Bi

j)
)
,(2)

where F (x) =
∫ x
0 log log y dy with log log y = [log log y]+; the inverse func-

tion of g(x) = exp(log log4 x) is g(−1)(x) = exp(exp(log1/4 x)). With abuse
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of notation, we shall use L(τ) to denote L(X(τ)). Now

L(τ) = LQ(τ) + LA,B(τ),

where

LQ(τ) =
∑
i

F (Qi(τ)) and LA,B(τ) =
∑

i;j∈N (i)

(
(Ai

j(τ))
2 + g(−1)(Bi

j(τ))
)
.

The proof is devoted to establish the negative-drift property of L(·), i.e.
if X(τ) = x is such that L(τ) is large enough (i.e. larger than some finite
constant), then value of L(·) decreases enough on average. This property is
established by considering two separate cases.

Case One. When L(τ) is large due to LA,B(τ) being very large.

◦ Formally, when maxi,j
(
g(Ai

j(τ)), B
i
j(τ)

)
≥ W 3

max(τ).

Case Two. When L(τ) is large due to LQ(τ) being very large.

◦ Formally, when maxi,j
(
g(Ai

j(τ)), B
i
j(τ)

)
< W 3

max(τ).

In above, Wmax(τ) = maxiWi(τ)

Case One. In this case, there exists i ∈ V and j ∈ N (i) so that g(Ai
j(τ)) or

Bi
j(τ) is larger than W 3

max(τ). Using the property of the estimation proce-

dure (which updates Ai
j(·)), we show that the LA,B(·) decreases on average

by a large amount; it is large enough so that it dominates the possible in-
crease in any other components of L(·). Such a strong property holds because
as per the algorithm, g(Ai

j(τ)) and Bi
j(τ) continually try to estimate Wj(τ)

and hence if either of them is larger than W 3
max(τ), they ought to decrease

by a large amount in a short time. Indeed, to translate this property into
sufficient decrease of L(·), the careful choice of LA,B(·) is made. This case is
dealt in detail in Section 6.

Case Two. In this case, for each i ∈ V and j ∈ N (i), g(Ai
j(τ)) and Bi

j(τ)

are smaller than W 3
max(τ). To establish the decrease in L(·), we show that

in this case LQ(·) decreases by large enough amount; large enough so that
it dominates the possible increase in LA,B(·). This case crucially utilizes the
property of the medium access algorithm, the choice of the weights Wi(·) for
i ∈ V and the form of function g. The precise details explaining how these
play roles in establishing this decrease in LQ(·) are provided in Section 7.
Here, we shall provide key ideas behind these somewhat involved arguments.
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The property that LQ(·) decreases by large enough amount follows if we
establish that the set of transmitting nodes σ(τ) is such that∑

i

σi(τ) log logQi(τ) ≈ max
ρ∈I(G)

∑
i

ρi log logQi(τ).(3)

See Lemma 13 for further details. To establish (3), using the condition of the
second case g(Ai

j(τ)) < W 3
max(τ) for all i ∈ V and j ∈ N (i), we essentially

show that

g(Ai
j(τ)) ≈ Wj(τ), for all i ∈ V, j ∈ N (i), and(4) ∑

i

σi(τ) log logQi(τ) ≈ max
ρ∈I(G)

∑
i

ρi logWi(τ)(5)

To see why (4) and (5) are sufficient to imply (3), note that∣∣ logWi(τ)− log logQi(τ)
∣∣ ≤ max

j∈N (i)

√
log g(Ai

j(τ)) ≈ max
j∈N (i)

√
logWj(τ)

≪ max
ρ∈I(G)

∑
i′

ρi′ logWi′(τ),

when Wmax(τ) (or Qmax(τ)) is very large. Therefore,

max
ρ∈I(G)

∑
i

ρi log logQi(τ) ≈ max
ρ∈I(G)

∑
i

ρi logWi(τ).

In summary, to establish desired decrease in LQ(·), it boils down to estab-
lishing (4) and (5).

To establish (4), it is essential for g(·) to be growing fast enough so that if
g(Ai

j(τ)) is very different (in this case, smaller) compared to Wj(τ), then un-
der the execution of the algorithm, it quickly converges (close) to Wj(·). For
this, it is important that g(Ai

j(·)) should change at a faster rate compared to

the rate at which Wj(·) changes. Towards that, note that if Ai
j(·) is updated

(by unit amount) then g(Ai
j(·)) roughly changes by amount g′(Ai

j(τ)), which
is at least

g′(Ai
j(τ)) > g′(g(−1)(Wmax(τ)

3)).

Here we have used the fact that g′ is a decreasing function and g(Ai
j(τ)) is

at most Wmax(τ)
3. Using properties of function g, we establish that (see

Proposition 21) Wj(τ) changes per unit time by at most

Wj(τ)

g(−1)
(
exp

(
log2Wj(τ)

)) .
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For the purpose of developing an intuition regarding the choice of g, consider
j ∈ argmaxiWi(τ), i.e. Wj(τ) = Wmax(τ). Then, such a Wj(τ) changes as

Wj(τ)

g(−1)
(
exp

(
log2Wj(τ)

)) =
Wmax(τ)

g(−1)
(
exp

(
log2Wmax(τ)

)) .
Therefore, to have g such that the change in Wj(·) is slower than that in
g(Ai

j(·)), we must have

g′(g(−1)(Wmax(τ)
3)) >

Wmax(τ)

g(−1)
(
exp

(
log2Wmax(τ)

)) .
Our interest will be having properties holding when Wmax(τ) (or Qmax(τ))
is large enough. This leads to the condition that

lim
x→∞

g′(g(−1)(x3))
g(−1)

(
exp

(
log2 x

))
x

> 1.

It can be checked that the above condition is satisfied if g(x) does not grow
slower than exp(log logα x) for some constant α > 2.3 That is, we need g to
be growing roughly at least as fast as the choice made in the description of
our algorithm in Section 2. Precise details on how this choice of g guarantees
g(Ai

j(τ)) ≈ Wj(τ) are given in Section 7.

Next, discussion on how we establish (5), which will require another con-
dition on g(·) to be growing slow enough, in contrast to the fast enough
growing condition for (4). Effectively, we need to establish that µ(τ), the
distribution of σ(τ) under the algorithm, is concentrated around the subset
of schedules with high-weight, i.e. roughly speaking the subset{

ρ̃ = [ρ̃i] ∈ I(G) :
∑
i

ρ̃i logWi(τ) ≈ max
ρ∈I(G)

∑
i

ρi logWi(τ)
}
.(6)

To that end, consider the evolution of schedule σ(τ) = [σi(τ)] and weight
W (τ) = [Wi(τ)] under the algorithm. Now the distribution of σ(τ) depends
on the schedule σ(τ−1) and weightW (τ−1). More specifically, the evolution
of σ(τ) can be thought of as a time-varying Markov chain with its transition
matrix P (τ) being function of the time-varying W (τ). That is, for ∆ ≥ 1

µ(τ) = µ(τ −∆)P (τ −∆) · · ·P (τ − 1).

3We say g does not grow slower and faster than f if lim infx→∞
g(x)
f(x)

> 0 and

lim supx→∞
g(x)
f(x)

< ∞, respectively.



12 SHAH, SHIN & TETALI

In above, we assume that the distribution µ(·) represents an |I(G)| dimen-
sional row vector, P (·) represents an |I(G)| × |I(G)| probability transition
matrix, and their product on the right hand side should be treated as the
usual vector-matrix multiplication. The first step towards establishing con-
centration of µ(τ) around the subset of I(G) with high-weight (cf. (6)) is
establishing the existence of an appropriate ∆ ≥ 1:

(a) ∆ is small enough so that

P (τ −∆) · · ·P (τ − 1) ≈ P (τ)∆.

(b) ∆ is large enough so that

µ(τ −∆)P (τ)∆ ≈ π(τ),

where π(τ) is the stationary distribution of P (τ), i.e. π(τ) = π(τ)P (τ).

By finding such ∆, it essentially follows that µ(τ) ≈ π(τ). The second
step towards establishing concentration of µ(τ) around the high-weight set
involves establishing that π(τ) is approximately product-form with respect
to the weights W (τ) (cf. Lemma 2). Therefore, as a consequence of Gibb’s
maximal principle for product-form distributions, it follows that π(τ) is
concentrated around the subset of I(G) with high-weight (cf. (6)). Formally,
this is stated in Proposition 17. Subsequently, this establishes that µ(τ) is
concentrated around the subset of I(G) with high-weight (cf. (6))

Now we discuss the remaining task of showing the existence of ∆ so that
(a) and (b) are satisfied. This is where we shall discover another set of
conditions on g that it must be of the form exp(log logα x) with α > 2. Now
for (b) to hold, it is required that ∆ is larger than the mixing time of P (τ).
Using Cheeger’s inequality [4, 21], we prove that it is sufficient to have

∆ > f1(Wmax(τ)) with f1(x) = Θ(x6n+1).(7)

The precise definition of f1(·) is presented in Lemma 4.4 Next, for ∆ to
satisfy (a), observe that

∥P (τ −∆) · · ·P (τ − 1)− P (τ)∆∥

≤
∆∑
s=1

∥P (τ −∆) · · ·P (τ − s− 1)(P (τ − s)− P (τ))P (τ)s−1∥

≤
∆∑
s=1

∥P (τ − s)− P (τ)∥,

4As noted in Section 4.1, we use the asymptotic notation Θ with respect to scaling in
Wmax(·) instead of n.
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where we use the triangle inequality with an appropriately defined norm ∥·∥.
Further, by exploring algebraic properties of P (·) and W (·) (cf. Proposition
16 and 21), we show that

∥P (τ − s)− P (τ)∥ ≤ f2(Wmin(τ)) · s,

where Wmin(τ) = miniWi(τ) and f2(x) = Θ

(
x

g(−1)(exp(log2 x))

)
. Thus, it

follows that

∥P (τ −∆) · · ·P (τ − 1)− P (τ)∆∥ ≤ f2(Wmin(τ)) ·∆2.

Therefore, (a) follows if ∆ satisfies

∆ <
ε√

f2(Wmin(τ))
for small enough ε > 0.(8)

From (7) and (8), it follows that a ∆ ≥ 1 satisfying (a) and (b) exists if

f1(Wmax(τ)) <
ε√

f2(Wmin(τ))
for large enough Qmax(τ).(9)

From (1), it follows that for any i ∈ V ,

Wi(τ) ≥ max
j∈N (i)

exp
(√

log g(Ai
j(τ))

)
≈ max

j∈N (i)
exp

(√
logWj(τ)

)
,

≥ exp

(√
logWj(τ)

)
,(10)

for any j ∈ N (i); here we have assumed g(Ai
j(τ)) ≈ Wj(τ). Now let j∗ ∈

argminj Wj(τ) and j∗ ∈ argmaxj Wj(τ). Since G is connected, there exists
a path connecting j∗ and j∗ of length at most D where D ≤ n − 1 is the
diameter of G. Then by a repeated application of (10) along this path joining
j∗ and j∗ starting with j∗, we obtain that

Wmin(τ) ≥ exp
(
log1/2

D
Wmax(τ)

)
.(11)

Therefore, the desired inequality (9) is satisfied for large Wmax(τ) if

f1(Wmax(τ)) <
ε√

f2

(
exp

(
log1/2

D
Wmax(τ)

)) .
This holds if

lim sup
x→∞

f1(x)

√
f2

(
exp

(
log1/2

D
x
))

= 0.

The above can be checked to hold if g does not grow faster than exp(log logα x)
for some constant α < ∞.
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4. Preliminaries: Primary MC and Positive Recurrence.

4.1. Notations. Let Z and R (Z+ and R+) denote sets of (non-negative)
integers and reals, respectively. Bold letters are reserved for vector and
distribution, e.g. u = [ui] denotes a vector; 0 and 1 represent vectors
of all 0’s and 1’s; for a function f : R → R, we use f(u) to denote
[f(ui)]. Similarly for a random vector u, we use E[u] to denote [E[ui]]. Let
umax := maxi ui, umin := mini ui. for a vector u; and u · v denote the inner
product

∑
i uivi of vectors u,v. We call f : R → R as (uniformly) c-Lipschitz

if |f(x)− f(y)| ≤ c|x− y| for some constant c > 0. Similarly, a sequence of
random variables {A(τ) ∈ R : τ ∈ Z+} is c-Lipschitz if |A(τ)−A(τ +1)| ≤ c
with probability 1, for all τ ∈ Z+, for some constant c > 0.

We will use asymptotic notations (e.g. O, o,Ω, ω,Θ) with respect to scal-
ing in queue-sizes, instead of the network size or something else. For ex-
ample, we mean n = O(1) and 2nQmax = O(Qmax) where n is the num-
ber of nodes (or queues). We say function f : R+ → R+ is polynomial

by denoting f(x) = poly(x) if lim supx→∞
f(x)
xc = 0 for some constant

c > 0. Similarly, f(x) = superpoly(x) and f(x) = superpolylog(x) mean

lim infx→∞
f(x)
xc = ∞ and lim infx→∞

f(x)
logc x = ∞ for any constant c > 0,

respectively.

4.2. A Markov Chain (MC) of Interest. We describe a Markov chain
of finite state space, whose time-varying version will describe the evolution
of the medium access algorithm described in Section 2. As we described in
Section 3, our strategy for proving Theorem 1 crucially relies on understand-
ing the stationary distribution and mixing time of the (finite state) Markov
chain.

4.2.1. Description. The Markov chain evolves on state space I(G) ×
{0, 1}n and uses node weights W = [Wi] ∈ Rn

+ with Wmin ≥ 1. Given
(σ,a) ∈ I(G) × {0, 1}n, the next (random) state (σ′,a′) ∈ I(G) × {0, 1}n
is obtained as follows:

1. Each node i chooses ri ∈ {0, 1} uniformly at random, i.e. ri = 1 with
probability 1/2 and 0 otherwise. Temporarily set

a′i =

{
ri if aj = 0 for all j ∈ N (i)

0 otherwise
.

2. Each node i sets σ′
i (and possibly resets a′i) as follows:



MEDIUM ACCESS USING QUEUES 15

◦ If σi = 1, then set

(σ′
i, a

′
i) =

{
(0, 0) with probability 1

Wi
,

(1, 1) otherwise.

◦ Else if aj = 0 for all j ∈ N (i), then set

σ′
i =

{
1 if a′i = 1 and a′j = 0 for all j ∈ N (i)

0 otherwise
.

◦ Otherwise, set (σ′
i, a

′
i) = (0, 0).

4.2.2. Stationary distribution. Let Ω = I(G) × {0, 1}n. Then Ω is the
state space of the above described Markov chain; let Pxx′ denote its tran-
sition probability for x = (σ,a), x′ = (σ′,a′) ∈ Ω. We characterize the
stationary distribution of this Markov chain as follows.

Lemma 2 Starting from initial state (0,0), the Markov chain P is recurrent
and aperiodic; let its recurrence class be denoted by Ω′ ⊂ Ω; (σ,0) ∈ Ω′

for all σ ∈ I(G). Therefore, the Markov chain P has a unique stationary
distribution π on Ω′ such that for any (σ,a) ∈ Ω′

π(σ,a) ∝ exp
(
σ · logW + U(σ,a)

)
,(12)

where U : Ω′ → R+ is such that |U(σ,a)| ≤ n4n log 2 for all (σ,a) ∈ Ω′.

To achieve the form (12), we use the classical Markov chain tree theorem
[3]. Our proof strategy can be of broad interest to characterize such form
for non-reversible Markov chains.

Proof. Consider the Markov chain P with weights W ∈ Rn
+ such that

Wmin ≥ 1. Starting from (0,0), from the description of the Markov chain,
it follows inductively that Markov chain is always in state (σ,a) ∈ Ω so that
σ ≤ a component-wise, i.e. for any i, σi = 1 ⇒ ai = 1. Further, transition
from any such state x = (σ,a) ∈ Ω to x′ = (σ′,a′) ∈ Ω is possible if and
only if (a) σ ∪ σ′ ∈ I(G), and (b) for any i, ai = 1 ⇒ a′j = 0, ∀ j ∈ N (i).
From (a) and (b), it immediately follows (a’) σ ∪ σ′ ∈ I(G), and (b’) for
any i′, a′i′ = 1 ⇒ aj′ = 0, ∀ j′ ∈ N (i′). That is, if transition from x to x′ is
feasible, then transition from x′ to x is feasible. As per this, it immediately
follows that the state (0,0) is reachable from (and to) all feasible states.
That is, starting from (0,0) the Markov chain P is recurrent and let Ω′ be
the recurrent class. Further, there is a strictly positive probability of being
at state (0,0). Therefore, Markov chain is aperiodic on Ω′. More generally,
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it can be checked that for any two states x, x′ with positive Pxx′ , it is equal
to

(13) Pxx′ = c(x,x′) ·
∏

i∈σ\σ′

1

Wi
·
∏

i∈σ∩σ′

(
1− 1

Wi

)
,

where c(x,x′) = 2−|{i : ai=0; a′i=1}|.
Now to establish (12), consider another Markov chainQ on Ω′ withQxx′ >

0 if and only if Pxx′ > 0. Specifically, for x = (σ,a), x′ = (σ′,a′) ∈ Ω′ with
x ̸= x′ and Pxx′ > 0,

Qxx′ =
1

2n
·
∏

i∈σ\σ′

1

Wi
·
∏

i∈σ∩σ′

(
1− 1

Wi

)
.(14)

We choose the other ‘self-transitions’ in Q so as to make it a valid probability
transition matrix. This is indeed possible since Qxx′ ≤ Pxx′ for all x ̸= x′

from (13). By definition Q is recurrent and aperiodic since P is. Therefore,
it has unique stationary distribution, say ξ. We claim that for any x =
(σ,a) ∈ Ω′,

ξ(σ,a) ∝
∏
i∈σ

Wi = exp (σ · logW )
△
= W (σ).(15)

This is because, the following detailed-balanced condition is satisfied by
Q, ξ: for any feasible transitions x = (σ,a), x′ = (σ′,a′) ∈ Ω′ with x ̸= x′,

Qxx′

Qx′x
=

∏
i∈σ\σ′

1
Wi∏

i∈σ′\σ
1
Wi

=

∏
i∈σ′\σ Wi∏
i∈σ\σ′ Wi

=

∏
i∈σ′ Wi∏
i∈σ Wi

=
ξx′

ξx
.

Given characterization ξ and similarity between Q and P , we shall ap-
proximately characterize π, the stationary distribution of P , in form of ξ.
For this, we shall use the following proposition.

Proposition 3 Given a finite state space Σ, denoted by {1, . . . , N}, con-
sider two irreducible and apriodic Markov chains on Σ with transition prob-
ability matrices A and B. Let Aij > 0 if and only if Bij > 0 for all i, j ∈ Σ.
Define

R(A,B) = max
(i,j):Aij>0

(Aij

Bij
,
Bij

Aij

)
.(16)

Let πA and πB be stationary distributions of A and B. Then,

R(A,B)−N ≤ min
i

(πA
i

πB
i

)
≤ max

i

(πA
i

πB
i

)
≤ R(A,B)N .
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Subsequently, the relative entropy between πA and πB, denoted by D(πA|πB),
is bounded above as D(πA|πB) ≤ N logR(A,B).

Let π be the stationary distribution of P . For each x ∈ Ω′, πx > 0. Therefore,
we can write

πx ∝ exp
(
F (x)

)
,(17)

with F : Ω′ → R with F ((0,0)) = 0. Now from definition of P and Q, it
follows that

R(P,Q) ≤ 2n.

Using this, Proposition 3 and the form of ξ (cf. (15)), we have

exp
(
F (x)

)
=

πx
π(0,0)

= exp
(
σ · logW

)πx
ξx

ξ(0,0)

π(0,0)

= exp
(
σ · logW + U(x)

)
,(18)

where |U(x)| ≤ |Ω′| logR(P,Q) ≤ n4n log 2. That is, we conclude that for
any x ∈ Ω′

πx ∝ exp
(
F (x)

)
,

where F (x) = σ · logW + U(x) where |U(x)| ≤ n4n log 2. This completes
the proof of Lemma 2. �
Proof. (Proposition 3) The proof follows by use of characterization of sta-
tionary distribution by means of Markov chain tree theorem (cf. [3]). Specif-
ically, it characterizes the stationary distribution of a finite state, irreducible
and aperiodic Markov chain, say A, as follows. Let G = (Σ, E) be a directed
graph with e = (i, j) ∈ E ⊂ Σ×Σ if Aij > 0. Then its stationary distribution,
πA, is characterized as

πA
i ∝

∑
T∈T (i)

∏
(k,ℓ)∈T

Akℓ,(19)

where T (i) is the set of all directed spanning trees of G rooted at i; by
(k, ℓ) ∈ T we mean directed edge (k, ℓ) that belongs to T .

As per hypothesis of Proposition, it follows that the transition graph G
for Markov chains A and B are identical. Therefore, from (19) it follows that
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for any i ∈ Σ

πA
i

πB
i

=

∑
T∈T (i)

∏
(k,ℓ)∈T Akℓ∑

T∈T (i)

∏
(k,ℓ)∈T Bkℓ

.(20)

By definition of R(A,B), the fact that number of edges in any tree T is
N = |Σ| and (20) it follows that for any i ∈ Σ

R(A,B)−N ≤ πA
i

πB
i

≤ R(A,B)N .(21)

To establish bound on relative entropy of πA,πB, observe that

D(πA|πB) =
∑
i

πA
i log

πA
i

πB
i

≤
∑
i

πA
i logR(A,B)N

=
(∑

i

πA
i

)
N logR(A,B) = N logR(A,B).(22)

This completes the proof of Proposition 3. �

4.2.3. Mixing time. Now we establish a bound on the ‘mixing time’ of
P – the time to reach near stationary distribution starting from any initial
distribution. We shall use the total-variation distance: given distributions
ν,µ on a finite state space Ω′, define ∥ν − µ∥TV =

∑
x∈Ω′ |νx − µx|.

Lemma 4 Given ε ∈ (0, 0.5) with n ≥ 2, for any distribution µ on Ω′,

∥µP τ − π∥TV < ε,

for all τ ≥ Tmix(ε, n,Wmax), where

Tmix ≡ Tmix(ε, n,Wmax) = 4n4
n+1+1W 6n

max log
(4n4nW n

max

2ε

)
.(23)

Proof. By definition of πmin, πmax and from (12), it follows that

πmin ≥ πmax exp
(
− n logWmax − n4n log 2

)
≥ 1

|Ω′|
exp

(
− n logWmax − n4n log 2

)
≥ exp

(
− n logWmax − n4n log 4

)
= CnW

−n
max,(24)



MEDIUM ACCESS USING QUEUES 19

where we have used |Ω′| ≤ 4n, n log 2 ≥ 1 for n ≥ 2 and Cn = exp(−n4n log 4).
Let the time-reversal of P be P ∗, i.e. P ∗

xx′ = πx′Px′x/πx for any x,x′ ∈ Ω′.
It follows that PP ∗ is a reversible Markov chain on Ω′. Then PP ∗ has real
eigenvalues taking values in [−1, 1]: let they be −1 ≤ λmin ≤ · · · ≤ λ2 ≤ λ1 ≤
1. It can be checked that PP ∗ is irreducible and aperiodic due to structure of
P . Therefore, it follows that λ1 = 1, λPP ∗ = max{|λmin|, λ2} < 1 and PP ∗

has the unique stationary distribution equal to π, the stationary distribution
of P , which corresponds to the (normalized) eigenvector with eigenvalue 1.
In this setting, the following is a well known [16, Corollary 1.14] bound on
‘mixing time’ of P : starting from any initial distribution µ on Ω′,∥∥∥µP τ

π
− 1
∥∥∥
2,π

< ε, for τ ≥ 2

1− λPP ∗
log

1

επmin
,(25)

where the χ2 (chi-squared) distance between two distributions on a finite
state space (here Ω′) is defined as∥∥∥ν

µ
− 1
∥∥∥
2,µ

= ∥ν − µ∥2, 1
µ

=

√∑
x∈Ω′

( νx
µx

− 1
)2

.(26)

Another distance of interest is total-variation, which is defined as and related
to χ2 distance as follows.

1

2

∥∥∥ν
µ

− 1
∥∥∥
2,µ

≥ ∥ν − µ∥TV

=
∑
x∈Ω′

|νx − µx|.(27)

From (25) and (27), it follows that

∥µP τ − π∥TV < ε, for τ ≥ 2

1− λPP ∗
log

1

2επmin
.(28)

Thus, to bound the ‘mixing time’ Tmix of P , we need an upper bound on
λPP ∗ . To that end, we shall bound the second largest eigenvalue λ2 and the
smallest eigenvalue λmin in that order.

For λ2, by Cheeger’s inequality [4, 21] it is well known that

λ2 ≤ 1− Φ2

2
,

where Φ is the conductance of PP ∗, defined as

Φ = min
S⊂Ω′:π(S)≤ 1

2

Q(S, Sc)

π(S)π(Sc)
,
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where Sc = Ω′\S, π(S) =
∑

x∈S πx and

Q(S, Sc) =
∑

x∈S,y∈Sc

πx(PP ∗)xy.

Therefore,

Φ ≥ min
S⊂Ω

Q(S, Sc) ≥ min
(PP ∗)xy ̸=0

πx(PP ∗)xy

≥ πmin

(
min

(PP ∗)xy ̸=0
(PP ∗)xy

)
≥ πmin

(
min

(PP ∗)xy ̸=0
Px0Py0

πy
π0

)
, where 0 = (0,0)

(a)

≥ CnW
−n
max × (2Wmax)

−2n exp
(
− n4n ln 2

)
≥C2

nW
−3n
max,(29)

where (a) is from (24), definition of π from (12) and definition of Cn = 4−n4n .
Now for λmin, we observe that for any x ∈ Ω′,

(PP ∗)xx ≥ P 2
x0

πx
π0

≥ (2Wmax)
−2n exp(−n4n ln 2)

≥ C2
nW

−2n.

Now it can be easily checked that λmin ≥ −1 + 2minx(PP ∗)xx. From this
and (29), it follows that

λPP ∗ ≤ 1− 1

2
C−4
n W−6n

max.(30)

Using (24),(28) and (30), it follows that starting from any initial distribution
µ on Ω′, ∥µP τ − π∥TV < ε for

τ ≥ Tmix
△
= 4C−4

n W 6n
max log

(C−1
n W n

max

2ε

)
.

This completes the proof of Lemma 4. �

4.3. Ergodicity, Positive recurrence and Lyapunov-Foster. To establish
optimality of the medium access algorithm, we need to show that the un-
derlying network Markov chain, which has countably infinite state space, is
ergodic, i.e. that it has the unique stationary distribution to which it con-
verges. We briefly recall known methods from literature that will be helpful
in doing so.
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Consider a discrete time Markov chain X(·) on countably infinite state
space X. State x ∈ X is said to be recurrent if P(Tx = ∞) = 0, where
Tx = inf{τ ≥ 1 : X(τ) = x : X(0) = x}. Specifically, a recurrent state x is
called positive recurrent if E[Tx] < ∞, or else if E[Tx] = ∞ then it is called
null recurrent. For an irreducible Markov chain, if one of its state is positive
recurrent, the so are all; we call such a Markov chain positive recurrent. An
irreducible, aperiodic and positive recurrent Markov chain is known to be
ergodic: it has unique stationary and starting from any initial distribution,
it converges (in distribution) to stationary distribution. Therefore, it is suf-
ficient to establish positive recurrence property for establishing ergodicity
of the Markov chain in addition to verifying irreducibility and aperiodic-
ity properties. We shall recall a sufficient condition for establishing positive
recurrence, known as the Lyapunov and Foster’s criteria.

4.3.1. Lyapunov and Foster’s criteria. This criteria utilizes existence of
a “Lyapunov”, “Potential” or “Energy” function of the state under evolution
of the Markov chain. Specifically, consider a non-negative valued function
L : X → R+ such that supx∈X L(x) = ∞. Let h : X → Z+ be another function
that is to be interpreted as a state dependent “stopping time”. The ‘drift’
in Lyapunov function L in h-steps starting from x ∈ X is defined as

E[L(X(h(x)))− L(X(0)) | X(0) = x ].

Following is the criteria (see [5], for example):

Theorem 5 For any κ > 0, let Bκ = {x : L(x) ≤ κ}. Suppose there exist
functions h, k : X → Z+ such that for any x ∈ X,

E [L(X(h(x)))− L(X(0)) | X(0) = x ] ≤ −k(x),

that satisfy the following conditions:

(L1) infx∈X k(x) > −∞.
(L2) lim infL(x)→∞ k(x) > 0.
(L3) supL(x)≤γ h(x) < ∞ for all γ > 0.
(L4) lim supL(x)→∞ h(x)/k(x) < ∞.

Then, there exists constant κ0 > 0 so that for all κ0 < κ, the following holds:

E [TBκ | X(0) = x ] < ∞, for any x ∈ X

sup
x∈Bκ

E [TBκ | X(0) = x ] < ∞,

where TBκ := inf{τ ≥ 1 : X(τ) ∈ Bκ} i.e. the first return time to Bκ. In
other words, Bκ is positive recurrent.
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Theorem 5 implies that if (L1) - (L4) are satisfied and Bκ is a finite set, the
Markov chain is positive recurrent.

5. Proof of Theorem 1. We shall establish ergodicity of an appropri-
ate Markov chain describing evolution of the network under medium access
algorithm as long as λ ∈ Λ. To that end, recall the Markov state of the
network defined in the Section 3:

X(τ) = (Q(τ),σ(τ),a(τ),A(τ),B(τ)),

where we recall that Q(τ) represents vector of queue-sizes; a(τ) ∈ {0, 1}n
denotes the vector of transmission attempts by nodes at time τ ; σ(τ) ∈ I(G)
denotes the vector of resulting successful transmissions in time τ (clearly,

σ(τ) ≤ a(τ)); and A(τ), B(τ) ∈ Z2|E|
+ denoting the vector of long-term and

short-term estimations maintained at nodes of the weights of their neigh-
bors as explained in Section 2. Then it follows that under medium access
algorithm X(·) is a Markov chain. It can be easily checked that under this
Markov chain, state 0 in which all components are 0, has positive prob-
ability of transiting to itself. Further, starting from any state, X(·) has
positive probability of reaching state 0. Therefore, X(·) is always restricted
to the recurrence class containing state 0; and over this class it is aperiodic.
Therefore, it is sufficient to establish positive recurrence of X(·) over this
recurrence class. Towards this, we shall utilize the following Lyapunov func-
tion L and auxiliary functions h, k to verify the conditions of Theorem 5.
Given state x = (Q,σ,a,A,B), define

L(x) =
∑
i

F (Qi) +
∑

i;j∈N (i)

(
(Ai

j)
2 + g(−1)(Bi

j)
)
,(31)

where F (x) =
∫ x
0 f(y) dy with f(y) := log log y = [log log y]+; let g

(−1)(x) =

exp(exp(log1/4 x)) represent the inverse function of g(x) = exp(log log4 x).
With an abuse of notation, we shall use L(τ) to denote L(X(τ)).

Recall that node weights W are determined by Q and A as per (1).
Therefore, given state x = (Q,σ,a,A,B), the weight vector W is deter-
mined. With this in mind, let

C(x) = max
{
g(Amax), Bmax

}
.(32)

Then h and k are defined as

h(x) =

{
C(x)n if C(x) ≥ W 3

max,
1
2 exp

(
exp(log1/2Wmax)

)
otherwise.

(33)

k(x) =

{
C(x)2n if C(x) ≥ W 3

max,
log1/2 Wmax

2 exp
(
exp(log1/2Wmax)

)
otherwise.

(34)
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With these definitions, we shall establish the following.

Lemma 6 Let λ ∈ Λ. Then for any x with L(x) large enough,

E
[
L(h(x))− L(0) |X(0) = x

]
≤ −k(x).(35)

It can be easily checked that L, h and k along with Lemma 6 satisfy con-
ditions of Theorem 5. Now L(x) → ∞ as |x| → ∞ where |x| = |Q| + |σ| +
|a|+ |A|+ |B| with |σ|, |a| being equal to the ordering of them and |Q|, |A|
and |B| are standard 1-norm. Therefore, Bκ = {x : L(x) ≤ κ} is a finite set.
Therefore, it follows that the Markov chain X(·) is positive recurrent; it is
aperiodic and irreducible on the recurrence class containing 0 as discussed
before. Therefore, it follows that it is ergodic. That is medium access algo-
rithm of interest is optimal establishing Theorem 1. In the remainder this
section, we shall establish the key Lemma 6. As explained in Section 3, the
proof is divided in two cases: (a) for x with C(x) ≥ W 3

max and (b) otherwise.
The case (a) corresponds to the situation when at least one of the esti-

mation g(Ai
j(·)), Bi

j(·) of Wj(·) some neighbor j ∈ N (i) for some node i is
quite large. Therefore, in this case, due to the nature of the algorithm, we
show that there is a reduction in the Lyapunov function (part that depends
on A(·), B(·)). This is argued in detail in Section 6.

In case (b), on the other hand, all estimations are not too large. Therefore,
effectively the algorithm acts as if weight of each node, say node i, is such
that

Wi(·) ≈ max
{
logQi(·), max

j∈N (i)
exp

(√
logWj(·)

)}
.

Given this, as long as the Wmax (equivalently Qmax) is large enough, weight
of each node is large enough (as it can be shown to be lower bounded by
some increasing function of Qmax). Therefore, weight of each node changes
very slowly : each component of Q(·) changes at most by unit per unit
time and hence if Qmax is large then logQmax changes by small amount
per unit time. This essentially ‘freezes’ the weights over a time period that
is long enough for the corresponding Markov chain of (σ(·),a(·)) to reach
its stationary distribution (using bound on Mixing time cf. Lemma 4). We
show that the stationary distribution has property that (with respect to it)
on average the first part of the Lyapunov function decreases maximally; it
results into overall negative drift if λ ∈ Λ. This will be useful to conclude
Lemma 6 in case (b). This is argued in detail in Section 7.

6. Proof of Lemma 6: C(x) ≥ W 3
max. The goal is to establish

that starting with state X(0) = x = (Q,σ,a,A,B) such that L(x) is
large enough (to be determined in the course of the proof) and C(x) =
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max{g(Amax),Bmax} ≥ W 3
max (with W determined based on Q, A as

per (1)), after time h(x) = C(x)n the expected value of L decreases by
k(x) = h(x)2 = C(x)2n.

(36) E
[
L(h(x))− L(0) |X(0) = x

]
≤ −k(x).

We note that for proving Lemma 6, these will be the definition of functions
h and k as it concerns the case C(x) ≥ W 3

max. To simplify notations, we
will use notation E[·] and P[·] instead of E[· |X(0) = x] and P[· |X(0) = x]
whenever it is clear from the context.

To that end, note that if L(x) is large enough, then either Qmax, Amax

or Bmax is large. Now if Qmax or Amax are large then necessarily Wmax is
large. Since C(x) depends on Amax, Bmax and since we have C(x) ≥ W 3

max,
it necessarily follows that C(x) is large due to L(x) being large. Now for
large enough L(x) and hence large enough C(x),

h(x) = C(x)n ≤
g(−1)

(
exp

(
log2(

√
C(x)/2− 1)

))
2
(√

C(x)/2− 1
) .

The above holds for large enough C(x) because g(−1)(exp(log2 x)) is a super-
polynomial function of x, i.e.

g(−1)(exp(log2 x))

xc
→ ∞, as x → ∞, for any fixed c > 0.

Therefore, from (90) of Corollary 22 (presented in Appendix), it follows that
for all τ ≤ h(x),

(37) Wmax(τ) ≤
√

C(x)/2 := Wmax.

Two Lemmas. Now we state two key lemmas that will lead to (36). We
shall present their proofs in Section 6.1 and 6.2 respectively.

Lemma 7 Given initial state X(0) = x = (Q,σ,a,A,B), let C(x) ≥ W 3
max

and C(x) be large enough. Then for any i and j ∈ N (i)

E
[
Ai

j(h(x))
2
]
≤


(Ai

j)
2 − Ai

j h(x)

O

(
g(Ai

j)
n+1
2

) +O
(
Ai

j

)
if g(Ai

j) >
C(x)
2 ,

(Ai
j + h(x))2 otherwise.

Lemma 8 Given initial state X(0) = x = (Q,σ,a,A,B), let C(x) ≥ W 3
max

and C(x) be large enough. Then for any i and j ∈ N (i)

E
[
g(−1)(Bi

j(h(x)))
]
≤ O

(
g(−1)

(
C(x)/2

))
.
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Implications of Lemmas 7 and 8. Define five different events as follows:

S1 = {(i, j) ∈ E : g(Ai
j) = C(x)}

S2 = {(i, j) ∈ E : C(x)/2 < g(Ai
j) < C(x)}

S3 = {(i, j) ∈ E : g(Ai
j) ≤ C(x)/2}

S4 = {(i, j) ∈ E : Bi
j = C(x)}

S5 = {(i, j) ∈ E : Bi
j < C(x)}.

For (i, j) ∈ S1, using relation g(Ai
j) = C(x), h(x) = C(x)n and Lemma 7,

we have

E
[
Ai

j(h(x))
2 − (Ai

j)
2
]
≤ −

Ai
j h(x)

O
(
g(Ai

j)
n+1
2

) +O(Ai
j)

= −g(−1)(C(x))C(x)n

O
(
C(x)

n+1
2

) +O
(
g(−1)(C(x))

)
≤ −1

2
g(−1)(C(x)),(38)

where the last inequality follows for large enough C(x).
For (i, j) ∈ S2, it follows from Lemma 7 that for large enough value of

C(x)

E
[
Ai

j(h(x))
2 − (Ai

j)
2
]
≤ 0,(39)

where we use g(Ai
j)

n+1
2 = o (C(x)n) and g(Ai

j) = Ω(C(x)).
For (i, j) ∈ S3, Lemma 7 implies that

E
[
Ai

j(h(x))
2 − (Ai

j)
2
]

≤
(
Ai

j + h(x))2 − (Ai
j)

2 = 2Ai
j h(x) + h(x)2

≤ 2g(−1)
(C(x)

2

)
h(x) + h(x)2 = O

(
g(−1)

(C(x)

2

))
C(x)n,(40)

where the last inequality utilizes the super-polynomial property of g(−1)(·)
function:

h(x) = C(x)n = o
(
g(−1)

(C(x)

2

))
.(41)

For (i, j) ∈ S4, Lemma 8 implies that

E
[
g(−1)(Bi

j(h(x)))− g(−1)(Bi
j)
]
≤ O

(
g(−1)

(C(x)

2

))
− g(−1)

(
C(x)

)
≤ −1

2
g(−1)

(
C(x)

)
,(42)
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where the last equality follows for C(x) large enough from the following
proposition stating the super-polynomial property of g(−1)(·) function; we
skip the proof as it is elementary.

Proposition 9 For any given k ∈ Z+,

lim
x→∞

xkg(−1)(x/2)

g(−1)(x)
= 0.(43)

For (i, j) ∈ S5, Lemma 8 implies that

E
[
g(−1)

(
Bi

j(h(x))
)]

= O
(
g(−1)

(C(x)

2

))
.(44)

From (38), (39), (40), (42) and (44), it follows that

E
[∑

i,j

Ai
j(h(x))

2 +
∑
i,j

g(−1)
(
Bi

j(h(x))
)]

−
∑
i,j

(Ai
j)

2 −
∑
i,j

g(−1)
(
Bi

j

)
≤ −

( |S1|+ |S4|
2

)
g(−1)(C(x)) + (|S3|+ |S5|)O

(
g(−1)

(C(x)

2

))
C(x)n

(a)
= −1

2
g(−1)(C(x)) +O

(
n2 g(−1)

(C(x)

2

))
C(x)n

(b)

≤ −1

4
g(−1)(C(x)),

where (a) is from |S1| + |S4| ≥ 1 and |S3| + |S5| ≤ |E| ≤ n2; (b) is from
Proposition 9.
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Concluding (36). From the above inequality, we obtain the following:

E
[
L(h(x))− L(0)

]
= E

[∑
i

F (Qi(h(x))) +
∑
i,j

Ai
j(h(x))

2 +
∑
i,j

g(−1)
(
Bi

j(h(x))
)]

− E
[∑

i

F (Qi) +
∑
i,j

(Ai
j)

2 +
∑
i,j

g(−1)
(
Bi

j

)]
≤E
[∑

i

F (Qi(h(x)))− F (Qi)
]
− 1

4
g(−1)(C(x))

(c)

≤
∑
i

(
F (Qi + h(x))− F (Qi)

)
− 1

4
g(−1)(C(x))

≤
∑
i

f(Qi + h(x))h(x)− 1

4
g(−1)(C(x))

≤ nf(Qmax + h(x))h(x)− 1

4
g(−1)(C(x))

≤ nf
(
exp(Wmax) + h(x)

)
h(x)− 1

4
g(−1)(C(x))

(d)

≤ nf
(
exp(C(x)1/3) + C(x)n

)
C(x)n − 1

4
g(−1)(C(x))

(e)
= −1

8
g(−1)(C(x))

(f)

≤ −C(x)2n,

where (c) is from 1-Lipschitz property of Qi(·); (d) is from C(x) ≥ W 3
max;

(e) and (f) hold for large enough C(x) due to the fact that f(x) = log log x
and g(−1)(x) has the super-polynomial growth property as per Proposition
9. This completes the proof of Lemma 6 for the case C(x) ≥ W 3

max.

6.1. Proof of Lemma 7. Observe that Lemma 7 for the case g(Ai
j) ≤

C(x)/2 follows immediately from the 1-Lipschitz property of Ai
j(·). Hence,

we shall only consider the case when g(Ai
j) > C(x)/2.

Define Wmax =
√

C(x)/2. Then from (37)

Wmax(τ) < Wmax <
√

g(Ai
j), for all τ ≤ h(x).(45)

For the purpose of the proof, consider modification of the original network
Markov chain, say original Markov chain be M and let its modification be
M ′. Under this modification, the M ′ evolves in the same manner as M
for τ ≤ h(x); for τ > h(x) the evolution of M ′ is the same as that of M
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except W (τ) = W (τ − 1) i.e. W (·) remains fixed to its value at time h(x).
Clearly, the quantity of interest E[Ai

j(h(x))
2] in Lemma 7 remains invariant

with respect to M and M ′. As mentioned earlier, this modification is for
convenience of proof and it merely guarantees (45) for all τ . Therefore, we
shall bound E[Ai

j(h(x))
2] under M ′ for which we have

Wmax(τ) < Wmax <
√

g(Ai
j), for all τ ≥ 0.(46)

With respect to M ′, define random times 0 = T0 < T1 < T2 . . . such that Tm

is the mth time when Ai
j(·) is updated, i.e. Bi

j(Tm−1) ≥ 2 and Bi
j(Tm) = 0.

Define for m ≥ 0,

Ym =

{
Ai

j(Tm)2 if Tm−1 ≤ h(x) or m = 0

Ym−1 −Ai
j otherwise.

(47)

Let m∗ = inf{m ≥ 0 : Tm > h(x)}. Then it follows that

Ai
j(h(x))

2 = Ai
j(Tm∗−1)

2 = Ym∗−1.(48)

We establish the following property of Ym.

Proposition 10 Given g(Ai
j) > C(x)/2, for m ≥ 1

E[Ym+1 | Fm] ≤ Ym −Ai
j ,

where Fm denotes the filtration containing Yk, Tk for 0 ≤ k ≤ m.

Proof. If Tm > h(x), then the desired result follows from definition of Ym.
Now suppose Tm ≤ h(x). Then observe that

g(Ai
j(Tm))

(a)

≥ g(Ai
j − h(x))

(b)

≥ g(Ai
j)− h(x)g′(c), for some c ∈ (Ai

j − h(x), Ai
j)

≥ g(Ai
j)− h(x)g′(Ai

j − h(x))

(c)

≥ g(Ai
j)− 1,(49)

where (a) is from 1-Lipschitz property of Ai
j(·); (b) is from the mean value

theorem; for (c) we use the following that holds for large enough C(x) and
g(Ai

j) ≥ C(x)/2 (along with the definition of g(·))

h(x) = C(x)n ≤ 2−ng(Ai
j)

n <
√

Ai
j
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and g′(x) < 1/
√
x for large enough x.

Now we bound the probability that Ai
j increases at time Tm+1:

P
(
Ai

j(Tm+1) = Ai
j(Tm) + 1

∣∣∣ Fm

)
= P

(
Bi

j(Tm+1 − 1) ≥ g(Ai
j(Tm))

∣∣∣ Fm

)
(a)

≤ P
(
Bi

j(Tm+1 − 1) ≥ g(Ai
j)− 1

∣∣∣ Fm

)
(b)
<
(
1− 1

Wmax

)g(Ai
j)−2

(c)
<
(
1− 1√

g(Ai
j)

)g(Ai
j)−2

(d)

≤ 1

10
.(50)

In above, (a) and (c) are from (49) and (46) when assuming Ai
j (equivalently

C(x)) is large enough; for (b) we observe thatWmax(τ) is uniformly bounded
above by Wmax from (46); (d) is again due to large enough Ai

j . Therefore,
once j is successful in its transmission, the probability that j consecutively
attempts to transmit (without stopping) for an interval of length k is at

most
(
1− 1

Wmax

)k
. Using (50), it follows that

E
[
Ym+1

∣∣∣Fm

]
= E

[
Ai

j(Tm+1)
2
∣∣∣Fm

]
≤ 1

10

(
Ai

j(Tm) + 1
)2

+
9

10

(
Ai

j(Tm)− 1
)2

= Ai
j(Tm)2 − 8

5
Ai

j(Tm)

≤ Ai
j(Tm)2 − 8

5
Ai

j +
8

5
Tm

≤ Ai
j(Tm)2 − 8

5
Ai

j +
8

5
h(x)

≤ Ym −Ai
j ,

where we used 1-Lipschitz property of Ai
j(·), Tm ≤ h(x) and the fact that

h(x) = C(x)n ≤ 2−ng(Ai
j)

n = o(Ai
j). This completes the proof of Proposition

10. �
Completing proof of Lemma 7. Define Zm = Ym + (m− 1)Ai

j . Then as per
Proposition 10, {Zm : m ≥ 1} is a sub-martingale with respect to Fm. By
the Doob’s optional stopping theorem, we have that

E
[
Zm∗

]
≤ E[Z1] = E[Y1].
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Therefore, the desired inequality follows as

E
[
Ai

j(h(x))
2] = E

[
Ai

j(Tm∗−1)
2
] (a)

≤ E
[
(Ai

j(Tm∗) + 1)2
]

= E
[
Ai

j(Tm∗)2
]
+ 2E

[
Ai

j(Tm∗)
]
+ 1

(b)

≤ E
[
Ym∗

]
+ 2E

[
Ai

j +m∗
]
+ 1

= E
[
Zm∗ − (m∗ − 1)Ai

j

]
+ 2E

[
Ai

j +m∗
]
+ 1

≤ E
[
Y1

]
− E

[
m∗
](
Ai

j − 2
)
+ 3Ai

j + 1

= E
[
Ai

j(T1)
2
]
− E

[
m∗
](
Ai

j − 2
)
+ 3Ai

j + 1

(c)

≤
(
Ai

j + 1
)2 − E

[
m∗
](
Ai

j − 2
)
+ 3Ai

j + 1

= (Ai
j)

2 − E
[
m∗
](
Ai

j − 2
)
+ 5Ai

j + 2

(d)
= (Ai

j)
2 − h(x)

O
(
g(Ai

j)
n+1
2

)Ai
j +O

(
Ai

j

)
,

where (a), (b), (c) are from the 1-Lipschitz property of Ai
j(·) and (d) is due

to the following proposition. This completes the proof of Lemma 7.

Proposition 11 For large enough C(x),

E[m∗] ≥ h(x)

O
(
g(Ai

j)
n+1
2

) + 1.

Proof. For 1 ≤ τ ≤ h(x), define

Uτ =

{
1 if Ai

j(·) is updated at time τ

0 otherwise.

That is, Uτ = 1 iff Bi
j(τ − 1) ≥ 2 and Bi

j(τ) = 0. By definition of Uτ and
m∗,

m∗ − 1 =

h(x)∑
τ=1

Uτ .

Therefore, to bound E[m∗] we next bound E[Uτ ]. For any 5 ≤ τ ≤ h(x)− 5,
let X(τ − 5) = {Q(τ − 5),σ(τ − 5),a(τ − 5),A(τ − 5),B(τ − 5)} be the



MEDIUM ACCESS USING QUEUES 31

network state at time τ − 5. For this, define event E:

E = E′
1 & E′

2 & E′
3

E1 = all nodes do not attempt to transmit at time τ − 4

E2 = Only j attemtps to trasmit at time τ − 2 and τ − 3

E3 = j does not attempt to transmit at time τ − 1.

If E happens, Ai
j is updated at time τ i.e. Uτ = 1. First note that

(51) P[E1] ≥
( 1

Wmax

)n
= Ω

( 1

g(Ai
j)

n/2

)
,

whether this naive lower bound is obtained from (46) and the case when
many nodes (as possible) succeed in their transmissions at time τ−4. Second
we have

(52) P[E2 | E1] ≥
(
1

2

)n

×
(
1

2

)n

= Ω(1).

The above lower bound is obtained considering the scenario that the bal-
anced coin of j produces ‘head’ at times τ − 2 and τ − 3; coins of all other
nodes produce ’tail’ at times τ − 2 and τ − 3. Third since the transmission
of j is successful at time τ − 2, it is easy to see that

(53) P[E3 | E2] ≥
1

Wmax
= Ω

(
1/
√

g(Ai
j)
)
,

from (46). By combining (51), (52) and (53),

P[Uτ = 1 | X(τ − 5)]

≥ P[E | X(τ − 5)]

= P[E1 & E2 & E3 | X(τ − 5)]

= Ω
(
g(Ai

j)
−n+1

2

)
.

The above inequality holds for any given X(τ − 5). Hence,

P[Uτ = 1] = Ω
(
g(Ai

j)
−n+1

2

)
.
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Finally, the conclusion follows as

E[m∗ − 1] ≥ E

h(x)∑
τ=5

Uτ


=

h(x)∑
τ=5

E[Uτ ]

=

h(x)∑
τ=5

P[Uτ = 1]

= (h(x)− 4) · Ω
(
g(Ai

j)
−n+1

2

)
=

h(x)

O
(
g(Ai

j)
n+1
2

) . �

6.2. Proof of Lemma 8. Let τ∗ = inf{τ ≥ 1 : aj(τ) = 0} i.e. the first
time j does not attempt to transmit, and let the event E denote τ∗ ≥ h(x).
Hence, if E happens, Bi

j(h(x)) = Bi
j +h(x) and transmissions of j should be

successful consecutively for time τ ∈ [0, h(x) − 2] (otherwise, j would have
stopped attempting). Under this observation, we obtain

P[E] ≤ P [j attempts to transmit consecutively for time τ ∈ [1, h(x)− 1] ]

≤
(
1− 1

Wmax

)h(x)−1
,(54)

where the last inequality follows from the fact that Wj(τ) is bounded from
above by Wmax as per (37). On the other hand, if the event E does not
happen, j stops attempting transmission before time h(x). Hence Bi

j should
set to 0 before time h(x). Based on this observation and arguments similar
to those used for establishing (54), we obtain

P[Bi
j(h(x)) = k | Ec] ≤ P

[
j attempts to transmit consecutively

for time τ ∈ [h(x)− k + 1, h(x)− 1]
]

≤
(
1− 1

Wmax

)k−1
.(55)

Now observe that

E
[
g(−1)(Bi

j(h(x)))
]
= P[E]E[g(−1)(Bi

j(h(x))) |E] + P[Ec]E[g(−1)(Bi
j(h(x))) |Ec]

≤ P[E]E[g(−1)(Bi
j(h(x))) |E] + E[g(−1)(Bi

j(h(x))) |Ec].(56)
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For the first term in (56), we consider the following using (54):

P[E]E[g(−1)(Bi
j(h(x))) | E] ≤

(
1− 1

Wmax

)h(x)−1
· g(−1)(Bi

j + h(x))

≤
(
1− 1√

C(x)/2

)C(x)n−1
· g(−1)

(
C(x) + Cn(x)

)
= O(1),(57)

where the last inequality follows for C(x) large enough, i.e. Wmax large
enough. In above we have used the definition h(x) = C(x)n with C(x) =
max{g(Amax), Bmax} which is at least W 3

max. For the second term in (56),
we consider the following using (55):

E[g(−1)(Bi
j(h(x))) | Ec] ≤

∞∑
k=1

g(−1)(k) ·
(
1− 1

Wmax

)k−1

(a)
= O

(
g(−1)(W2

max)
)

(b)
= O

(
g(−1) (C(x)/2)

)
,(58)

where (b) is from (37) and for (a) we prove the following technical proposi-
tion whose proof is presented in Appendix B.1.

Proposition 12 For p ∈ (0, 1),

∞∑
k=1

g(−1)(k) · (1− p)k = O
(
g(−1)

(
p−2
))

.

Combining (56), (57) and (58), the desired conclusion of Lemma 8 follows.
This completes the proof of Lemma 8.

7. Proof of Lemma 6: C(x) < W 3
max. We remind that the goal is

to establish that starting with state X(0) = x = (Q,σ,a,A,B) such that
L(x) is large enough and C(x) = max{g(Amax),Bmax} < W 3

max, after time

h(x) =
1

2
exp

(
exp(log1/2Wmax)

)
,

the expected value of L decreases by

k(x) =
log1/2Wmax

2
exp

(
exp(log1/2Wmax)

)
= log1/2Wmax h(x).
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In other words,

E
[
L(h(x))− L(0) |X(0) = x

]
≤ −k(x).(59)

We note that for proving Lemma 6, these will be the definition of functions
h and k (cf. (33) and (34)) it concerns the case C(x) < W 3

max. To simplify
notations, we will use notation E[·] and P[·] instead of E[· |X(0) = x] and
P[· |X(0) = x] whenever clear from the context.

Similar to the proof of Lemma 6 for the case C(x) ≥ W 3
max (presented in

Section 6), we start by obtaining some bound forWmax(τ). To this end, note
that if L(x) is large enough, then either Qmax, Amax or Bmax are large. Since
Qmax, Amax and Bmax are bounded in terms of Wmax, Wmax is necessarily
large if L(x) is large enough. Now for large enough L(x) and hence large
enough Wmax, we have

Wmax = max
{
logQmax, exp(

√
log g(Amax))

}
(a)
< max

{
logQmax, exp(

√
3 logWmax

}
(b)
= logQmax,

where (a) is from the condition g(Amax) ≤ C(x) < W 3
max and (b) is because

Wmax > exp(
√
3 logWmax) for large enough Wmax. Henceforth, we shall

assume that

(60) Wmax = logQmax

and consequently Qmax can be also assumed to be large enough if L(x)
is large. Using this, we obtain the following lower bound of Wmax(τ): for
τ ≤ h(x),

Wmax(τ) ≥ logQmax(τ)
(a)

≥ log(Qmax − h(x))

(b)
= log(Qmax − o(Qmax))

(c)

≥ 1

2
logQmax := Wmin,(61)

where (a) is from 1-Lipschitz property of Qmax(·), (c) holds for large enough
Qmax and (b) is due to

h(x) =
1

2
exp

(
exp(log1/2Wmax)

)
=

1

2
exp

(
exp(log log1/2Qmax)

)
= o(Qmax).
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On the other hand, Wmax(τ) can be upper bounded as follows: for τ ≤ h(x),

Wmax(τ) ≤ max
{
logQmax(τ), exp(

√
log g(Amax(τ)))

}
(d)

≤ max
{
log(Qmax + h(x)), exp(

√
log g(Amax + h(x)))

}
(e)

≤ max {log(Qmax + o(Qmax)), logQmax}
≤ 2 · logQmax,(62)

where (d) is from 1-Lipschitz properties of Qmax(·), Amax(·) and (e) follows
from below using Amax ≤ g(−1)(C(x)), C(x) < Wmax:√

log g(Amax + h(x)) ≤
√

log g(g(−1)(C(x)) + h(x))

≤
√

log g
(
g(−1)

(
W 3

max

)
+ h(x)

)
=

√
log g

(
g(−1)

(
log3Qmax

)
+ h(x)

)
(f)

≤
√

log g (2 · h(x))

=

√
log g

(
exp(exp(log log1/2Qmax))

)
= log logQmax.

In above, for (f) one can check

g(−1)
(
log3Qmax

)
≤ h(x) =

1

2
exp(exp(log log1/2Qmax))

for large enoughQmax. Combining (61) and (62), it follows that for τ ≤ h(x),

(63) Wmin ≤ Wmax(τ) ≤ Wmax,

where Wmin := 1
2 logQmax and Wmax := 2 logQmax.

Three Lemmas. Now we state the following key lemmas that will lead to
(59). We shall present their proofs in Section 7.1, 7.2 and 7.3, respectively.

Lemma 13 Given initial state X(0) = x = (Q,σ,a,A,B), let C(x) <
W 3

max, λ ∈ Λ and Qmax be large enough. Then

E
[∑

i

F (Qi(h(x)))
]
≤
∑
i

F (Qi)− Ω(log logQmax) · h(x).
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Lemma 14 Given initial state X(0) = x = (Q,σ,a,A,B), let C(x) <
W 3

max and Qmax be large enough. Then for any i and j ∈ N (i)

E [Ai
j(h(x))

2] = O(h(x)).

Lemma 15 Given initial state X(0) = x = (Q,σ,a,A,B), let C(x) <
W 3

max and Qmax be large enough. Then for any i and j ∈ N (i)

E [g(−1)(Bi
j(h(x)))] = O

(
g(−1)(4 log2Qmax)

)
.

Concluding (59) using Lemma 13, 14 and 15. These lemmas lead to the
desired conclusion (59) as follows:

E [L(h(x))− L(0)]

= E
[∑

i

F (Qi(h(x)))−
∑
i

F (Qi)
]
+ E

[∑
i,j

Ai
j(h(x))

2 − (Ai
j)

2
]

+E
[∑

i,j

g(−1)(Bi
j(h(x)))− g(−1)(Bi

j)
]

≤ −Ω(log logQmax) · h(x) +O(h(x)) +O
(
g(−1)(4 log2Qmax)

)
(a)

≤ −Ω(log logQmax) · h(x)
= −Ω(logWmax) · h(x)
(b)

≤ − log1/2Wmax · h(x),

where (a) is because g(−1)(4 log2Qmax) = o(h(x)) for our choice of h(x) =
1
2 exp

(
exp

(
log log1/2Qmax

))
and (b) holds for large enough Wmax. This

completes the proof of Lemma 6 for the case C(x) < W 3
max.
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7.1. Proof of Lemma 13. We start by observing that

E
[∑

i

F (Qi(h(x)))−
∑
i

F (Qi)
]

=

h(x)−1∑
τ=0

E
[∑

i

F (Qi(τ + 1))−
∑
i

F (Qi(τ))
]

=

h(x)−1∑
τ=0

∑
i

E [F (Qi(τ + 1))− F (Qi(τ))]

(a)

≤
h(x)−1∑
τ=0

∑
i

E [(Qi(τ + 1)−Qi(τ)) · f(Qi(τ + 1))]

=

h(x)−1∑
τ=0

∑
i

E [(Qi(τ + 1)−Qi(τ)) · f(Qi(τ))] +O(h(x)),(64)

where (a) is due to the convexity of F and the last inequality is from 1-
Lipschitz property of Qi(·). For each term in the summation of (64), we
consider the following.

E [(Qi(τ + 1)−Qi(τ)) · f(Qi(τ))]

= E
[(
ζi(τ)− σi(τ)I{Qi(τ)>0}

)
· f(Qi(τ))

]
(a)
= E [ζi(τ) · f(Qi(τ))]− E [σi(τ) · f(Qi(τ))]

(b)
= E [λi · f(Qi(τ))]− E [σi(τ) · f(Qi(τ))] ,(65)

where for (a) we use I{Qi(τ)>0} · f(Qi(τ)) = f(Qi(τ)) since f(0) = 0; for
(b) we use the fact that ζi(τ), Qi(τ) are independent random variables and
E[ζi(τ)] = λi. Now from (64) and (65), it follows that

E
[∑

i

F (Qi(h(x)))−
∑
i

F (Qi)
]

=

h(x)−1∑
τ=0

∑
i

E [(Qi(τ + 1)−Qi(τ)) · f(Qi(τ))] +O(h(x))

=

h(x)−1∑
τ=0

E
[∑

i

λi · f(Qi(τ))−
∑
i

σi(τ) · f(Qi(τ))
]
+O(h(x))

≤
h(x)−1∑
τ=0

E
[
(1− ε)

(
max

ρ∈I(G)
ρ · f(Q(τ))

)
− σ(τ) · f(Q(τ))

]
+O(h(x)),
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where the last equality is from λ = [λi] ∈ Λ ⊂ (1− ε)Conv(I(G)) for some
ε > 0 and the convex hull Conv(I(G)) of I(G). Hence, for the proof of
Lemma 13, it is enough to prove that
(66)
h(x)−1∑
τ=0

E
[
(1−ε)

(
max

ρ∈I(G)
ρ·f(Q(τ))

)
−σ(τ)·f(Q(τ))

]
= −Ω(log logQmax)·h(x).

Further, it suffices to prove that for some R = o(h(x))
(67)
h(x)−1∑
τ=R

E
[
(1−ε)

(
max

ρ∈I(G)
ρ·f(Q(τ))

)
−σ(τ)·f(Q(τ))

]
= −Ω(log logQmax)·(h(x)−R),

since the remaining terms in (66), other than those present in (67), are
dominated by (67) as follows:

R−1∑
τ=0

E
[
(1− ε)

(
max

ρ∈I(G)
ρ · f(Q(τ))

)
− σ(τ) · f(Q(τ))

]
≤

R−1∑
τ=0

E
[
max

ρ∈I(G)
ρ · f(Q(τ))

]
≤

R−1∑
τ=0

E [n · f(Qmax(τ))]

≤
R−1∑
τ=0

E [n · f (exp (Wmax(τ)))] = O(R) · f (exp (Wmax))

= o(h(x)) · log logQmax,

where the last equality is from f(x) = log log x, Wmax ≤ 2 logQmax (cf. (63))
and R = o(h(x)).

Now we will proceed toward proving (67). Equivalently, we will find some
R = o(h(x)) such that for all τ ∈ [R, h(x)− 1],

(68) E
[
(1− ε)

(
max

ρ∈I(G)
ρ · f(Q(τ))

)
−σ(τ) · f(Q(τ))

]
= −Ω(log logQmax).

Three sub-Lemmas. The proof of (68) will be established as a consequence
of following three lemmas. Their proof are presented in Section 7.1.1, 7.1.2
and 7.1.3, respectively.

Lemma A Let µ(τ) denote the distribution of {σ(τ),a(τ)} at time τ .
Then,

∥∥µ(τ)− δ{σ,a} · P (0)τ
∥∥
TV

≤ O
( τ−1∑

s=0

E [∥P (s)− P (0)∥∞]
)
,
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where δx is the Dirac distribution of singleton support x and P (τ) denotes
the transition matrix for the Markov chain corresponding to the schedule
σ(τ), as described in Section 4.2 as well as Section 3 which is function of
node weights W (τ) determined by Q(τ) and A(τ) as per (1).

Lemma B Let event Eτ at time τ be as follows:

Eτ :=
{
X(τ) : Wi(τ) ≥ exp (log logη Qmax) and

g(Ai
j(τ)) ≤ log4Qmax for all i, j ∈ N (i)

}
,

where η := 1/4n. Then, there exists RB = polylog(Qmax) such that for
τ < h(x),

(1− ε)
(

max
ρ∈I(G)

ρ · f(Q(τ))
)
− E

[
σ(τ +RB) · f(Q(τ))

∣∣ X(τ) ∈ Eτ
]

≤ −ε

4
· log logQmax.

Lemma C There exists RC = o(h(x)) such that Eτ happens with high
probability for τ ∈ [RC , h(x)] i.e.

P[Eτ ] = 1− o(1),

where we recall o(1) means that o(1) → 0 as Qmax → ∞. The o(1) bound is
uniform over all τ .

Remarks for Lemma A, B and C. Lemma A captures the evolution of
the distribution of schedules. It is used crucially to establish Lemma B.
Lemma B implies that (68) holds at time τ + RB if Eτ happens at time τ
and RB is small enough to guarantee f(Q(τ)) ≈ f(Q(τ + RB)). Lemma C
indeed suggests that such event Eτ happens with high probability. This will
essentially lead to (68).

Concluding (68). We choose R for (68) as

R = RB +RC .

It is easy to check R = o(h(x)) since RB = polylog(Qmax) = o(h(x)) and
RC = o(h(x)). For τ ∈ [R, h(x)− 1], we break the left hand side of (68) into
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two parts as follows:

E
[
(1− ε)

(
max

ρ∈I(G)
ρ · f(Q(τ))

)
− σ(τ) · f(Q(τ))

]
= P[Eτ−RB

] · E
[
(1− ε)

(
max

ρ∈I(G)
ρ · f(Q(τ))

)
− σ(τ) · f(Q(τ))

∣∣ Eτ−RB

]
+ P[Ec

τ−RB
] · E

[
(1− ε)

(
max

ρ∈I(G)
ρ · f(Q(τ))

)
− σ(τ) · f(Q(τ))

∣∣ Ec
τ−RB

]
.

(69)

For the first term in (69), we obtain

P[Eτ−RB
] · E

[
(1− ε)

(
max

ρ∈I(G)
ρ · f(Q(τ))

)
− σ(τ) · f(Q(τ))

∣∣ Eτ−RB

]
(a)
= (1− o(1)) · E

[
(1− ε)

(
max

ρ∈I(G)
ρ · f(Q(τ))

)
− σ(τ) · f(Q(τ))

∣∣ Eτ−RB

]
(b)

≤ (1− o(1)) · E
[
(1− ε)

(
max

ρ∈I(G)
ρ · f(Q(τ −RB))

)
− σ(τ) · f(Q(τ −RB))

∣∣ Eτ−RB

]
−O(f(RB))

(c)

≤ −(1− o(1)) · ε
4
· log logQmax −O(f(RB))

(d)

≤ −ε

8
· log logQmax,

(70)

where (a) and (c) are from Lemma C and Lemma B, respectively. For (b),
we use 1-Lipschitz property of Qi(·) and |f(x) − f(y)| < f(|x − y|) + O(1)
for f(x) = log log x. For (d), we use

f(RB) = f(polylog(Qmax)) = o(f(Qmax)) = o(log logQmax).

For the second term in (69), we observe that

P[Ec
τ−RB

] · E
[
(1− ε)

(
max

ρ∈I(G)
ρ · f(Q(τ))

)
− σ(τ) · f(Q(τ))

∣∣ Ec
τ−RB

]
(e)

≤ o(1) · E
[(

max
ρ∈I(G)

ρ · f(Q(τ))
) ∣∣ Ec

τ−RB

]
≤ o(1) · E

[
n · f(Qmax(τ))

∣∣ Ec
τ−RB

]
(f)
= o(1) ·O(f(Qmax)) = o(log logQmax),(71)
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where (e) is from Lemma C and (f) is due to

f(Qmax(τ)) ≤ f(Qmax + τ) ≤ f(Qmax + h(x))

= f(Qmax + o(Qmax)) = O(f(Qmax)).

Finally, combining (69), (70) and (71), the desired (68) follows as

E
[
(1− ε)

(
max

ρ∈I(G)
ρ · f(Q(τ))

)
− σ(τ) · f(Q(τ))

]
≤ − ε

16
· log logQmax.

This completes the proof of Lemma 13.

7.1.1. Proof of Lemma A. Let µ(τ +1 : τ) be the distribution of {σ(τ +
1),a(τ + 1)} at time τ + 1 given network state X(τ) at time τ . From the
definition of P (τ), we have

µ(τ + 1 : τ) = δ{σ(τ),a(τ)}P (τ),

where we recall that P (τ) is a function of the network state X(τ) since
node weights W (τ) are decided by Q(τ) and A(τ) as per (1). By taking
expectations on both sides of the above equation, we obtain

µ(τ + 1) = E
[
δ{σ(τ),a(τ)}P (τ)

]
,

where the expectation is with respect to the distribution of X(τ). Using the
above relation, we have

µ(τ + 1) = E
[
δ{σ(τ),a(τ)}P (τ)

]
= E

[
E
[
δ{σ(τ),a(τ)}P (τ)

∣∣∣Q(τ),A(τ)
]]

= E
[
E
[
δ{σ(τ),a(τ)}

∣∣∣Q(τ),A(τ)
]
· P (τ)

]
= E [µ̃(τ) · P (τ)] ,

where the expectation is with respect to the distribution of {Q(τ),A(τ)}
and we have used notation

µ̃(τ) = µ̃(Q(τ),A(τ)) := E
[
δ{σ(τ),a(τ)}

∣∣∣Q(τ),A(τ)
]
.

This leads to the following recursive relation between µ(τ + 1) and µ(τ).

µ(τ + 1) = E [µ̃(τ) · P (τ)]

= E [µ̃(τ) · P (0)] + E [µ̃(τ) · (P (τ)− P (0))]

= E [µ̃(τ)] · P (0) + e(τ)

= µ(τ) · P (0) + e(τ),
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where we define

e(τ) := E [µ̃(τ) · (P (τ)− P (0))] .

By recursive application of this relation, we obtain

µ(τ) = µ(0) · P (0)τ +

τ−1∑
s=0

e(τ − 1− s) · P (0)s

= δ{σ,a} · P (0)τ +

τ−1∑
s=0

e(s) · P (0)τ−1−s.

Now we obtain the desired conclusion of Lemma A from the above inequality
as follows:∥∥µ(τ)− δ{σ,a} · P (0)τ

∥∥
TV

=

∥∥∥∥∥
τ−1∑
s=0

e(s) · P (0)τ−1−s

∥∥∥∥∥
TV

≤
τ−1∑
s=0

∥∥e(s) · P (0)τ−1−s
∥∥
TV

≤ O

(
τ−1∑
s=0

∥e(s)∥TV

)

≤ O

(
τ−1∑
s=0

E [∥P (s)− P (0)∥∞]

)
,

where we have used the fact that P (0)τ−1−s (resp. µ̃(τ)) is a transition
matrix (resp. distribution vector) of finite dimension, independent of initial
state x. This completes the proof of Lemma A.

7.1.2. Proof of Lemma B. Recall that τ is time such that event Eτ holds,
where

Eτ :=
{
X(τ) : Wi(τ) ≥ exp (log logη Qmax) and

g(Ai
j(τ)) ≤ log4Qmax for all i, j ∈ N (i)

}
,

with η := 1/4n. We wish to show the existence of RB so that RB =
polylog(Qmax) and

(1− ε)
(

max
ρ∈I(G)

ρ · f(Q(τ))
)
− E

[
σ(τ +RB) · f(Q(τ))

∣∣ X(τ) ∈ Eτ
]

≤ − ε

4
· log logQmax.
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To that end, we shall show that the above property holds for

RB := Tmix (1/Qmax, n, 2 logQmax) ,

where Tmix is defined as per (23) as part of the statement of Lemma 4.
Clearly, from definition RB = polylog(Qmax). Now given network state
X(τ) ∈ Eτ at time τ < h(x), we have∥∥δ{σ(τ),a(τ)} · P (τ)RB − π(τ)

∥∥
TV

≤ 1

Qmax
= o(1),

where we let π(τ) denote the unique stationary distribution of P (τ) and use
Lemma 4 with Wmax(τ) ≤ Wmax = 2 logQmax (cf. (63)). The above equality
suggests the following: for distribution µ(τ + RB : τ) of σ(τ + RB) given
network state X(τ),

∥µ(τ +RB : τ)− π(τ)∥TV

≤
∥∥µ(τ +RB : τ)− δ{σ(τ),a(τ)} · P (τ)RB

∥∥
TV

+
∥∥δ{σ(τ),a(τ)} · P (τ)RB − π(τ)

∥∥
TV

= O

(
τ+RB−1∑

s=τ

E [∥P (s)− P (τ)∥∞]

)
+ o(1)

(a)

≤ O

(
τ+RB−1∑

s=τ

E
[
max

i
|Wi(s)−Wi(τ)|

])
+ o(1)

(b)

≤
τ+RB−1∑

s=τ

O

(
(s− τ) · 2 exp (log logη Qmax)

g(−1)
(
exp

(
log log2η Qmax

)) )+ o(1)

(c)

≤ polylog(Qmax) · 2 exp (log logη Qmax)

g(−1)
(
exp

(
log log2η Qmax

)) + o(1)

(d)
= o(1) + o(1) = o(1),(72)

where (a) is from Proposition 16 that is stated below (and the proof is pre-
sented in Appendix B.2); (b), (c) and (d) follow from the Corollary 22 in Ap-
pendix A; by definition RB = polylog(Qmax), Wi(τ) ≥ exp (log logη Qmax)
due to event Eτ and

g(−1)
(
exp

(
log log2η Qmax

))
exp (log logη Qmax)

= superpolylog(Qmax).
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Proposition 16 Given two weights W 1 = [W 1
i ] and W 2 = [W 2

i ], let P 1

and P 2 be the Markov chains (i.e. their transition matrices) on Ω we de-
scribed in Section 4.2 using node weights W 1 and W 2, respectively. Then,∣∣P 1

xx′ − P 2
xx′
∣∣ = O

(
max

i

∣∣W 1
i −W 2

i

∣∣ ), for all x, x′ ∈ Ω.

From the above inequality (72), it follows that

E
[
σ(τ +RB) · logW (τ)

∣∣ X(τ) ∈ Eτ
]

≥E
[
σπ(τ) · logW (τ)

∣∣ X(τ) ∈ Eτ
]

−∥µ(τ +RB : τ)− π(τ)∥TV

(
max

ρ∈I(G)
ρ · logW (τ)

)
(a)

≥ (1− ∥µ(τ +RB : τ)− π(τ)∥TV )
(

max
ρ∈I(G)

ρ · logW (τ)
)
−O(1)

= (1− o(1))
(

max
ρ∈I(G)

ρ · logW (τ)
)
−O(1),(73)

where σπ(τ) ∈ I(G) is the random variable drawn by π(τ) and for (a) we
use the following proposition and the product-form characterization of π(τ)
in Lemma 2 (proof can be found in Appendix).

Proposition 17 (Gibbs’ Maximal Principle) Let T : Ω → R and let
M(Ω) be space of all distributions on Ω. Define F : M(Ω) → R as

F (µ) = E[T (xµ)] +HER(µ),

where xµ ∈ Ω in the random variable drawn by µ and HER(µ) is the stan-
dard discrete entropy of µ. Then, F is uniquely maximized by the distribution
ν, where

νx =
1

Z
exp (T (x)) , for any x ∈ Ω,

where Z is the normalization constant (or partition function). Further, with
respect to ν, we have

E[T (xν)] ≥ max
x∈Ω

T (x)− log |Ω|.
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Concluding the proof of Lemma B. We further bound the difference be-
tween f(Qi(τ)) and logWi(τ) as

|f(Qi(τ))− logWi(τ)| =
∣∣∣f(Qi(τ))−max

{
f(Qi(τ)), max

j∈N (i)

√
log g(Ai

j(τ))
}∣∣∣

≤ max
j∈N (i)

√
log g(Ai

j(τ))

(a)

≤
√

log
(
log4Qmax

)
= o(log logQmax)

= o(f(Qmax)),(74)

where (a) is because X(τ) ∈ Eτ . Hence, we have

E
[
σ(τ +RB) · f(Q(τ))

∣∣ X(τ) ∈ Eτ
]

(b)
= E

[
σ(τ +RB) · logW (τ)

∣∣ X(τ) ∈ Eτ
]
− o(f(Qmax))

(c)

≥ (1− o(1))
(

max
ρ∈I(G)

ρ · logW (τ)
)
−O(1)− o(f(Qmax))

(d)

≥ (1− o(1))
(

max
ρ∈I(G)

ρ · f(Q(τ))
)
− o(f(Qmax))

(e)

≥ (1− o(1))
(

max
ρ∈I(G)

ρ · f(Q(τ))
)
,

where (b), (d) are from (74), (c) is due to (73) and (e) follows from

max
ρ∈I(G)

ρ · f(Q(τ)) ≥ f(Qmax(τ)) ≥ f(Qmax − τ)

≥ f(Qmax − h(x)) = f(Qmax − o(Qmax)) =
1

2
f(Qmax),(75)

for large enough Qmax. Finally, we derive the desired conclusion of Lemma
B as

(1− ε) max
ρ∈I(G)

ρ · f(Q(τ))− E
[
σ(τ +RB) · f(Q(τ))

∣∣ X(τ) ∈ Eτ
]

≤ −(ε− o(1))
(

max
ρ∈I(G)

ρ · f(Q(τ))
)

≤ −ε

2
·
(

max
ρ∈I(G)

ρ · f(Q(τ))
)

≤ −ε

2
· f(Qmax(τ)) ≤ −ε

4
· f(Qmax),

where the last inequality is from (75) i.e. f(Qmax(τ)) ≥ f(Qmax)/2. This
completes the proof of Lemma B.
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7.1.3. Proof of Lemma C. We wish to show that there exists RC =
o(h(x)) so that for any τ ∈ [RC , h(x)], the event Eτ holds. For this, it is
sufficient to establish that for any τ ∈ [RC , h(x)], the following holds:

P
[
g(Ai

j(τ)) ≤ log4Qmax

]
= 1− o(1),(76)

P [Wi(τ) ≥ exp (log logη Qmax)] = 1− o(1),(77)

with the o(1) being uniform over the choice of τ ∈ [RC , h(x)]. We introduce
some notations first:

L1 := exp
(
log log1/4Qmax

)
and Lk := exp

(
log1/4 Lk−1

)
for k ≥ 2

Tk :=

k∑
l=1

g(−1)(Ll/20) · logn+3Qmax.

It can be checked inductively that

Lk = exp
(
log log1/4

k
Qmax

)
and Ln = exp (log logη Qmax) ,

where we recall that η = 1/4n. Next, we shall show that both (76) and (77)
hold for the definition of RC as follows:

RC := Tn−1 =

n−1∑
k=1

g(−1)
(
exp

(
log log1/4

k
Qmax

)
/20
)
· logn+3Qmax.

Observe that as per this definition, RC = o(h(x)). Now we establish that
indeed (76) and (77) hold.

Proof of (76). Define T0 = 0 < T1 < T2 < . . . so that Tm is the mth time
when Ai

j(·) is updated i.e. Bi
j(Tm − 1) ≥ 2 and Bi

j(Tm) = 0. Define m̂ as

m̂ := inf
{
m : Bi

j(Tm − 1) ≥ g(γ) and m > 1
}
,

where γ = g(−1)(log4Qmax)− 2. In addition, note that

g(Ai
j) ≤ C(x) ≤ W 3

max = log3Qmax

< log4Qmax − 3 = g(γ + 2)− 3 < g(γ − 1)

for large enough Qmax since for large values |g′(·)| ≪ 1. Thus, Ai
j < γ − 1.

Now if Ai
j(τ) ≥ γ + 2 = g(−1)(log4Qmax), one can check that Tm̂ ≤ τ

since there should be at least two updates before time τ which make Ai
j(·)
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increase beyond x. Otherwise, Ai
j(·) will remain less than γ + 1 under the

algorithm until time τ since Ai
j < γ−1 in the beginning. Therefore, we have

P[g(Ai
j(τ)) ≥ log4Qmax] = P[Ai

j(τ) ≥ g(−1)(log4Qmax)]

≤ P[Tm̂ ≤ τ ] =
τ∑

k=1

P[Tm̂ = k]

(a)

≤
τ∑

k=1

P [aj(s) = 1 for s = k − 2, . . . , k − ⌈g(x)⌉ − 1]

(b)

≤
τ∑

k=1

(
1− 1

Wmax

)⌈g(x)⌉−1

≤ τ ·
(
1− 1

2 logQmax

)⌈g(x)⌉−1

(c)

≤ O

(
τ

Qmax

)
(d)
= O

(
h(x)

Qmax

)
= o(1),

where for (a) we utilize the fact m̂ > 1; for (b) one can observe that under the
algorithm the probability that some node j keeps attempting to transmit
consecutively (without stopping) for some time interval of length y is at

most
(
1− 1

Wmax

)y−1
; (c) is due to x = g(−1)(log4Qmax) − 2; (d) is from

h(x) = o(Qmax). This completes the proof of (76).

Proof of (77). We shall utilize the following result crucially whose proof is
presented in Appendix C.

Proposition 18 Consider i ∈ V , j ∈ N (i)∪ {i}, W > 0 and network state
X(τ) = {Q(τ),σ(τ),
a(τ),A(τ),B(τ)} at time τ ≤ h(x). Suppose that Qmax is large enough and

(78) Wi(τ) > W ≥ exp
(
log logδ Qmax

)
for some δ > 0.

Then,

P
[
Wj(τ + s) ≥ exp

(
log1/4W

)]
≥ 1− o(1),

where s := g(−1) (W/20) · logn+3Qmax. Here o(1) is uniform over choice of
any τ ≤ h(x).

Let i∗ ∈ argmaxiQi(τ). For any node j, one can construct a path j1 =
i∗, j2, . . . , jn = j of length n by allowing repetition. We recall the definition
of Lk and Tk.

L1 = exp
(
log log1/4Qmax

)
and Lk = exp

(
log1/4 Lk−1

)
for k ≥ 2
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T0 = 0 and Tk =

k∑
l=1

g(−1)(Ll/20) · logn+3Qmax.

Also define Ek as

Ek :=
{
X(τ + Tk) : Wjk+1

(τ + Tk) ≥ Lk+1

}
.

Now consider the following proposition:

Proposition 19 For k = 1, . . . , n− 1 and τ ≤ h(x)− Tn−1,

P[Ek | E1, . . . ,Ek−1] ≥ 1− o(1).

In above, o(1) is uniform over choice of τ ≤ h(x)− Tn−1.

Proof. We will prove Proposition 19 by induction. The base case k = 1
follows from

Wj1(τ) = Wi∗(τ) ≥ logQi∗(τ) ≥ log(Qi∗ − τ)

≥ log(Qmax − h(x)) ≥ log(Qmax − o(Qmax))

≥ 1

2
logQmax ≥ exp

(
log log1/4Qmax

)
= L1,

where inequalities hold for large enough Qmax. It is easy to establish the
necessary induction step using Proposition 18 and Lk = exp

(
log logδ Qmax

)
with δ = 1/4k. This completes the proof of Proposition 19. �
Proposition 19 implies that for τ ∈ [0, h(x)−RC ],

P [Wi(τ +RC) ≥ exp (log logη Qmax)] = P [Wj(τ + Tn−1) ≥ Ln]

= P [Wjn(τ + Tn−1) ≥ Ln]

= P [En−1]

=

n−1∏
k=1

P [Ek | E1, . . . ,Ek−1]

≥ (1− o(1))n−1

≥ 1− o(1).

Note that in above, n is a constant and o(1) is with respect to scaling of
network state such as Qmax. This completes the proof of (77).
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7.2. Proof of Lemma 14. We first state the following key proposition for
the proof of Lemma 14.

Proposition 20 If C(x) ≤ W 3
max, then

P[Ai
j(τ) > k] = exp

(
− g(k)

Wmax

)
·O(τ),

for τ ≤ h(x) and k > g(−1)
(
W 3

max

)
. Recall that Wmax is defined as per (63).

Proof. First note that it is enough to consider the case when k is an integer.
Let random time T0 = 0 < T1 < T2 < . . . such that Tm is the mth time
when Ai

j(·) is updated i.e. Bi
j(Tm − 1) ≥ 2 and Bi

j(Tm) = 0. We define

m̂ := inf
{
m : Bi

j(Tm − 1) ≥ g(k − 1) and m > 1
}
.

Now observe that if Ai
j(τ) > k, then

Ai
j(τ) > k > Ai

j

since Ai
j ≤ g(−1)(C(x)) ≤ g(−1)

(
W 3

max

)
< k. Hence, if Ai

j(τ) > k, Tm̂ ≤ τ

since there should be at least two updates before time τ which make Ai
j(·)

increase beyond k − 1. Otherwise, Ai
j(·) should keep less than k + 1 under

the algorithm until time τ . Using this observation, we have

P[Ai
j(τ) ≥ k] ≤ P[Tm̂ ≤ τ ]

=

τ∑
l=1

P[Tm̂ = l]

(a)

≤
τ∑

l=1

P [aj(s) = 1 for s = l − 2, . . . , l − g(k − 1)− 1]

(b)

≤
τ∑

l=1

(
1− 1

Wmax

)g(k−1)−1

≤ τ ·
(
1− 1

Wmax

)g(k−1)−1

= exp
(
− g(k)

Wmax

)
·O(τ),

where (a) is from m̂ > 1 and for (b) one can observe that under the al-
gorithm the probability that some node j keeps attempting to transmit
consecutively (without stopping) for some time interval of length y is at

most
(
1− 1

Wmax

)y−1
. This completes the proof of Proposition 20. �
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Completing proof of Lemma 14. We derive the following inequalities.

E
[
Ai

j(h(x))
2
]

=
∞∑
k=1

P[Ai
j(h(x)) = k] · k2

=

√
h(x)−1∑
k=1

P[Ai
j(h(x)) = k] · k2 +

∞∑
k=

√
h(x)

P[Ai
j(h(x)) = k] · k2

≤ h(x) +
∞∑

k=
√

h(x)

P[Ai
j(h(x)) = k] · k2

(a)

≤ h(x) +
∞∑

k=
√

h(x)

1

k4
·O(h(x)) · k2

≤ h(x) +O(h(x)) ·
∞∑

k=
√

h(x)

1

k2
= O(h(x)),

where for (a) we use the following inequality:

(79) P[A(h(x)) = k] ≤ 1

k4
·O(h(x)), for k ≥

√
h(x).

Hence, it is enough to show (79) to complete the proof of Lemma 14.
From Proposition 20, it suffices to prove that

exp
(
− g(k)

Wmax

)
≤ 1

k4
, for k ≥

√
h(x).

By taking the double-logarithm (i.e. log log) on both sides of the above in-
equality and using g(k) = exp

(
log log4 k

)
, we have the equivalent inequality

as

log log4 k − logWmax ≥ log 4 + log log k.

One can check the above inequality holds if log log4 k ≥ 2 logWmax since
Wmax is large enough. Equivalently, the desired condition for k is

k ≥ exp
(
exp

(
(2 logWmax)

1/4
))

.

Finally, k ≥
√

h(x) satisfies the above condition since

exp
(
exp

(
(2 logWmax)

1/4
))

= exp
(
exp

(
Θ
(
log log1/4Qmax

)))
≤ 1√

2
· exp

(
1

2
exp

(
log log1/2Qmax

))
=

√
h(x),
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where the first inequality is from the definition of Wmax in (63) and the
second inequality holds for large enough Qmax. This completes the proof of
(79), hence the proof of Lemma 14.

7.3. Proof of Lemma 15. To begin with, we note that the proof of Lemma
15 is almost identical to that of Lemma 8 in Section 6.2. Let the random
time τ∗ = inf{τ : aj(τ) = 0} i.e. the first time when j does not attempt to
transmit, and the event E denotes τ∗ ≥ h(x). Hence, if E happens, B(h(x)) =
B + h(x) and

P[E] ≤ P [j attempts to transmit consecutively for time τ ∈ [0, h(x)− 1] ]

≤
(
1− 1

Wmax

)h(x)−1
,(80)

where the last inequality holds because Wj(τ) is uniformly bounded from
above by Wmax.

On the other hand, if the event E does not happen, j stops its transmission
before time h(x), hence Bi

j(·) should set to 0 before time h(x). Based on this
observation and arguments similar to those used for establishing (80), we
obtain

P[Bi
j(h(x)) = k | Ec] ≤ P

[
j attempts to transmit consecutively

for time τ ∈ [h(x)− k, h(x)− 1]
]

≤
(
1− 1

Wmax

)k−1
.(81)

Further observe that

E
[
g(−1)(B(h(x)))

]
= P[E] · E[g(−1)(Bi

j(h(x))) | E]

+P[Ec] · E[g(−1)(Bi
j(h(x))) | Ec]

≤ P[E] · E[g(−1)(Bi
j(h(x))) | E]

+E[g(−1)(Bi
j(h(x))) | Ec].(82)

For the first term in (82), we consider the following using (80).

P[E] · E[g(−1)(Bi
j(h(x))) | E] ≤

(
1− 1

Wmax

)h(x)−1
· g(−1)(Bi

j + h(x))

(a)

≤
(
1− 1

h(x)

)h(x)−1
· g(−1)(h(x) + h(x))

(b)
= o(1),(83)
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where (a) follows fromWmax ≤ 2 logQmax ≤ h(x) andBi
j ≤ C(x) ≤ W 3

max =

log3Qmax ≤ h(x); one can check (b) for large enough h(x).
For the second term in (82), we consider the following using (81).

E[g(−1)(Bi
j(h(x))) | Ec] ≤

∞∑
k=1

g(−1)(k) ·
(
1− 1

Wmax

)k−1

(a)
= O

(
g(−1)(W2

max)
)

≤ O
(
g(−1)

(
4 log2Qmax

))
,(84)

where (a) is from Proposition 12. Combining (82), (83) and (84) completes
the proof of Lemma 15.

8. Discussion. As the main result of this paper, we presented a new
medium-access algorithm for an arbitrary wireless network where simulta-
neously transmitting nodes must form an independent set of the network
graph. The algorithm is optimal in the sense that network Markov chain is
positive-recurrent as long as the imposed traffic demand can be satisfied by
some scheduling algorithm. The algorithm is entirely distributed: the only
information it utilizes is its own queue-size and the history of collisions or
successful transmissions. In a sense, this work settles an important ques-
tion that has been of interest in distributed computation, communication,
probability and learning.

The algorithm we presented builds upon the work of [18] where the al-
gorithm required a bit of information exchange between neighbors per unit
time. Specifically, the key technical contribution of our work is to get rid
of this requirement by means of designing a novel learning mechanism that
essentially estimates the rate of a Bernoulli process with time varying rates.
To incorporate the new mechanism well with the prior algorithm in [18], in
essence we analyzed the positive recurrence of coupled Markov chains (via
their mixing properties): the first and second components are from schedul-
ing and queueing dynamics, respectively. We believe that our method could
be of much broader interest to establish the positive recurrence of such cou-
pled Markov chains in general.
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APPENDIX A: PROPERTIES OF W (·)

Here we establish deterministic properties of W (·) under the algorithm
that will be useful to prove the main theorem in this paper. Specifically we
establish that, for any i, Wi(·) changes slowly if it becomes large.

Proposition 21 There exists an absolute constant wo ≥ 0 so that for any
node i and time τ , if Wi(τ) ≥ wo then∣∣Wi(τ + 1)−Wi(τ)

∣∣ ≤ Wi(τ)

g(−1)
(
exp

(
log2Wi(τ)

)) .(85)

Proof. We shall establish existence of large enough constant wo under which
the claimed result holds. To that end, given node i and time τ , from defini-
tion of weight as per (1),

Wi(τ) = exp
(
max

{
f(Qi(τ)),

√
max
j∈N (i)

log g(Ai
j(τ))

})
,

where we use f(x) = log log x. Now Qi(·) and Ai
j(·) for any j ∈ N (i) change

by at most ±1 in unit time. That is, they are uniformly 1-Lipschitz. There-
fore,

Wi(τ + 1) ≤ exp
(
max

{
f(Qi(τ) + 1),

√
max
j∈N (i)

log g(Ai
j(τ) + 1)

})
,(86)

Wi(τ + 1) ≥ exp
(
max

{
f(Qi(τ)− 1),

√
max
j∈N (i)

log g(Ai
j(τ)− 1)

})
.(87)

Using (86), we shall establish an upper bound on Wi(τ+1)−Wi(τ). To that
end, consider exp(f(Qi(τ) + 1)): using Taylor’s expansion

exp(f(Qi(τ) + 1)) ≤ log(Qi(τ) + 1)

≤ logQi(τ) +
1

Qi(τ)

(a)

≤ Wi(τ) +
1

exp(Wi(τ))
,(88)

where (a) follows from the fact that log y+1/y ≥ log x+1/x if 0 < x ≤ y for
all y large enough; wo is chosen so that such is true when y ≥ wo; the fact
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that logQi(τ) ≤ Wi(τ) and the assumption that Wi(τ) ≥ wo. In a similar
manner, using Taylor’s expansion and the form of the derivative of function
exp(

√
log g(·)), we have

exp
(√

log g(Ai
j(τ) + 1)

)
≤ exp

(√
log g(Ai

j(τ))
)[

1 +
1

Ai
j(τ)

2 log logAi
j(τ)

logAi
j(τ)

]
(a)

≤ Wi(τ) +Wi(τ)
1

g(−1)
(
exp

(
log2Wi(τ)

)) .(89)

In above (a) follows because for all large enough y, q(x) ≤ q(y) for 0 < x ≤ y
with q(x) = 1

y
2 log log x

log x ; for y large enough q(y) ≤ 1
y ; wo is large enough

so that these two inequalities are satisfied; Wi(τ) ≥ exp(
√

logAi
j(τ)) and

Wi(τ) ≥ wo. From (86), (88) and (89), it follows that

Wi(τ + 1) ≤ Wi(τ) + max
{
exp(−Wi(τ)),Wi(τ)

1

g(−1)
(
exp

(
log2Wi(τ)

))}
≤ Wi(τ) +Wi(τ)

1

g(−1)
(
exp

(
log2Wi(τ)

)) ,
where the last inequality follows from the fact that for x large enough,
exp(−x) ≤ x/g(−1)(exp(log2 x)). This is because g(−1)(y) = exp(exp(log1/4 y)),

log1/4 exp(log2 x) = o(log x), and hence

g(−1)(exp(log2 x)) = exp(exp(log1/4(exp(log2 x)))) = exp(o(x)).

We shall assume that wo is large enough to satisfy this and Wi(τ) ≥ wo.
This completes the proof of upper bound on Wi(τ + 1) as desired by

Proposition of 21. In the process, we implicitly defined wo: it is a constant
large enough so that (i) log y+1/y ≥ log x+1/x if 0 < x ≤ y for all y ≥ wo;
(ii) q(x) ≤ q(y) ≤ 1/y for 0 < x ≤ y with q(x) = 1

y
2 log log x

log x for all y ≥ wo;

and (iii) exp(−x) ≤ x/g(−1)(exp(log2 x)) for all x ≥ wo. In a similar manner
(details are skipped here), an appropriate lower bound on Wi(τ +1) can be
obtained (which will lead to additional constraints on wo). This completes
the proof of Proposition 21. �
Following is an immediate corollary of Proposition 21.
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Corollary 22 There exists a large enough constant w1 so that for any node
i, if Wi(0) ≥ w1 then

∣∣Wi(τ)−Wi(0)
∣∣ ≤ 2Wi(0)

g(−1)
(
exp

(
log2Wi(0)

))τ,
for τ ≤ g(−1)

(
exp

(
log2Wi(0)

))
/2Wi(0). Subsequently, for any w2 ≥ w1,

Wi(τ) ≤ w2 + 1, if Wi(0) ≤ w2,(90)

Wi(τ) ≥ w2 − 1, if Wi(0) ≥ w2,(91)

for 2τ ≤ g(−1)
(
exp

(
log2w2

))
/w2.

Proof. We need to establish existence of large enough constant w1 so that
claimed result holds. For this, we start by constraining w1 ≥ wo, where wo

is the constant from Proposition 21. In addition, we shall assume that w1 is
large enough so that for all y ≥ w1, g

(−1)(exp(log2 x))/x ≤ g(−1)(exp(log2 y))/y
as long as 0 < x ≤ y. Such is a possibility since g(−1)(exp(log2 x)) scales
much faster than x. Further, function g(−1)(exp(log2 x))/x = exp(o(x)).
Therefore, it can be shown that for large enough x,

1 ≪ g(−1)(exp(log2 x))

2x
≤ g(−1)(exp(log2(x− 1)))

x− 1
.

We shall assume w1 is chosen to be such large enough constant. Now applying
Proposition 21, starting with Wi(0) ≥ w1, it follows that∣∣Wi(1)−Wi(0)

∣∣ ≤ Wi(0)

g(−1)
(
exp

(
log2Wi(0)

)) .
As per the above bound and choice of w1, |Wi(1)−Wi(0)| ≪ 1. By repeated
application of Proposition 21 till the summation of the right hand side of
the above bound remains less than 1, we obtain

∣∣Wi(τ)−Wi(0)
∣∣ ≤ τ−1∑

s=0

Wi(s)

g(−1)
(
exp

(
log2Wi(s)

)) .
Now for all such s, since |Wi(s)−Wi(0)| ≤ 1,Wi(0) ≥ w1 and above discussed
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properties of w1, g(−1) we obtain that for all such τ

∣∣Wi(τ)−Wi(0)
∣∣ ≤ τ

Wi(0)− 1

g(−1)
(
exp

(
log2(Wi(0)− 1)

))
≤ τ

2Wi(0)

g(−1)
(
exp

(
log2Wi(0)

)) .
Therefore, it follows that the above holds true for all τ such that

τ ≤
g(−1)

(
exp

(
log2Wi(0)

))
2Wi(0)

.

The remaining consequences (90) and (91) follow immediately from this.
This completes the proof of Corollary 22. �

APPENDIX B: PROOFS OF AUXILIARY PROPOSITIONS

B.1. Proof of Proposition 12. Using elementary calculus, it follows
that

lim
x→∞

g(−1)(x)

exp (
√
x/8)

= 0 and lim
x→∞

xg(−1)(x2/4)

g(−1)(x2)
= 0.

Hence, there exists a constant C1 > 0 such that for x > C1,

(92) g(−1)(x) ≤ exp
(√

x/8
)

and x · g(−1)(x2/4) ≤ g(−1)(x2).

If k ≥ p−2/4, it follows that
(93)

g(−1)(k) ≤ exp
(√

k/8
)

≤ exp (p · k/4) = (exp (p/4))k ≤ (1 + p/2)k,
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where the last inequality holds from exp (x) ≤ 1 + 2x for x ∈ (0, 1). Using
this,

∞∑
k=1

g(−1)(k) · (1− p)k

=

p−2/4∑
k=1

g(−1)(k) · (1− p)k +

∞∑
k=p−2/4+1

g(−1)(k) · (1− p)k

(a)
= O

(
g(−1)

(
p−2/4

)
· p−1

)
+

∞∑
k=p−2/4+1

(1 + p/2)k · (1− p)k

= O
(
g(−1)

(
p−2/4

)
· p−1

)
+

∞∑
k=p−2/4+1

(1− p/2)k

= O
(
g(−1)

(
p−2/4

)
· p−1

)
+O

(
p−1
)

(b)
= O

(
g(−1)

(
p−2
))

,

where (a) is from (93) and for (b) we use (92) under assuming p−1 > C1.
Otherwise, note that (b) is trivial since p−1 bounded above by constant C1.
This completes the proof of Proposition 12.

B.2. Proof of Proposition 16. We recall the formula (13).

Pxx′ = c(x, x′) ·
∏

i∈σ\σ′

1

Wi
·
∏

i∈σ∩σ′

(
1− 1

Wi

)
,

where c(x, x′) is some constant independent of W = [Wi]. Hence, we will
consider Pxx′ as a real-valued function in several variables {Wi} i.e. Pxx′ =
Pxx′(W ).

Now from the mean value theorem in several variables,∣∣P 1
xx′ − P 2

xx′
∣∣ =

∣∣∇Pxx′(·) · (W 1 −W 2)
∣∣

≤ ∥∇Pxx′(·)∥2 · ∥W 1 −W 2∥2.

Using this and (13), the desired conclusion follows since one can easily check
that ∥∇Pxx′(·)∥2 = O(1) since each component of W is always at least 1;
∥W 1 −W 2∥2 = O

(
maxi

∣∣W 1
i −W 2

i

∣∣).
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B.3. Proof of Proposition 17. Observe that the definition of distri-
bution ν implies that for any x ∈ Ω,

T (x) = logZ + log νx.

Using this, for any distribution µ on Ω, we obtain

F (µ) =
∑
x

µxT (x)−
∑
x

µx logµx

=
∑
x

µx(logZ + log νx)−
∑
x

µx logµx

=
∑
x

µx logZ +
∑
x

µx log
νx
µx

= logZ +
∑
x

µx log
νx
µx

≤ logZ + log

(∑
x

µx
νx
µx

)
= logZ

with equality if and only if µ = ν. To complete other claim of proposition,
consider x∗ ∈ argmaxT (x). Let µ be the Dirac distribution δx∗ . Then, for
this distribution

F (µ) = T (x∗).

But, F (ν) ≥ F (µ). Also, the maximal entropy of any distribution on Ω is
log |Ω|. Therefore,

T (x∗) ≤ F (ν)

= E[T (xν)] +HER(ν)

≤ E[T (xν)] + log |Ω|.(94)

Re-arrangement of terms in (94) will imply the second claim of Proposition
17. This completes the proof of Proposition 17.

APPENDIX C: PROOF OF PROPOSITION 18

Recall that the Proposition 18 assumes that C(x) ≤ W 3
max. As per the

statement of Proposition 18, we wish to prove that

P
[
Wj(τ + s) ≥ exp

(
log1/4W

)]
≥ 1− o(1),
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for choice of s such that

s = g(−1) (W/20) · logn+3Qmax

(a)

≤ g(−1) (W/20) · exp
(
(n+ 3) log1/δ W

)
(b)

≤
g(−1)

(
exp

(
log2W

))
2W

,

where (a) is from the condition W ≥ exp
(
log logδ Qmax

)
and one can check

(b) for large enough W (depending on δ).
Now for the case of j = i, from above and Corollary 22, we have

Wj(τ + s) ≥ W − 1 ≥ exp
(
log1/4W

)
, with probability 1,

where the last inequality holds for large enough W .
Now consider the case j ̸= i. In this case, we have

P
[
Wj(τ + s) ≥ exp

(
log1/4W

)]
(a)

≥ P
[
exp

(√
log g(Aj

i (τ + s))

)
≥ exp

(
log1/4W

)]
= P

[
g(Aj

i (τ + s)) ≥ exp
(
log1/2W

)]
(b)

≥ P
[
g(Aj

i (τ + s)) ≥ W/20
]

(c)

≥ 1− o(1),

where (a) is from definition of Wj ; for (b) we use exp
(
log1/2W

)
< W/20

for large enough W ; (c) is due to the following lemma. This completes the
proof of Proposition 18.

Lemma 23 Consider given i, j ∈ N (i), W > 0 and network state X(τ) =
{Q(τ),σ(τ),a(τ),A(τ),B(τ)} at time τ ≤ h(x). Suppose that Qmax is large
enough and

(95) Wi(τ) > W ≥ exp
(
log logδ Qmax

)
for some δ > 0.

Then,

P
[
g(Aj

i (τ + s)) ≥ W/20
]
≥ 1− o(1),

where s = g(−1) (W/20) · logn+3Qmax.
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Proof. First consider the case when g(Aj
i (τ)) > W/10. 1-Lipschitz property

of Aj
i (·) implies that

(96) g(Aj
i (τ + τ ′)) ≥ W/20, for all τ ′ ≤ g(−1)(W/10)− g(−1)(W/20).

On the other hand, we have

g(−1)(W/10)

g(−1)(W/20)
= exp

(
exp

(
log1/4

W

10

)
− exp

(
log1/4

W

20

))
(a)

≥ exp

(
exp

(
log1/4

W

10

)
· 1
4
log−3/4 W

20

)
(b)
= superpolylog(Qmax).(97)

where for (a) we use d(x)−d(x/2) ≥ d′(x/2) ·x/2 with d(x) = exp
(
log1/4 x

)
and x = W/10; (b) is due to W ≥ exp

(
log logδ Qmax

)
. Therefore, it follows

that
g(Aj

i (τ + s)) ≥ W/20

since

(98) s = g(−1) (W/20) · polylog(Qmax) ≪ g(−1)(W/10)− g(−1)(W/20),

where the inequality is from (96), (97), and large enough Qmax.
Now consider the second case when g(Aj

i (τ)) ≤ W/10. As the first step, we

will find some absolute upper and lower bounds on Wi(τ + τ ′) and g(Aj
i (τ +

τ ′)) for τ ′ ≤ s. Based on these bounds, we will construct a martingale with
respect to g(Aj

i (·)) to control g(Aj
i (τ + ∆)), which is indeed similar to the

strategy we use for the proof of Lemma 7 in Section 6.1.

First step: Bounds for Wi(τ + τ ′), g(Aj
i (τ + τ ′)). From Corollary 22, we

observe that for τ ′ ≤ s

(99) Wi(τ + τ ′) ≥ W − 1,

since using (98) it is easy to check that

τ ′ ≤ s ≤ g(−1)(W/10) ≤
g(−1)

(
exp

(
log2W

))
2W

for large enough W .

For the bound of g(Aj
i (τ + τ ′)), we obtain that for τ ′ ≤ s

(100) g(Aj
i (τ + τ ′)) ≤ W/5,
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using 1-Lipschitz property of Aj
i (·) and

τ ′ ≤ s
(a)

≤ g(−1)(W/10)
(b)

≤ g(−1)(W/5)− g(−1)(W/10),

where (a) is from (98) and (b) is due to g(−1)(x) ≥ g(−1)(x/2) · 2 for large
enough x.

Second step: Martingale construction. This part of the proof is similar to
that stated in Section 6.1. We consider a modified network Markov chain
where all the Markovian rules are same as the original chain except for
W (τ ′) = W (τ ′ − 1) for τ ′ > τ + s i.e. W (·) is fixed after time τ + s. This
modification does not affect the distribution of g(Aj

i (τ + s)); it is merely for
guaranteeing (99) all τ ≥ 0.

Now define random time T0 = τ < T1 < T2 < . . . such that Tm is the mth
time when Aj

i (·) is updated since time τ i.e. Bj
i (Tm−1) ≥ 2 and Bj

i (Tm) = 0.
Further, define for m ≥ 0,

Ym :=

{
exp

(
g(−1)(W )−Aj

i (Tm)
)

if Tm−1 ≤ τ + s or m = 0

α · Ym−1 otherwise
,

where α = e
4 + 3

4e ∈ (0, 1). We shall establish that for all m ≥ 1,

(101) E [Ym+1 | Fm] ≤ α · Ym,

where Fm denotes the filtration containing Yk, Tk for 0 ≤ k ≤ m. Note that
(101) is trivial if Tm > τ + s by definition of Ym. When Tm ≤ τ + s, we
observe that

E [Ym+1 | Fm]

= E
[
exp

(
g(−1)(W )−Aj

i (Tm+1)
)

| Fm

]
(a)

≤ 3

4
· exp

(
g(−1)(W )−Aj

i (Tm)− 1
)
+

1

4
· exp

(
g(−1)(W )−Aj

i (Tm) + 1
)

= α · exp
(
g(−1)(W )−Aj

i (Tm)
)

= α · Ym,
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where for (a) we use

P[Aj
i (Tm+1) = Aj

i (Tm) + 1] = P[Bj
i (Tm − 1) ≥ g(Aj

i (Tm−1))]

(b)

≥ P[Bj
i (Tm − 1) ≥ W/5] = 1− P[Bj

i (Tm − 1) < W/5]

≥ 1−
W/5∑
k=1

P[Bj
i (Tm − 1) = k]

≥ 1−
W/5∑
k=1

P[i stops to attempt at time Tm − 1]

(c)

≥ 1−
W/5∑
k=1

1

W − 1
≥ 3

4
,

where (b) and (c) are from (100) and (99), respectively.
From (101), {Zm := Ym/αm−1,m ≥ 1} becomes a sub-martingale with

respect to Fm. If we define a stopping time m∗ as m∗ = inf{m : Tm > τ+s},

E[Zm∗ ]
(a)

≤ E[Z1] = E[Y1]
(b)

≤ Y0 · e = exp
(
g(−1)(W )−Aj

i (τ) + 1
)
,

where (a) and (b) are from the Doob’s optional stopping theorem and 1-
Lipschitz property of Aj

i (·). Using the above inequality and Markov’s in-
equality, we have

Ym∗

αm∗−1
= Zm∗ ≤ exp

(
g(−1)(W )−Aj

i (τ) + 1
)
· logQmax,

with probability at least 1− 1

logQmax
= 1− o(1).(102)

Finally, it follows that

Aj
i (τ + s) = Aj

i (m
∗ − 1) ≥ Aj

i (m
∗)− 1

= g(−1)(W )− (g(−1)(W )−Aj
i (Tm∗))− 1

= g(−1)(W )− log Ym∗ − 1

(a)

≥ g(−1)(W )−
(
g(−1)(W )−Aj

i (τ) + 1

+ log logQmax − (m∗ − 1) log
1

α

)
− 1

(b)

≥ Aj
i (τ) +

s

logn+2Qmax

log
1

α
− log logQmax − 2

(c)

≥ g(−1)(W/20),
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where (c) is due to the choice of s = g(−1)(W/20) · logn+3Qmax and large
enough Qmax; (a) and (b) hold with probability 1− o(1) from (102) and the
Proposition 24, respectively. This completes the proof of Lemma 23. �
Proposition 24

P
[
m∗ − 1 ≥ s

logn+2Qmax

]
= 1− o(1).

Proof. We start by defining random variable Uτ ′ .

Uτ ′ =

{
1 if Aj

i (·) is updated at time τ ′

0 otherwise
, for τ ′ ∈ [τ + 1, τ + s].

In other words, Uτ ′ = 1 only if Bj
i (τ

′− 1) ≥ 2 and Bj
i (τ

′) = 0. By definition
of Uτ ′ and m∗,

m∗ − 1 =

τ+s∑
τ ′=τ+1

Uτ ′ .

Since Wmax(τ
′) ≤ Wmax = O(logQmax) for τ ′ ≤ τ + s (cf. (63)), the same

arguments as in the proof of Proposition 11 lead to the following bound for
the expectation of m∗ − 1.

E[m∗ − 1] = E

[
τ+s∑

τ ′=τ+1

Uτ ′

]
= Ω

(
s

(Wmax)n+1

)
= Ω

(
s

logn+1Qmax

)
.

Now we define random variable Zτ ′ as

Zτ ′ = E

[
τ+s∑

τ ′=τ+1

Uτ ′

∣∣∣ Uτ+1, . . . , Uτ ′−1

]
,

where τ ′ ∈ [τ + 1, τ + s+ 1]. Hence, it is easy to observe that

Zτ+1 = E[m∗ − 1] and Zτ+s+1 = m∗ − 1.

Further, {Zτ ′ : τ ′ ∈ [τ + 1, τ + s + 1]} forms a martingale with bounded
increments i.e. |Zτ ′ −Zτ ′+1| ≤ 1. Therefore, the statement of Proposition 24
follows by applying the Azuma’s inequality to the martingale {Zτ ′}. �


