# Large induced forests in sparse graphs 

Noga Alon*, Dhruv Mubayi ${ }^{\dagger}$, Robin Thomas ${ }^{\ddagger}$<br>Published in J. Graph Theory 38 (2001), 113-123.


#### Abstract

For a graph $G$, let $a(G)$ denote the maximum size of a subset of vertices that induces a forest. Suppose that $G$ is connected with $n$ vertices, $e$ edges, and maximum degree $\Delta$. Our results include: (a) if $\Delta \leq 3$, and $G \neq K_{4}$, then $a(G) \geq n-e / 4-1 / 4$ and this is sharp for all permissible $e \equiv 3(\bmod 4)$, (b) if $\Delta \geq 3$, then $a(G) \geq \alpha(G)+(n-\alpha(G)) /(\Delta-1)^{2}$.

Several problems remain open.


## 1 Introduction

For a (simple, undirected) graph $G=(V, E)$, we say that an $S \subseteq V$ is an acyclic set if the induced subgraph $G[S]$ is a forest. We let $a(G)$ denote the maximum size of an acyclic set in $G$. In [4], the minimum possible value of $a(G)$ is determined, where $G$ ranges over all

[^0]graphs on $n$ vertices and $e$ edges, for every $n$ and $e$. In particular, the results imply that if the average degree of $G$ is at most $d \geq 2$, then $a(G) \geq \frac{2 n}{d+1}$. This is sharp whenever $d+1$ divides $n$ as shown by a disjoint union of cliques of order $d+1$. For bipartite graphs, one can do better, since trivially $a(G) \geq n / 2$. Recently, using probabilistic techniques, the first author has shown that this trivial bound can be improved, but only slightly.

Theorem 1.1. [3] There exists an absolute positive constant $b$ such that for every bipartite graph $G$ with $n$ vertices and average degree at most $d$, where $d \geq 1$,

$$
a(G) \geq\left(\frac{1}{2}+\frac{1}{e^{b d^{2}}}\right) n
$$

Moreover, there exists an absolute constant $b^{\prime}>0$ such that for every $d \geq 1$ and all sufficiently large $n$ there exists a bipartite graph with $n$ vertices and average degree at most $d$ such that

$$
a(G) \leq\left(\frac{1}{2}+\frac{1}{e^{b^{\prime} \sqrt{d}}}\right) n
$$

Theorem 1.1 was motivated by the following conjecture of Albertson and Haas [2], which remains open.

Conjecture 1.2. If $G$ is an $n$ vertex planar bipartite graph, then $a(G) \geq 5 n / 8$.
Conjecture 1.2, if true, is sharp as shown by the following example.
Example 1.3. The cube $Q_{3}$ is the graph with $V\left(Q_{3}\right)=\left\{v_{1}, v_{1}^{\prime}, \ldots, v_{4}, v_{4}^{\prime}\right\}$, and edges $v_{i} v_{i+1}, v_{i}^{\prime} v_{i+1}^{\prime}, v_{i} v_{i}^{\prime}$, where $1 \leq i \leq 4$ and subscripts are taken modulo 4 . It is easy to see that $a\left(Q_{3}\right)=5$.

In this paper, we prove results that refine Theorem 1.1 for sparse bipartite graphs, and also apply to the larger class of triangle-free graphs. We also obtain bounds for $a(G)$ in terms of the independence number $\alpha(G)$ of $G$.

Given a graph $G$, let $N_{G}(v)$ or simply $N(v)$ denote the set of neighbors of vertex $v$. For sets $S, A$ of vertices, $N(S)=\bigcup_{v \in S} N(v)$ and $N_{A}(S)=N(S) \cap A$. Let $\dot{K}_{4}$ denote the five vertex graph obtained from $K_{4}$ by subdividing an edge.

Definition 1.4. Let $\mathcal{F}(t, k)$ denote the family of connected graphs with maximum degree 3 consisting oft disjoint triangles and $k$ disjoint copies of $\dot{K}_{4}$ such that the multigraph obtained by contracting each triangle and each copy of $\dot{K}_{4}$ to a single vertex is a tree of order $t+k$. Notice that if $H_{1}$ and $H_{2}$ are copies of $K_{3}$ or $\dot{K}_{4}$, then $G$ has at most one edge between $H_{1}$ and $H_{2}$. Let $\mathcal{F}=\bigcup_{t, k} \mathcal{F}(t, k)$, where the union is taken over all nonnegative $t, k$ with $t+k>0$. (See the figure for an example of a graph in $\mathcal{F}(2,3)$.)


Figure: A graph in $\mathcal{F}(2,3)$

Theorem 1.5. Let $G=(V, E)$ be a graph with maximum degree 3 and $K_{4} \nsubseteq G$. If exactly c components of $G$ are from $\mathcal{F}$, then

$$
a(G) \geq|V|-\frac{|E|}{4}-\frac{c}{4}
$$

A graph $G \in \mathcal{F}(t, k)$ has $n=3 t+5 k$ vertices, $e=3 t+7 k+(t+k-1)=4 t+8 k-1$ edges, and every acyclic set in $G$ has size at most $2 t+3 k$. Thus $a(G) \leq 2 t+3 k=n-e / 4-1 / 4$ and hence Theorem 1.5 is sharp for every member of $\mathcal{F}$. Since every element in $\mathcal{F}$ contains triangles, Theorem 1.5 and Example 1.3 immediately yield

Corollary 1.6. If $G$ is an $n$ vertex triangle-free graph with maximum degree 3, then $a(G) \geq$ $5 n / 8$ and this is sharp whenever $n$ is divisible by 8.

As mentioned in the introduction, $n$ vertex graphs with maximum degree $\Delta$ always have an acyclic set of size at least $2 n /(\Delta+1)$. We observe that for triangle-free graphs the factor $2 /(\Delta+1)$ above can be improved to $\Theta(\log \Delta / \Delta)$.

For bipartite graphs, we obtain better bounds through the following result that relates $a(G)$ to the independence number $\alpha(G)$ of $G$.

Theorem 1.7. Let $G$ be a connected $n$ vertex graph with maximum degree $\Delta \geq 3$. Then

$$
a(G) \geq \alpha(G)+\frac{n-\alpha(G)}{(\Delta-1)^{2}}
$$

In section 2 we present a preliminary result to Theorem 1.5 that applies to triangle-free graphs, and also exhibit some examples with no large acyclic sets. In section 3 we present the proof of Theorem 1.5, in section 4 we prove Theorem 1.7, and in section 5 we summarize our results.

A cycle of length $k$ or $k$-cycle is the graph with vertices $v_{1}, \ldots, v_{k}$ and edges $v_{i} v_{i+1}$, for $1 \leq i \leq k$, where indices are taken modulo $k$. We simply write $v_{1} v_{2} \ldots v_{k}$ to denote a $k$-cycle.

## 2 Triangle-free graphs

In this section we prove a special case of Theorem 1.5 that is independently interesting.
Lemma 2.1. If $G$ is a triangle-free graph with $n$ vertices and e edges, then $a(G) \geq n-e / 4$.
Proof. We suppose that $G$ is a minimal counterexample with respect to the number of vertices, and will obtain a contradiction. If $G$ is not connected, then by minimality, we can apply the result to each component. Hence we may assume that $G$ is connected. If $G$ has a vertex $v$ with $\operatorname{deg}(v) \geq 4$ or $\operatorname{deg}(v)=1$, then let $G^{\prime}=G-v$. Now $G^{\prime}$ has a large acyclic set $S^{\prime} \subseteq V\left(G^{\prime}\right)$. In the first case, set $S=S^{\prime}$, and in the second case, set $S=S^{\prime} \cup\{v\}$. Then $S$ is an acyclic set in $G$ of size at least $n-e / 4$, a contradiction. If $G$ is 2-regular, then $G$ is a cycle and $a(G)=n-1 \geq n-e / 4$. If $u v$ is an edge, and $\operatorname{deg}(u)=2, \operatorname{deg}(v)=3$, then let $G^{\prime}=G-u-v$. By minimality, there is a large acyclic set $S^{\prime} \subseteq V\left(G^{\prime}\right)$; we let $S=S^{\prime} \cup\{u\}$. Then $|S| \geq(n-2)-(e-4) / 4+1=n-e / 4$. Hence we may assume that $G$ is 3-regular.

Claim: For every pair $u v, u v^{\prime} \in E(G)$, there exists a vertex $w$ such that $u v w v^{\prime}$ is a 4-cycle. Proof of Claim: Let $u^{\prime}$ be the other neighbor of $u$, and let $G_{1}=G-u-u^{\prime} \cup\left\{v v^{\prime}\right\}$. If $G_{1}$ is triangle-free, then by minimality of $G$ we obtain an acyclic set $S_{1} \subseteq V\left(G_{1}\right)$ of size at least $n-2-(e-4) / 4$. Then $S=S_{1} \cup\{u\}$ has size at least $n-e / 4$. Furthermore, $S$ is acyclic, since any cycle in $G[S]$ containing $u$ must traverse the vertices $v, u, v^{\prime}$ in this order, and this would yield a cycle in $G_{1}\left[S_{1}\right]$ (with the edges $v u, u v^{\prime}$, replaced by $v v^{\prime}$ ). This contradiction implies that $G_{1}$ contains a triangle of the form $v w v^{\prime}$.

Consider a vertex $w$ in $G$ with neighbors $x, y, z$. If $x, y, z$ have another common neighbor $w^{\prime}$, then let $G_{2}=G-\left\{w, w^{\prime}, x, y, z\right\}$. By minimality, $G_{2}$ has an acyclic set $S_{2}$ of size at least $n-5-(e-9) / 4$. The set $S=S_{2} \cup\left\{w, w^{\prime}, x\right\}$ in $G$ is acyclic and has size at least $n-e / 4$, a contradiction. Hence by the claim we may assume that there exist $a, b, c$, with $a \leftrightarrow\{x, y\}$, $b \leftrightarrow\{y, z\}$, and $c \leftrightarrow\{x, z\}$. Let $G_{3}=G-\{w, x, y, z, a, b, c\}$. By minimality, $G_{3}$ has an acyclic set $S_{3}$ of size at least $n-7-(e-12) / 4$. The set $S=S_{3} \cup\{w, x, y, z\}$ in $G$ is acyclic and has size at least $n-e / 4$, a contradiction.

As mentioned earlier, Lemma 2.1 is sharp for $e \leq 3 n / 2$ and $e \equiv 0(\bmod 12)$, as shown by disjoint copies of $Q_{3}$. For 4-regular graphs it gives $a(G) \geq n / 2$, but the best example we can find has $a(G)=4 n / 7$. A vertex expansion in a graph $G$ is the replacement of a vertex $v \in V(G)$ by an independent set $Q$ of new vertices, such that the neighborhood of each vertex of $Q$ is $N_{G}(v)$.

Example 2.2. Let $G=(V, E)$ be the graph obtained from the 7 -cycle $v_{1} \ldots v_{7}$ by expanding each vertex to an independent set of size 2 . Thus $G$ is 4-regular with $|V|=14$ and $|E|=28$. For $1 \leq i \leq 7$, let $V_{i}=\left\{x_{i}, y_{i}\right\}$ be the independent set obtained by expanding $v_{i}$. Suppose that $S$ is an acyclic set in $V$, and let $S_{i}=S \cap V_{i}$. The crucial observation is that if $\left|S_{i}\right|=2$, then $\left|S_{i-1}\right|+\left|S_{i+1}\right| \leq 1$, where subscripts are taken modulo 7 . If exactly three of the $S_{i}$ 's have size two, then at least two other $S_{j}$ 's must have size zero, giving $|S| \leq 8$. If exactly two of the $S_{i}$ 's have size two, then at at least one other $S_{j}$ has size zero, giving $|S| \leq 8$ again. Thus $a(G) \leq(4 / 7)|V|$, and in fact it is easy to see that equality holds.

For 5-regular graphs, Lemma 2.1 gives $a(G) \geq 3 n / 8$, but the best example we can find has $a(G)=n / 2$.

Example 2.3. Let $G=(V, E)$ be the graph with $V=\{1, \ldots, 14\}$ and all edges $i j$ where $j-i=1,4,7,10,13(\bmod 14)$. Thus $|V|=14$ and $G$ is triangle-free and 5-regular. It can be shown through a tedious case analysis (which we omit here) that every acyclic set $S$ in $V$ has size at most seven, thus giving $a(G) \leq|V| / 2$. Since $\{1,2,4,5,7,10,13\}$ is acyclic, $a(G)=|V| / 2$.

Remark 2.4. It is well-known (see $[6,5]$ ) that there are triangle-free graphs on $n$ vertices with maximum degree $\Delta$ and independence number at most $O(n \log \Delta / \Delta)$. Since every forest contains an independent set of at least half its size, these graphs also have no acyclic set of size greater than $O(n \log \Delta / \Delta)$. Moreover, this result is asymptotically sharp since in $[1,7]$, it is proved that every triangle-free graph on $n$ vertices and maximum degree $\Delta$ has an independent set of size at least $\Omega(n \log \Delta / \Delta)$.

## 3 Proof of Theorem 1.5

In this section we complete the proof of Theorem 1.5.
Proof of Theorem 1.5: We suppose that $G$ is a minimal counterexample with respect to the number of vertices, and will obtain a contradiction. If $G$ is not connected, then by minimality, we can apply the result to each component. Hence we may assume that $G$ is connected. We have already verified the theorem for graphs in $\mathcal{F}$, so we may assume that $G \notin \mathcal{F}$ and $c=0$. Suppose that $G$ contains a copy $H$ of $\dot{K}_{4}$, and $v$ is the vertex of degree two in $H$. Since $G \notin \mathcal{F},\left|N_{G}(v)\right|=3$. Let $G^{\prime}=G-H$. By minimality of $G$ we obtain a
large acyclic set $S^{\prime}$ in $G^{\prime}$. Note that $G^{\prime}$ is connected, and $G^{\prime} \notin \mathcal{F}$, since otherwise $G \in \mathcal{F}$. Form $S$ by adding to $S^{\prime}$ any three vertices in $H$ that do not create a triangle. Then

$$
a(G) \geq|S|=\left|S^{\prime}\right|+3 \geq(n-5)-\frac{e-8}{4}+3=n-\frac{e}{4}
$$

a contradiction. Hence we may assume that $G$ is $\dot{K}_{4}$-free. If $G$ is triangle-free, then Lemma 2.1 gives a contradiction, so we may assume that $x y z$ is a triangle in $G$. Let $T=\{x, y, z\}$ and $N=N_{G}(T)-T$.

Claim: $G[N]$ is a clique.
Proof of Claim: Suppose to the contrary that $y^{\prime}, z^{\prime} \in N$ with $y \leftrightarrow y^{\prime}, z \leftrightarrow z^{\prime}$ and $y^{\prime} \nleftarrow z^{\prime}$. Let $\operatorname{deg}(x)=2$. Then by minimality of $G$ we obtain a large acyclic set $S^{\prime}$ in $G^{\prime}=G-T$. Let $S=S^{\prime} \cup\{x, y\}$. Then

$$
\begin{equation*}
a(G) \geq|S|=\left|S^{\prime}\right|+2 \geq n-3-\frac{e-5}{4}-\frac{c^{\prime}}{4}+2 \tag{1}
\end{equation*}
$$

where $c^{\prime}$ is the number of components of $G^{\prime}$ from $\mathcal{F}$ (note that $c^{\prime} \leq 2$ since $G$ is connected). This yields the contradiction $a(G) \geq n-e / 4$ unless $c^{\prime}=2$, but in this case $G \in \mathcal{F}$ which we have already excluded. We may therefore assume that $\operatorname{deg}(x)=3$.

Form $G_{1}$ from $G-T$ by adding the edge $y^{\prime} z^{\prime}$ and let $c_{1}$ be the number of components in $G_{1}$ from $\mathcal{F}$. If $H$ is a copy of $K_{4} \subseteq G_{1}$, then $H$ consists of $y^{\prime}, z^{\prime}$ and two other vertices in $G_{1}$. By minimality of $G$, the graph $G-T-V(H)$ has an acyclic set of size at least $n-7-(e-11) / 4-1 / 4$. We form $S$ by adding to this set any five vertices that form an acyclic set within $V(H) \cup T$. It is easy to see that $S \geq n-e / 4$. This contradiction allows us to assume that $G_{1}$ is $K_{4}$-free.

By minimality of $G$, there is a large acyclic set $S_{1}$ in $G_{1}$. Set $S=S_{1} \cup\{y, z\}$. Since $y^{\prime} z^{\prime}$ is an edge in $G_{1}, c_{1}<3$. The set $S$ is acyclic, since a cycle in $S$ would yield a cycle in $S_{1}$ (with $y^{\prime} y z z^{\prime}$ replaced by $y^{\prime} z^{\prime}$ ). If $c_{1} \leq 1$, then by (1), with $S^{\prime}=S_{1}$ and $c^{\prime}=c_{1}$, the set $S$ has size at least $n-e / 4$, a contradiction. We may therefore assume that $c_{1}=2$. Let $G^{\prime}=G-T$. By minimality of $G$, there is a large acyclic set $S^{\prime}$ in $G^{\prime}$. Let $x^{\prime}$ be the other neighbor of $x$. Since $x^{\prime}$ and $\left\{y^{\prime}, z^{\prime}\right\}$ lie in different components of $G^{\prime}$, adding $x, y$ to $S^{\prime}$ yields an acyclic set $S$ in $G$. Because $G \notin \mathcal{F}$, we deduce that $c^{\prime} \leq 2$, and hence $|S| \geq\left|S^{\prime}\right|+2 \geq n-3-(e-6) / 4-2 / 4+2=n-e / 4$, a contradiction.

Because $\Delta(G) \leq 3$, we have $|N| \leq 3$. If $|N|=1$ and $T$ has two vertices, say $x$ and $y$, with degree 2 and 3 respectively, then let $G^{\prime}=G-T$. By minimality of $G$ we obtain an acyclic set $S^{\prime}$ in $G^{\prime}$ of size at least $n-3-(e-4) / 4$. The set $S=S^{\prime} \cup\{x, y\}$ is acyclic and has
size at least $n-e / 4$, a contradiction. The remaining case when $|N|=1$ is if all vertices of $T$ have degree 3 . In this case, since $G$ is connected, $G=K_{4}$ which the hypothesis excludes.

If $|N|=2$, and all vertices of $T$ have degree three, then the claim implies that the induced subgraph $G[T \cup N]$ forms a copy of $\dot{K}_{4}$ which we have already excluded. Hence we may assume that $\operatorname{deg}(x)=2$. Then $G^{\prime}=G-T$ has a large acyclic set $S^{\prime}$. Add $x, y$ to $S^{\prime}$ to form $S$. Because $G^{\prime}$ is connected, $c^{\prime} \leq 1$ and (1) yields the contradiction $a(G) \geq n-e / 4$.

If $|N|=3$, then the claim implies that $G$ consists of two disjoint triangles with a matching of size three between them. In this case $a(G)=4 \geq 6-9 / 4$, a contradiction.

## 4 From independent sets to forests

In a graph $G$ with maximum degree $\Delta$, we can obtain an acyclic set of size

$$
\begin{equation*}
\alpha(G)+\frac{n-\alpha(G)}{\Delta(\Delta-1)+1} \tag{2}
\end{equation*}
$$

by considering a maximum independent set $I$, and successively adding to it vertices whose pairwise distance is at least three. The result of this section improves the factor $\Delta(\Delta-1)+1$ in (2) to $(\Delta-1)^{2}$. For small values of $\Delta$, this improvement is significant. Indeed, the result applied to bipartite graphs when $\Delta=3$ is sharp.

Proof of Theorem 1.7: Let $B$ be an independent set in $G=(V, E)$ with $\alpha(G)$ vertices, and let $A=V-B$. We will iteratively construct a sequence $a_{1}, \ldots, a_{t}$ of vertices in $A$ with the following properties:

$$
\begin{align*}
N\left(a_{i}\right) \cap\left\{a_{i+1}, \ldots, a_{t}\right\}=\emptyset & \text { and }  \tag{3}\\
\left|N\left(a_{i}\right) \cap\left(\cup_{j=i+1}^{t} N\left(a_{j}\right)\right) \cap B\right| \leq 1 & \text { for each } i . \tag{4}
\end{align*}
$$

Set $S=\left\{a_{1}, \ldots, a_{t}\right\} \cup B$. We will show that either $S$ has the required size, or we can augment it by one to have the required size. By (3) any cycle $C$ in $G[S]$ alternates between vertices in $A$ and vertices in $B$. Let $l$ be the smallest integer for which $a_{l}$ is on $C$. By (4), $a_{l}$ has at most one neighbor from $B$ that lies on $C$. Hence we conclude that $S$ is acyclic.

Let $D_{0}=\emptyset$. We iteratively construct a sequence of sets $D_{1}, \ldots, D_{t}$, and put $A_{i}=$ $D_{1} \cup D_{2} \cup \ldots \cup D_{i}$. Let $R_{0}=B$, and for $i \geq 1$, let $R_{i}=N_{B}\left(A_{i}\right)$. Assume that we have already constructed $D_{0}, \ldots, D_{i}$ for some $i \geq 0$. If $A_{i}=A$, then let $t=i$, and stop. Otherwise, choose $a_{i+1} \in A-A_{i}$ such that $a_{i+1}$ is adjacent to a vertex $x_{i+1} \in A_{i} \cup R_{i}$ (such a vertex exists, since $G$ is connected, and $\left.A_{i} \neq A\right)$. If $N_{B}\left(a_{i+1}\right) \subseteq\left\{x_{i+1}\right\}$, then let $Z_{i+1}=N_{B}\left(a_{i+1}\right)$;
otherwise choose $z_{i+1} \in N_{B}\left(a_{i+1}\right)-\left\{x_{i+1}\right\}$ so that, if possible, $a_{i+1}$ is the only common neighbor of $x_{i+1}$ and $z_{i+1}$, and put $Z_{i+1}=N_{B}\left(a_{i+1}\right)-\left\{z_{i+1}\right\}$. Let

$$
D_{i+1}=\left(N_{A}\left(a_{i+1}\right) \cup N_{A}\left(Z_{i+1}\right) \cup\left\{a_{i+1}\right\}\right)-A_{i}
$$

The definition of $D_{i+1}$ and $a_{i+1}$ ensures that conditions (3) and (4) are satisfied.
Claim: For $i=0,\left|D_{i+1}\right| \leq(\Delta-1)^{2}+1$ and for $i \geq 1,\left|D_{i+1}\right| \leq(\Delta-1)^{2}$. Moreover, if equality holds above for $i \geq 0$, then there exists a $w \in D_{i+1}-\left\{a_{i+1}\right\}$ such that the vertices $w, a_{i+1}$ are not adjacent and have at most one common neighbor in $B$.
Proof of Claim: We only prove the case $i \geq 1$, noting that the analysis for $\left|D_{1}\right|$ follows similarly. Set $k=\left|N_{B}\left(a_{i+1}\right)\right|$. If $k=0$, then $\left|D_{i+1}\right| \leq \Delta-1+1<(\Delta-1)^{2}$, because $a_{i+1}$ is adjacent to $x_{i+1} \in A_{i}$. Thus we may assume that $k \geq 1$. If $Z_{i+1}=N_{B}\left(a_{i+1}\right)$, then $Z_{i+1}=N_{B}\left(a_{i+1}\right)=\left\{x_{i+1}\right\}, k=1$, and

$$
\left|D_{i+1}\right| \leq\left|N_{A}\left(a_{i+1}\right)-A_{i}\right|+\left|N_{A}\left(x_{i+1}\right)-A_{i}\right| \leq(\Delta-1)+(\Delta-1) \leq(\Delta-1)^{2}
$$

since $x_{i+1}$ is adjacent to $a_{i+1}$ and also to a vertex in $A_{i}$. If equality holds, then pick $w \in$ $N_{A}\left(x_{i+1}\right)-A_{i}-\left\{a_{i+1}\right\} ; w$ has the required properties, since $k=1$, and $w \nrightarrow a_{i+1}$.

We may therefore assume that $Z_{i+1} \subsetneq N_{B}\left(a_{i+1}\right)$. In this case,
$\left|D_{i+1}\right| \leq\left|N_{A}\left(a_{i+1}\right)-A_{i}\right|+\left|N_{B}\left(Z_{i+1}\right)-A_{i}\right|+1 \leq(\Delta-k)+(k-1)(\Delta-1)-1+1 \leq(\Delta-1)^{2}$,
because $\left|Z_{i+1}\right| \leq k-1$ and each vertex in $Z_{i+1}$ is adjacent to at most $\Delta-1$ vertices of $A-A_{i}$ other than $a_{i+1}$. The term -1 arises because either $x_{i+1} \in A_{i}$, or $x_{i+1} \in Z_{i+1}$ is adjacent to a vertex in $A_{i}$. If equality holds, then $k=\Delta$. This implies that $N_{A}\left(a_{i+1}\right)=\emptyset$ and $x_{i+1} \in B$. Pick $w \in N_{A}\left(x_{i+1}\right)-\left\{a_{i+1}\right\}$. By the conditions for equality, $w$ and $a_{i+1}$ have no common neighbor in $Z_{i+1}$. The choice of $z_{i+1}$ implies that $x_{i+1}$ is the only common neighbor of $w$ and $a_{i+1}$ in all of $B$.

As indicated above by the choice of $t$, we continue this procedure till we have accounted for all of $G$. By the claim, this yields

$$
\begin{equation*}
n-\alpha(G)=|A|=A_{t}=\sum_{i=1}^{t}\left|D_{i}\right| \leq(\Delta-1)^{2}+1+(t-1)(\Delta-1)^{2} \tag{5}
\end{equation*}
$$

Solving for $t$ gives $t \geq|A| /(\Delta-1)^{2}$ unless equality holds everywhere in (5). But in this case, consider the vertex $w$ from the claim obtained when $i=t-1$. We add $w=a_{t+1}$ to our acyclic set to augment it by one. The conditions for equality stated in the claim yield (3)
and (4) with $t$ replaced by $t+1$. Hence $\left\{a_{1}, \ldots, a_{t}, a_{t+1}\right\} \cup B$ is acyclic and of the required size.

Corollary 4.1. Suppose that $G$ is an $n$ vertex bipartite graph with maximum degree $\Delta \geq 3$. Then

$$
\begin{equation*}
a(G) \geq\left(\frac{1}{2}+\frac{1}{2(\Delta-1)^{2}}\right) n \tag{6}
\end{equation*}
$$

and this is sharp for $\Delta=3, n \equiv 0(\bmod 8)$.
Proof. Since $\alpha(G) \geq n / 2$ when $G$ is bipartite, (6) follows immediately from Theorem 1.7. The cube $Q_{3}$ shows that this is sharp for $\Delta=3$.

We end this section by constructing $n$ vertex $\Delta$-regular bipartite graphs with $a(G) \leq$ $n / 2+O\left(n / \Delta^{2}\right)$.

Definition 4.2. For integers $a, b \geq 1$, let $G_{a, b}$ be the bipartite graph with parts $X, Y$ each of size ab, with $X=\left\{x_{i, j}: 1 \leq i \leq a, 1 \leq j \leq b\right\}$ and $Y=\left\{y_{i, j}: 1 \leq i \leq a, 1 \leq j \leq b\right\}$. Vertices $x_{i, j}$ and $y_{i^{\prime}, j^{\prime}}$ are adjacent if and only if either $i=i^{\prime}$ or $j=j^{\prime}$. For $1 \leq i \leq a$ and $1 \leq j \leq b$, let $R_{i}=\left\{x_{i, 1}, y_{i, 1}, \ldots, x_{i, b}, y_{i, b}\right\}$ and $C_{j}=\left\{x_{1, j}, y_{1, j}, \ldots, x_{a, j}, y_{a, j}\right\}$. These are the rows and columns of $G_{a, b}$.

Theorem 4.3. $a\left(G_{a, b}\right) \leq a b+1$.
Proof. We proceed by induction on $a+b$. We may assume by symmetry that $b \geq a$. If $a=1$, then $G_{a, b} \cong K_{b, b}$ for which the result trivially holds. This completes the cases $a+b \leq 3$, and we may therefore assume that $a \geq 2$ and $a+b \geq 4$. Consider a subgraph $H$ of $G_{a, b}$ with $a b+2$ vertices. If $\left|V(H) \cap R_{i}\right| \leq b$ for some $i$, then let $H^{\prime}$ be the restriction of $H$ to $G_{a, b}-R_{i}$. Since $\left|V\left(H^{\prime}\right)\right| \geq a b+2-b=(a-1) b+2$, and $G_{a, b}-R_{i} \cong G_{a-1, b}$, we obtain a cycle in $H^{\prime}$ by induction. Hence we conclude that $\left|V(H) \cap R_{i}\right| \geq b+1$ for all $i$, and similarly that $\left|V(H) \cap C_{j}\right| \geq a+1$ for all $j$.

Let $r_{i}$ be the number of edges of $H$ induced by $V(H) \cap R_{i}$ and $c_{j}$ be the number of edges of $H$ induced by $V(H) \cap C_{j}$. It is easy to see that $\left|V(H) \cap R_{i}\right| \geq b+1$ implies $r_{i} \geq b$, and similarly that $\left|V(H) \cap C_{j}\right| \geq a+1$ implies $c_{j} \geq a$. Call an edge vertical if it has the form $x_{l, m} y_{l, m}$ for some $l, m$; if an edge is not vertical, call it diagonal. Let $e=|E(H)|$ and let $t$ be the number of vertical edges in $H$. If $t \geq a+1$, then two vertical edges from $H$ lie in the same row, and this results in a 4 -cycle in $H$. Hence we may assume that $t \leq a$.

Each vertical edge of $H$ is in the induced subgraph of one row and of one column. Each diagonal edge of $H$ is in the induced subgraph of one row or one column, but not both. These observations yield

$$
a b+b a \leq \sum_{i} r_{i}+\sum_{j} c_{j}=(e-t)+2 t .
$$

Solving for $e$ gives $e \geq 2 a b-t \geq 2 a b-a \geq a b+2=|V(H)|$, which implies that $H$ is not acyclic.

Taking disjoint copies of $G_{\lfloor(\Delta+1) / 2\rfloor,\lceil(\Delta+1) / 2\rceil}$ and disjoint copies of $K_{\Delta, \Delta}$ immediately yields Corollary 4.4. For integers $\Delta$, $n$, where $\left\lfloor(\Delta+1)^{2} / 2\right\rfloor$ divides $n$, there exists an $n$ vertex $\Delta$-regular bipartite graph with $a(G)=n / 2+n /\left(\left\lfloor(\Delta+1)^{2} / 2\right\rfloor\right)$. If $2 \Delta$ divides $n$, then there exists an $n$ vertex $\Delta$-regular bipartite graph with $a(G)=n / 2+n /(2 \Delta)$.

Remark 4.5. The graphs $G_{a, b}$ also provide our best constructions for 4-regular and 5-regular bipartite graphs with no large acyclic sets. In particular, Theorem 4.3 immediately yields $a\left(G_{2,3}\right)=7$ and $a\left(G_{3,3}\right)=10$.

## 5 Summary of Results

In this section, we summarize our results. To do this accurately, we first define some classes of $n$ vertex graphs. Let $\mathcal{G}_{n, d}$ denote the family of $d$-regular graphs, $\mathcal{G}_{n, d}^{-}$denote the family of graphs with maximum degree $d$. Let $\mathcal{T}_{n, d}$ denote the family of triangle-free $d$-regular graphs, $\mathcal{T}_{n, d}^{-}$denote the family of triangle-free graphs with maximum degree $d$. Let $\mathcal{B}_{n, d}$ denote the family of bipartite $d$-regular graphs, $\mathcal{B}_{n, d}^{-}$denote the family of bipartite graphs with maximum degree $d$.

Given a finite family of graphs $\mathcal{F}$, let $a(\mathcal{F})$ denote the minimum of $a(G)$ over all $G \in \mathcal{F}$. Considering vertex disjoint copies of graphs, one can easily see that

$$
a\left(\mathcal{G}_{n_{1}, d}\right)+a\left(\mathcal{G}_{n_{2}, d}\right) \geq a\left(\mathcal{G}_{n_{1}+n_{2}, d}\right) .
$$

This, and the obvious lower bound $a(G) \geq n / d^{2}$ imply that the limit

$$
\gamma_{d}:=\lim _{n \rightarrow \infty} a\left(\mathcal{G}_{n, d}\right) / n
$$

exists and is not equal to zero (Fekete's Lemma, see, e.g., [8]). The same is true for

$$
\begin{gathered}
\gamma_{d}^{-}:=\lim _{n \rightarrow \infty} a\left(\mathcal{G}_{n, d}^{-}\right) / n \\
\tau_{d}:=\lim _{n \rightarrow \infty} a\left(\mathcal{T}_{n, d}\right) / n, \quad \tau_{d}^{-}:=\lim _{n \rightarrow \infty} a\left(\mathcal{T}_{n, d}^{-}\right) / n \\
\beta_{d}:=\lim _{n \rightarrow \infty} a\left(\mathcal{B}_{n, d}\right) / n, \quad \beta_{d}^{-}:=\lim _{n \rightarrow \infty} a\left(\mathcal{B}_{n, d}^{-}\right) / n
\end{gathered}
$$

Table of Results

| $d=$ | 2 | 3 | 4 | 5 |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $\gamma_{d}, \gamma_{d}^{-}$ | $\frac{2}{d+1} \quad[4]$ |  |  |  |  |
| $\tau_{d}, \tau_{d}^{-}$ |  | $\frac{5}{8}$ <br> Lem. 2.1 <br> Ex. 1.3 | $\begin{equation*} \geq \frac{1}{2} \tag{1} \end{equation*}$ <br> Lem. 2.1 $\leq \frac{4}{7}$ <br> Ex. 2.2 | $\begin{gathered} \quad \geq \frac{3}{8} \\ \text { Lem. } 2.1 \\ \quad \leq \frac{1}{2} \\ \text { Ex. } 2.3 \end{gathered}$ | $\begin{aligned} & \geq \Omega\left(\frac{\log d}{d}\right) \\ & \tau_{d}^{-}=\Theta\left(\frac{\log d}{d}\right) \end{aligned}$ <br> Rem. 2.4 |
| $\beta_{d}, \beta_{d}^{-}$ |  |  | $\geq \frac{5}{9}$ <br> Cor. 4.1 $\leq \frac{7}{12}$ <br> Rem. 4.5 | $\geq \frac{17}{32}$ <br> Cor. 4.1 $\leq \frac{5}{9}$ <br> Rem. 4.5 | $\geq \frac{1}{2}+\frac{1}{2(d-1)^{2}}$ <br> Cor. 4.1 $\leq \frac{1}{2}+\frac{1}{\left\lfloor(d+1)^{2} / 2\right\rfloor}$ <br> Cor. 4.4 |

## 6 Acknowledgments

The second author thanks Christopher Heckman and Jeff Steif for useful discussions.

## References

[1] M. Ajtai, J. Komlós and E. Szemerédi, A note on Ramsey numbers, J. Combinatorial Theory, Ser. A 29 (1980), 354-360.
[2] M. Albertson and R. Haas, A problem raised at the DIMACS Graph Coloring Week, 1998.
[3] N. Alon, Induced acyclic subgraphs in sparse bipartite graphs, preprint.
[4] N. Alon, J. Kahn and P. D. Seymour, Large induced degenerate subgraphs in graphs, Graphs and Combinatorics, 3 (1987), 203-211.
[5] B. Bollobás, Chromatic number, girth and maximal degree, Discrete Math. 24 (1978), 311-314.
[6] A. V. Kostochka and N. P. Mazurova, An inequality in the theory of graph coloring (in Russian), Metody Diskret. Analiz. 30 (1977), 23-29.
[7] J. B. Shearer, A note on the independence number of triangle-free graphs, Discrete Math. 46 (1983), 83-87.
[8] J. H. van Lint and R. M. Wilson, "A course in Combinatorics," Cambridge Univ. Press, Cambridge, UK, 1992, page 85.


[^0]:    *Department of Mathematics, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv, Israel, email: noga@math.tau.ac.il. Research supported in part by a USA Israeli BSF grant.
    ${ }^{\dagger}$ School of Mathematics, Georgia Institute of Technology, Atlanta, GA 30332-0160, email: mubayi@math.gatech.edu. Research supported in part by NSF under Grant No. DMS-9970325.
    ${ }^{\ddagger}$ School of Mathematics, Georgia Institute of Technology, Atlanta, GA 30332-0160, email: thomas@math.gatech.edu. Research supported in part by NSF under Grant No. DMS-9970514, and by NSA under Contract No. MDA904-98-1-0517.

    1991 Mathematics Subject Classification: 05C35
    Keywords: Induced forests, $d$-degenerate graph

