EXCLUDING MINORS IN NONPLANAR GRAPHS OF GIRTH AT LEAST FIVE

Robin Thomas ${ }^{1}$
thomas@math.gatech.edu
and
Jan McDonald Thomson ${ }^{2}$
thomson@math.gatech.edu
School of Mathematics
Georgia Institute of Technology
Atlanta, Georgia 30332-0160, USA

Abstract

A graph is quasi 4 -connected if it is simple, 3 -connected, has at least five vertices, and for every partition (A, B, C) of $V(G)$ either $|C| \geq 4$, or G has an edge with one end in A and the other end in B, or one of A, B has at most one vertex. We show that any quasi 4 -connected nonplanar graph with minimum degree at least three and no cycle of length less than five has a minor isomorphic to P_{10}^{-}, the Petersen graph with one edge deleted. We deduce the following weakening of Tutte's Four Flow Conjecture: every 2-edge connected graph with no minor isomorphic to P_{10}^{-}has a nowhere-zero 4 -flow. This extends a result of Kilakos and Shepherd who proved the same for 3-regular graphs.

5 June 1999, revised 6 December 1999.
Published in Combin. Probab. Comput. 9 (2000), 573-585.

[^0]
1. Introduction

By a well-known result of Tait [17], the Four Color Theorem (4CT) $[2,3,4,9]$ is equivalent to the following.

Theorem 1.1. Every 2-edge-connected 3-regular planar graph is edge 3-colorable.

In this paper graphs are finite, and may have loops and multiple edges. A graph is a minor of another if the first can be obtained from a subgraph of the second by contracting edges. We say that a graph G has an H minor if G has a minor isomorphic to H. The Petersen graph (or Petersen) is the unique 3-regular graph on ten vertices with no cycle of length less than five. For a drawing of the Petersen graph, see [5] p. 99. Since the Petersen graph is nonplanar and taking minors preserves planarity, the following conjecture of Tutte [18] implies Theorem 1.1.

Conjecture 1.2. Every 2-edge-connected 3 -regular graph with no Petersen minor is edge 3-colorable.

Kilakos and Shepherd [6] proved that Conjecture 1.2 holds if the Petersen graph is replaced by P_{10}^{-}, the graph obtained from the Petersen graph by deleting one edge. Note that the Petersen graph is edge transitive and therefore P_{10}^{-}is well defined. A proof of Conjecture 1.2 itself was announced by Robertson, Sanders, Seymour and Thomas [10, $11,12,14,15]$, but the proof is long and has not yet been fully written.

In this paper we are concerned with an even stronger conjecture, also due to Tutte, which we now introduce. Let Γ denote the group $\mathbb{Z}_{2} \times \mathbb{Z}_{2}$, and let G be a graph. A Γ-flow in G is a function $\phi: E(G) \rightarrow \Gamma-\{0\}$ such that for every vertex v of $G, \sum \phi(e)=0$, where the sum is taken over all edges e incident with v. Let us remark that by a classical result of Tutte a graph has a Γ-flow if and only if it has a "nowherezero 4-flow". We omit the definition of nowhere-zero 4-flows, because we do not need them, and instead refer the reader to $[16,19]$ for more information on nowhere-zero flows in graphs. It follows immediately that if G is a 3-regular graph, then every Γ-flow in G is an edge 3coloring, and conversely every edge 3 -coloring gives rise to a Γ-flow in G by changing the colors to be the nonzero elements of Γ. Thus the following conjecture, due to Tutte [18], is stronger than Conjecture 1.2.

Conjecture 1.3. Every 2-edge-connected graph with no Petersen minor has a Γ-flow.

Our main theorem is a weaker form of Conjecture 1.3, an analogue of the result of Kilakos and Shepherd mentioned above, namely,

Theorem 1.4. Every 2-edge-connected graph with no P_{10}^{-}minor has a「-flow.

We prove Theorem 1.4 in Section 4. In fact, Theorem 1.4 follows by standard arguments from the following, which we prove in Section 3.

A separation of a graph G is a pair (A, B) of subsets of $V(G)$ such that $A \cup B=V(G)$, and there is no edge between $A-B$ and $B-A$. The order of (A, B) is $|A \cap B|$. The separation (A, B) is nontrivial if both $A-B$ and $B-A$ are nonempty. A graph G is quasi 4 -connected if it is simple, 3 -connected, has at least five vertices, and for every separation (A, B) of G of order three, either $|A| \leq 4$ or $|B| \leq 4$.

Theorem 1.5. Any quasi 4-connected nonplanar graph with minimum degree at least three and no cycle of length less than five has a minor isomorphic to P_{10}^{-}.

We deduce Theorem 1.5 from the following result, which we prove in Section 2. By Dodecahedron we mean the unique 3-regular planar graph with all faces of size five; Triplex and Basket are defined in Figure 1.1. For a drawing of the Dodecahedron see [5] p. 12.

Figure 1.1

Theorem 1.6. Every graph with minimum degree at least three and no cycle of length less than five has a minor isomorphic to Triplex, Petersen, Dodecahedron or Basket.

2. Graphs of girth at least five

We define a cycle to be short if it has length less than five. (Paths and cycles have no "repeated" vertices or edges.) Further, we define an edge of a graph G to be special if it is in all short cycles of G. Let \mathcal{F} be the set of graphs with minimum degree at least three that have at least one special edge. Note that \mathcal{F} includes all graphs of girth at least five. We say that a graph G is a minor minimal graph of \mathcal{F} if G is in \mathcal{F}, but every proper minor of G is not in \mathcal{F}. Theorem 1.6 follows from the following, which is the main result of this section.

Theorem 2.1. The minor minimal graphs of \mathcal{F} are Triplex, Petersen, Dodecahedron and Basket.

Before proving the theorem, we need several lemmas. The girth of a graph is the length of the shortest cycle, or infinity if the graph has no cycles. Let G be a graph, and let v be a vertex of G of degree two not incident with a loop. By suppressing v we mean contracting one of the edges incident with v; the other edge incident with v will be called the surviving edge.

Lemma 2.2. Let G be a minor minimal graph of \mathcal{F}. Then G is connected and the girth of G is at least three.

Proof. The graph G is clearly connected. To prove the other part suppose for a contradiction that G has a cycle C of length less than three, and let $e \in E(C)$. Let G^{\prime} be the graph obtained from $G \backslash e$ by deleting the vertex of degree one if there is one, and then suppressing the resulting vertices of degree two. This is well-defined, because G is not the loopless two-vertex graph with three edges. Then $G^{\prime} \in \mathcal{F}$, because either G^{\prime} has girth at least five, or the surving edge is special, contrary to the minimality of G.

Lemma 2.3. Let G be a minor minimal graph of \mathcal{F}, and let u be an end of a special edge. Then u and all its neighbors have degree three in G.

Proof. Let G and u be as stated, and suppose for a contradiction that the lemma is false. Let e be an edge incident with u such that e is special if u has degree at least four, and otherwise the other end of e has degree at least four. Let G^{\prime} be obtained from $G \backslash e$ by suppressing the vertex of degree two if it exists; otherwise let $G^{\prime}=G \backslash e$. Then $G^{\prime} \in \mathcal{F}$, contrary to the minimality of G.

The notation $G \mid A$ is used to mean the restriction of the graph G to the vertex set A.

Lemma 2.4. Let G be a minor minimal graph of \mathcal{F}. Then G is 3connected.

Proof. Let G be a minor minimal graph of \mathcal{F}, and let e be a special edge in G. Then clearly $|V(G)| \geq 3$. For a contradiction, suppose that there is a nontrivial separation of order at most 2 of G. Let (A, B) be one such separation with $e \in E(G \mid B)$ and minimal order, and subject to that with $|A|$ minimum. By Lemma $2.2, G$ is connected and hence $|A \cap B| \geq 1$. If $|A \cap B|=1$, then let G^{\prime} be obtained from $G \mid A$ by adding a loop at the vertex in $|A \cap B|$; otherwise let G^{\prime} be obtained from $G \mid A$ by adding an edge joining the two elements of $A \cap B$. Then $G^{\prime} \in \mathcal{F}$, contrary to the minimality of G.

Lemma 2.5. Let $G \in \mathcal{F}$, let e_{1}, e_{2}, e_{3} be edges of G such that $G \backslash\left\{e_{1}, e_{2}, e_{3}\right\}$ has two components G_{1} and G_{2} such that both G_{1}, G_{2} have at least two vertices and neither is a cycle. Then G is not a minor minimal graph of \mathcal{F}.

Proof. Let $G, e_{1}, e_{2}, e_{3}, G_{1}$, and G_{2} be as in the lemma. By Lemma 2.4 the edges e_{1}, e_{2}, e_{3} form a matching. From the symmetry we may assume that G_{2} has no short cycles. For $i=1,2,3$ let e_{i} have ends u_{i} and v_{i} with $u_{i} \in V\left(G_{1}\right)$. If the degree of v_{1} in G is greater than three, then the graph obtained from G_{2} by joining v_{2} and v_{3} with an edge is a minor of G and is in \mathcal{F}, therefore G is not a minor minimal graph of \mathcal{F}. We may therefore assume that each v_{i} has degree three. Let G^{\prime} be the graph obtained from $G \backslash\left(V\left(G_{1}\right)-\left\{u_{1}, u_{2}, u_{3}\right\}\right)$ by adding edges e_{12} from u_{1} to u_{2}, e_{23} from u_{2} to u_{3}, and e_{13} from u_{1} to u_{3}. We know that G^{\prime} is a minor of G since by Menger's Theorem and Lemma 2.4 there are three disjoint paths between $\left\{u_{1}, u_{2}, u_{3}\right\}$ and the vertices of a cycle in G_{1}. Moreover, G^{\prime} is a proper minor of G, because G_{1} is not a cycle. We claim that $G^{\prime} \in \mathcal{F}$. To prove this claim suppose for a contradiction that no edge of G^{\prime} is special. Thus G^{\prime} must have a short cycle not using e_{12}, a short cycle not using e_{23} and a short cycle not using e_{13}. On the other hand, any short cycle in G^{\prime} must use at least one of the edges e_{12}, e_{23}, or e_{13} since G_{2} has no short cycles. We conclude that at least two edges of G have ends in $\left\{v_{1}, v_{2}, v_{3}\right\}$, say $v_{1} v_{2}$ and $v_{1} v_{3}$. Now $\left\{v_{2}, v_{3}\right\}$ is a vertex cut in G, contrary to Lemma 2.4. This proves our claim that $G^{\prime} \in \mathcal{F}$, and hence G is not a minor minimal graph of \mathcal{F}.
Lemma 2.6. Let G be a minor minimal graph of \mathcal{F}. Then the girth of G is at least four.

Proof. Let G be a minor minimal graph of \mathcal{F}. By Lemma 2.2 we know that the girth of G is at least three. Suppose, for a contradiction, that
G has a triangle with vertex set $\left\{u_{1}, u_{2}, u_{3}\right\}$. One of the edges of the triangle must be special. From Lemma 2.3 it follows that u_{1}, u_{2} and u_{3} have degree three. For $i=1,2,3$ let v_{i} be the third neighbor of u_{i}. Now v_{1}, v_{2} and v_{3} are pairwise distinct, because otherwise no edge is special. If v_{1} is adjacent to v_{2} then $u_{1} u_{2}$ must a special edge in G. By Lemma 2.3 we know that v_{1} and v_{2} have degree three. Let v_{1}^{\prime} and v_{2}^{\prime} be the remaining neighbors of v_{1} and v_{2} respectively. Now the set $\left\{v_{1} v_{1}^{\prime}, v_{2} v_{2}^{\prime}, u_{3} v_{3}\right\}$ is a 3 -edge cut contradicting Lemma 2.5 (because either $v_{1}^{\prime} \neq v_{3}$ or $v_{2}^{\prime} \neq v_{3}$, for otherwise no edge of G is special). Thus v_{1} and v_{2} are not adjacent, and similarly v_{3} is not adjacent to v_{1} or v_{2}. Thus G has a unique short cycle. Consequently, the edges $u_{1} u_{2}, u_{1} u_{3}, u_{2} u_{3}$ are special, and hence it follows from Lemma 2.3 that v_{1}, v_{2}, and v_{3} all have degree three.

Let G^{\prime} be obtained from $G \backslash u_{1} u_{2}$ by first suppressing u_{1} and then suppressing u_{2}. Let f_{1} be the surviving edge of u_{1} and f_{2} be the surviving edge of u_{2}. Since $G^{\prime} \notin \mathcal{F}$, for any edge there is a short cycle that does not use it. Any short cycles in G^{\prime} must use either f_{1} or f_{2}, otherwise they would have been short in G. Since $u_{3} v_{3}$ is not special in G^{\prime}, there is a short cycle in G^{\prime} not using $u_{3} v_{3}$. Therefore v_{1} and v_{2} have a common neighbor in G^{\prime}, say v_{12}. Using symmetry we see that v_{2} and v_{3} have a common neighbor, say v_{23}, and that v_{1} and v_{3} have a common neighbor, v_{13}, both in G^{\prime}.

Suppose that $v_{12}=v_{13}$. If v_{12} has degree greater than three then let G^{\prime} be the graph obtained from $G \backslash v_{12} v_{1}$ by suppressing v_{1} and let f_{1} be the surviving edge of v_{1}. Since $G^{\prime} \notin \mathcal{F}$, for any edge there is a short cycle that does not use it. Any new short cycles in G^{\prime} must use f_{1}, otherwise they would have been short in G. Since there is a short cycle using f_{1} but not $u_{1} u_{2}$ we know that v_{1} and v_{3} have a common neighbor, say v_{13}^{\prime}, in G^{\prime}. Now $\left\{v_{1}, v_{13}^{\prime}, v_{3}, v_{13}\right\}$ is the vertex set of a short cycle in G distinct from our unique short cycle on $\left\{u_{1}, u_{2}, u_{3}\right\}$, a contradiction. Therefore v_{12} has degree three in G. The remaining edges incident with v_{1}, v_{2}, and v_{3} form a 3 -edge cut contradicting Lemma 2.5. Therefore $v_{12} \neq v_{13}$ and by symmetry, v_{12}, v_{23}, and v_{13} are all pairwise distinct.

If v_{12} has degree greater than three then the graph obtained from $G \backslash v_{1} v_{12}$ by suppressing the vertex v_{1} is in \mathcal{F} because the edge $u_{1} u_{3}$ is special. Therefore v_{12} has degree three, and by symmetry v_{13} and v_{23} also have degree three. Let e_{1}, e_{2}, and e_{3} be the remaining edges incident to v_{12}, v_{23}, and v_{13} respectively. Now $\left\{e_{1}, e_{2}, e_{3}\right\}$ is a three edge cut contradicting Lemma 2.5. Therefore G has no triangle and the girth of G is at least four.

Lemma 2.7. Let G be a minor minimal graph of \mathcal{F}. If the girth of G is four, then there is exactly one short cycle.

Proof. We know that G has no loops or parallel edges since the girth of G is four. Let e be a special edge in G, with ends u and v. Then u and v have degree three by Lemma 2.3. Let u_{1} and u_{2} be the remaining neighbors of u. Similarly, let v_{1} and v_{2} be the remaining neighbors of v. Then $u_{1}, u_{2}, v_{1}, v_{2}$ all have degree three by Lemma 2.3. Again, since the girth of G is four, all of u_{1}, u_{2}, v_{1}, and v_{2} are distinct from each other and without loss of generality u_{1} is adjacent to v_{1}. If there is more than one short cycle in G, then u_{2} is adjacent to v_{2}. Let $u_{1}^{\prime}, u_{2}^{\prime}, v_{1}^{\prime}$, and v_{2}^{\prime} be the remaining neighbors of u_{1}, u_{2}, v_{1}, and v_{2} respectively. We know that all of $u_{1}^{\prime}, u_{2}^{\prime}, v_{1}^{\prime}, v_{2}^{\prime}$ are distinct from $u_{1}, u_{2}, v_{1}, v_{2}, u, v$, and that $u_{1}^{\prime} \neq v_{1}^{\prime}, u_{2}^{\prime} \neq v_{2}^{\prime}, u_{1}^{\prime}$ is not adjacent to v_{1}^{\prime}, and u_{2}^{\prime} is not adjacent to v_{2}^{\prime}, since any of these cases would give a short cycle in G not containing e. Notice that if the degree of u_{1}^{\prime} is greater than three then the graph obtained from $G \backslash u_{1} u_{1}^{\prime}$ by suppressing u_{1} is in \mathcal{F} because the edge e is special. Therefore the degree of u_{1}^{\prime} is three. Similarly, all of $u_{2}^{\prime}, v_{1}^{\prime}$, and v_{2}^{\prime} have degree three. Suppose $u_{1}^{\prime}=v_{2}^{\prime}$, then since G is 3 -connected by Lemma 2.4 and every short cycle must use the edge e, we know $u_{2}^{\prime} \neq v_{1}^{\prime}$. Let e_{1} be the remaining edge incident with u_{1}^{\prime}. Then $\left\{e_{1}, u_{2} u_{2}^{\prime}, v_{1} v_{1}^{\prime}\right\}$ form a 3 -edge cut contradicting Lemma 2.5. Therefore $u_{1}^{\prime} \neq v_{2}^{\prime}$ and by symmetry $u_{2}^{\prime} \neq v_{1}^{\prime}$, so $u_{1}^{\prime}, u_{2}^{\prime}, v_{1}^{\prime}, v_{2}^{\prime}$ are pairwise distinct.

Let G^{\prime} be the graph obtained from $G \backslash e$ by suppressing both vertices of degree two. Let f_{1} be the surviving edge of u, and f_{2} be the surviving edge of v. Any short cycle in G^{\prime} must use either f_{1} or f_{2}. Since G^{\prime} is not in \mathcal{F}, neither f_{1} nor f_{2} can be special in G^{\prime}. Since f_{1} is not special in $G^{\prime}, u_{2}^{\prime} \neq v_{1}^{\prime}$ and $u_{1}^{\prime} \neq v_{2}^{\prime}, v_{1}^{\prime}$ must be adjacent to v_{2}^{\prime} in G^{\prime}. Similarly, since f_{2} is not special in $G^{\prime}, u_{1}^{\prime}$ must be adjacent to u_{2}^{\prime} in G^{\prime}.

Now let G^{\prime} be the graph obtained from $G \backslash u_{1} u$ by suppressing both vertices of degree two. Let e be the surviving edge of u, and e_{1} be the surviving edge of u_{1}. Any short cycle in G^{\prime} must use either e or e_{1}. Since G^{\prime} is not in \mathcal{F}, e cannot be special in G^{\prime}. Thus u_{1}^{\prime} and v_{1}^{\prime} must have a common neighbor, say w_{1}. By symmetry we see that u_{2}^{\prime} and v_{2}^{\prime} must have a common neighbor, say w_{2}. If $w_{1}=u_{2}^{\prime}$ and u_{1}^{\prime} is adjacent to v_{2}^{\prime} then $\left\{u_{1}^{\prime}, u_{2}^{\prime}, v_{1}^{\prime}, v_{2}^{\prime}\right\}$ is the vertex set of a short cycle in G not containing e. If on the other hand, $w_{1}=u_{2}^{\prime}$ and u_{1}^{\prime} is not adjacent to v_{2}^{\prime} then $\left\{u_{1}^{\prime}, v_{2}^{\prime}\right\}$ is a vertex cut in G which is a contradition to Lemma 2.4. Therefore $w_{1} \neq u_{2}^{\prime}$ and by symmetry $w_{1} \neq v_{2}^{\prime}$. Similarly, we see that w_{2} is also distinct from all of $u, u_{1}, u_{2}, u_{1}^{\prime}, u_{2}^{\prime}, v, v_{1}, v_{2}, v_{1}^{\prime}$, and v_{2}^{\prime}. Further, $w_{1} \neq w_{2}$, for otherwise $\left\{w_{1}, u_{1}^{\prime}, u_{2}^{\prime}\right\}$ is the vertex set of a short cycle in G that does not use e, and w_{1} is not adjacent to w_{2}, because
otherwise $\left\{w_{1}, w_{2}, u_{2}^{\prime}, u_{1}^{\prime}\right\}$ is the vertex set of a short cycle in G that does not use e. Now $\left\{w_{1}, w_{2}\right\}$ is a vertex cut in G, a contradiction to Lemma 2.4. Therefore G has at most one short cycle.

Lemma 2.8. Let G be a minor minimal graph of \mathcal{F}. If G has a short cycle, then G is isomorphic to Basket.

Proof. Let G be a minor minimal graph of \mathcal{F} with a short cycle. By Lemma 2.6 the girth of G is four. By Lemma 2.7 there is a unique cycle of length four. Let $\left\{u_{1}, u_{2}, u_{3}, u_{4}\right\}$ be the vertex set of the unique short cycle in G. Let $e_{i j}$ be the edge between u_{i} and u_{j}. Since each $e_{i j}$ is special, each of u_{1}, u_{2}, u_{3}, and u_{4} have degree three by Lemma 2.3. Let $u_{1}^{\prime}, u_{2}^{\prime}, u_{3}^{\prime}$, and u_{4}^{\prime} be the remaining neighbors of u_{1}, u_{2}, u_{3}, and u_{4} respectively. By Lemma 2.3, each of $u_{1}^{\prime}, u_{2}^{\prime}, u_{3}^{\prime}$, and u_{4}^{\prime} have degree three. Since there is only one short cycle, all of $u_{1}^{\prime}, u_{2}^{\prime}, u_{3}^{\prime}$, and u_{4}^{\prime} are distinct from each other and from u_{1}, u_{2}, u_{3}, and u_{4}, and u_{i}^{\prime} is not adjacent to u_{i+1}^{\prime}, where u_{5}^{\prime} means u_{1}^{\prime}. Let e_{i} be the edge between u_{i} and u_{i}^{\prime}. Let G^{\prime} be the graph obtained from $G \backslash e_{14}$ by suppressing both vertices of degree two. Let the surviving edge of u_{1} be e_{1} and the surviving edge of u_{4} be e_{4}. Any short cycle in G^{\prime} must use either e_{1} or e_{4}. Since G^{\prime} is not in \mathcal{F} none of the edges can be special. Since e_{23} is not special, either u_{1}^{\prime} and u_{2}^{\prime} have a common neighbor or u_{3}^{\prime} and u_{4}^{\prime} have a common neighbor. Without loss of generality u_{1}^{\prime} and u_{2}^{\prime} have a common neighbor, say u_{12}. It follows that u_{12} is distinct from all vertices named. Since e_{1} is not special in G^{\prime}, either u_{2}^{\prime} is adjacent to u_{4}^{\prime} in G^{\prime} or u_{3}^{\prime} and u_{4}^{\prime} have a common neighbor in G^{\prime}. Suppose u_{3}^{\prime} and u_{4}^{\prime} do not have a common neighbor in G^{\prime}, so u_{2}^{\prime} must be adjacent to u_{4}^{\prime} in G^{\prime}. Since e_{2} is not special in $G^{\prime}, u_{1}^{\prime}$ must be adjacent to u_{3}^{\prime} in G^{\prime}. Let $G^{\prime \prime}$ be the graph obtained from $G \backslash e_{12}$ by suppressing both vertices of degree two. Since e_{34} is not special in $G^{\prime \prime}$ and u_{3}^{\prime} is not adjacent to u_{4}^{\prime}, either u_{12} is adjacent to u_{3}^{\prime} in $G^{\prime \prime}$ or u_{12} is adjacent to u_{4}^{\prime} in $G^{\prime \prime}$. Each case gives a two vertex cut $\left\{u_{12}, u_{4}^{\prime}\right\}$ or $\left\{u_{12}, u_{3}^{\prime}\right\}$, respectively, contradicting Lemma 2.4. Therefore, u_{3}^{\prime} and u_{4}^{\prime} must have a common neighbor in G^{\prime}. Let u_{34} be the common neighbor of u_{3}^{\prime} and u_{4}^{\prime} in G^{\prime}. If $u_{12}=u_{34}$ then let $G^{\prime \prime}$ be the graph obtained from $G \backslash u_{1}^{\prime} u_{12}$ by suppressing u_{1}^{\prime}. Since e_{12} is not special in $G^{\prime \prime}$, either u_{1}^{\prime} is adjacent to u_{3}^{\prime} in $G^{\prime \prime}$ or u_{1}^{\prime} and u_{4}^{\prime} have a common neighbor in $G^{\prime \prime}$. Either of these cases give a short cycle in G distinct from the unique short cycle already present. Therefore, $u_{12} \neq u_{34}$.

By symmetry we know that u_{2} and u_{3} have a common neighbor in G, say u_{23}, that u_{1} and u_{4} have a common neighbor in G, say u_{14}, and that $u_{23} \neq u_{14}$. Suppose for a contradiction that $u_{23}=u_{12}$. Then $u_{14} \neq u_{34}$ since otherwise $\left\{u_{12}, u_{1}^{\prime}, u_{14}, u_{3}^{\prime}\right\}$ is the vertex-set of a short cycle in
G. Therefore u_{14} is distinct from all vertices previously named. The degree of u_{34} is three since otherwise the graph obtained from $G \backslash u_{4}^{\prime} u_{34}$ by suppressing u_{4}^{\prime} is in \mathcal{F} because the edge e_{14} would be special. By symmetry u_{14} has degree three. The vertex u_{2}^{\prime} is not adjacent to u_{14} or u_{34}, for otherwise $\left\{u_{12}, u_{34}\right\}$ or $\left\{u_{12}, u_{14}\right\}$ is a vertex-cut, contrary to Lemma 2.4. It follows that the degree of u_{12} is three since otherwise the graph obtained from $G \backslash u_{2}^{\prime} u_{12}$ by suppressing u_{2}^{\prime} has a unique short cycle, and hence is in \mathcal{F}. Now the remaining edges leaving u_{2}^{\prime}, u_{34}, and u_{14} are a three edge cut meeting the criteria of Lemma 2.5, and hence G is not minimal, a contradiction. Therefore $u_{23} \neq u_{12}$ and by symmetry $u_{12}, u_{23}, u_{34}, u_{14}$ are pairwise distinct.

If the degree of u_{12} is greater than three then the graph obtained from $G \backslash u_{1}^{\prime} u_{12}$ by suppressing u_{1}^{\prime} is in \mathcal{F}, because the edge u_{1}, u_{4} is special. Therefore the degree of u_{12} is three. Similarly the degrees of each of u_{23}, u_{34}, and u_{14} are all three. Let u_{12}^{\prime} be the neighbor of u_{12} other than u_{1}^{\prime} and u_{2}^{\prime}, and let $u_{23}^{\prime}, u_{34}^{\prime}, u_{14}^{\prime}$ be defined analogously. If $u_{12}^{\prime}=u_{34}$, then $u_{23}^{\prime}=u_{14}$ (otherwise $\left\{u_{14}, u_{23}\right\}$ is a vertex-cut violating Lemma 2.5), and hence G is isomorphic to Basket, as desired. We may therefore assume that $u_{12}^{\prime} \neq u_{34}$, and likewise $u_{23}^{\prime} \neq u_{14}$. It follows that the vertices $u_{12}^{\prime}, u_{23}^{\prime}, u_{34}^{\prime}, u_{14}^{\prime}$ are distinct from all the vertices considerd so far, and it also follows that consecutive vertices in the sequence $u_{12}^{\prime}, u_{23}^{\prime}, u_{34}^{\prime}, u_{14}^{\prime}, u_{12}^{\prime}$ are distinct.

Let G^{\prime} be the graph obtained from $G \backslash u_{1}^{\prime} u_{12}$ by suppressing both vertices of degree two. Since G^{\prime} is not in \mathcal{F}, the edge $u_{1} u_{4}$ is not special, and hence u_{12}^{\prime} and u_{23}^{\prime} must be adjacent. Similarly, u_{23}^{\prime} is adjacent to $u_{34}^{\prime}, u_{34}^{\prime}$ is adjacent to u_{14}^{\prime} and u_{14}^{\prime} is adjacent to u_{12}^{\prime}. Thus if $u_{12}^{\prime}, u_{23}^{\prime}, u_{34}^{\prime}, u_{14}^{\prime}$ are pairwise distinct then they form the vertex set of a short cycle sharing no edge with the short cycle on $\left\{u_{1}, u_{2}, u_{3}, u_{4}\right\}$, a contradiction. Thus, we may assume that $u_{12}^{\prime}=u_{34}^{\prime}$. Since G is $3-$ connected, there exists a path in G with ends u_{14}^{\prime} and u_{23}^{\prime} and otherwise disjoint from all the vertices which have been named. Thus G has a proper minor isomorphic to Basket, a contradiction.

Let G be a graph, and let $X \subseteq V(G)$. We define $\delta(X)$ to be the set of all edges of G with one end in X and the other end in $V(G)-X$. A 3-regular graph G is cyclically 5 -connected if it has at least six vertices, and for every set $X \subseteq V(G)$ with $|\delta(X)| \leq 4$, one of $G \mid X, G \backslash X$ has no cycles.

Lemma 2.9. Let G be a minor minimal graph of \mathcal{F} with no short cycles. Then G is cyclically 5 -connected.

Proof. Let G be as stated. Then every edge of G is special, and hence G is 3-regular by Lemma 2.3. It follows that G has at least six vertices. Suppose for a contradiction that G has a set X of vertices such that $|\delta(X)| \leq 4$ and both $G \mid X$ and $G \backslash X$ have cycles. Let us choose such a set X with $|\delta(X)|$ minimum, and, subject to that, with $|X|$ minimum. Since G is 3 -regular, we see that $\delta(X)$ is a matching, and from Lemmas 2.4 and 2.5 we deduce that $|\delta(X)|=4$. Let $u, v \in X$ be distinct vertices incident with edges of $\delta(X)$. We claim that u and v are not adjacent in G. To prove this claim suppose for a contradiction that u and v are adjacent. Since G is 3-regular and has no short cycles it is easy to see that $G \mid(X-\{u, v\})$ has a cycle. Thus $X-\{u, v\}$ contradicts the minimality of $|X|$.

Let $u_{1}, u_{2}, u_{3}, u_{4}$ be the ends of edges in $\delta(X)$ that belong to $V(G)-$ X, and let C be a cycle in $G \backslash X$. By Menger's theorem and the minimality of $|\delta(X)|$ there exist four disjoint paths $P_{1}, P_{2}, P_{3}, P_{4}$ between $\left\{u_{1}, u_{2}, u_{3}, u_{4}\right\}$ and $V(C)$. Let the ends of P_{i} be u_{i} and v_{i}; we may assume that $v_{1}, v_{2}, v_{3}, v_{4}$ occur on C in the order listed. Let G^{\prime} be obtained from G by deleting $V(G)-\left(X-\left\{u_{1}, u_{2}, u_{3}, u_{4}\right\}\right)$ and all edges incident with $\left\{u_{1}, u_{2}, u_{3}, u_{4}\right\}$ except those in $\delta(X)$, and adding the edges $u_{1} u_{2}, u_{2} u_{3}, u_{3} u_{4}, u_{4} u_{1}$. By contracting the paths $P_{1}, P_{2}, P_{3}, P_{4}$ and certain edges of C we see that G^{\prime} is isomorphic to a minor of G. By the claim of the previous paragraph the graph G^{\prime} has a unique short cycle, and hence $G^{\prime} \in$, contrary to the minimality of G.

Box

Figure 2.1
The following is a result of McCuaig [7, 8], independently obtained by Aldred, Holton and Jackson [1]. Box and Ruby are defined in Figures 2.1 and 2.2.

Ruby

Figure 2.2
Lemma 2.10. Every cyclically 5-connected 3-regular graph of girth at least five has a minor isomorphic to Ruby, Triplex, Dodecahedron, Petersen, or Box.

Proof of Theorem 2.1. Let G be a minor minimal graph of \mathcal{F}. If G has any short cycles, then it has exactly one short cycle by Lemma 2.7 and G is isomorphic to Basket by Lemma 2.8. On the other hand, if G has no short cycles, then every edge of G is special, and hence G is 3 -regular by Lemma 2.3. By Lemma 2.9 we know that G is cyclically 5 -connected. It now follows from Lemma 2.10 that G has a minor isomorphic to one of Ruby, Triplex, Dodecahedron, Petersen, or Box. Both Ruby and Box have a minor isomorphic to Basket, and therefore G must be one of Triplex, Petersen, Dodecahedron or Basket.

3. Nonplanar graphs of girth at least five

Recall that a graph G is quasi 4-connected if it is simple, 3 -connected, has at least five vertices, and for every separation (A, B) of G of order three, either $|A| \leq 4$ or $|B| \leq 4$. A graph K is a subdivision of a graph G if K is obtained from G by replacing its edges by internally disjoint nonzero length paths with the same ends.

Let H be a simple 3 -connected planar graph. Then H has a unique planar embedding. In particular, a cycle in H bounds a region in some planar embedding of H if and only if it bounds a region in every planar embedding of H. Such cycles will be called peripheral. Let u, v be two vertices of H such that no peripherial cycle includes both of them, and let H_{1} be obtained from H by adding an edge with ends u and v. We
say that H_{1} is a jump extension of H. Let C be a peripheral cycle in G on at least four vertices, and let u, v, x, y be distinct vertices of C appearing on C in the order listed. Let H_{2} be obtained from H by adding two edges, one with ends u and x, and the other with ends v and y. We say that H_{2} is a cross extension of H. The following is shown in [13].

Lemma 3.1. Let H be a quasi 4-connected planar graph with no cycles of length three, and let G be a quasi 4-connected nonplanar graph such that G has a subgraph isomorphic to a subdivision of H. Then a jump extension or a cross extension of H is isomorphic to a minor of G.

Now we are ready to prove Theorem 1.5, which we restate.

Figure 3.1. Jump extensions of the Dodecahedron

Theorem 3.2. Any quasi 4-connected nonplanar graph with minimum degree at least three and no cycle of length less than five has a minor isomorphic to P_{10}^{-}.

Proof. Let G be a quasi 4-connected nonplanar graph with minimum degree at least three and no cycle of length less than five. By Theorem 1.6, G has a minor isomorphic to Triplex, Petersen, Basket, or Dodecahedron. Each of Triplex, Petersen and Basket in turn have a minor isomorphic to P_{10}^{-}. Let D denote the Dodecahedron; we may therefore assume that G has a minor isomorphic to D. Since D is 3regular, it follows that G has a subgraph isomorphic to a subdivision of D. The graph D is quasi 4 -connected, as can be seen by inspection. By Lemma 3.1 applied to $G=G$ and $H=D$ we deduce that a jump
extension or a cross extension of D is isomorphic to a minor of G. But Figure 3.1 shows that every jump extension of D has a minor isomorphic to P_{10}^{-}, and Figure 3.2 shows that the same holds for the unique (up to isomorphism) cross extension of D, as desired.

Figure 3.2. Cross extension of the Dodecahedron

4. Γ-FLOWS

We will now proceed with the proof of Theorem 1.4. An isthmus in a graph is an edge whose deletion increases the number of connected components. We need four lemmas. The first [19, Lemma 2.8.4] is well-known and straightforward to prove.

Lemma 4.1. Let G be a minor minimal graph with no isthmus and no Γ-flow. Then G is 2-connected and has minimum degree at least three.
Lemma 4.2. Let G be a minor minimal graph with no isthmus and no Γ-flow. Then G is 3-connected.

Proof. Let G be a minor minimal graph with no isthmus and no Γ flow. Then G is 2 -connected by Lemma 4.1. For a contradiction, suppose there is a nontrivial separation $\left(A_{1}, A_{2}\right)$ of order two. Let $A_{1} \cap A_{2}=\{u, v\}$. Let G_{1} be obtained from $G \mid A_{1}$ by adding an edge e_{1} with ends u and v and let G_{2} be obtained from $G \mid A_{2}-E\left(G \mid A_{1}\right)$ by adding an edge e_{2} with ends u and v. Since G is 2 -connected and has no isthmus, neither G_{1} nor G_{2} can have an isthmus. Therefore, by the minimality of G, there exist Γ-flows ϕ_{1} and ϕ_{2} in G_{1} and G_{2} respectively. By the transitivity of Γ we can assume $\phi_{1}\left(e_{1}\right)=\phi_{2}\left(e_{2}\right)$. Now, the flow in G given by $\phi(e)=\phi_{1}(e)$ if $e \in E\left(G_{1}\right)-\left\{e_{1}\right\}$ and $\phi(e)=\phi_{2}(e)$ if $e \in E\left(G_{2}\right)-\left\{e_{2}\right\}$ is a Γ-flow, a contradiction.

Our third lemma follows from [19, Theorem 3.8.10], but for the convenience of the readers we give a proof from first principles.

Lemma 4.3. Let G be a minor minimal graph with no isthmus and no Γ-flow. Then the girth of G is at least five.

Proof. Let G be a minor minimal graph with no isthmus and no Γ flow. For a contradiction, suppose that C is a short cycle in G. Let $F \subseteq E(C)$ be such that $|F|=1$ if C has at most three edges, and let F consist of two diagonally opposite edges of C otherwise. We claim that we may assume that $G \backslash F$ has an isthmus. Indeed, otherwise $G \backslash F$ has a Γ-flow by the minimality of G, and hence there exists a function $\phi: E(G) \rightarrow \Gamma$ such that $\phi(e)=0$ if and only if $e \in F$, and $\sum \phi(e)=0$ for every vertex $v \in V(G)$, where the summation is over all edges of G incident with v. Let γ be a nonzero element of Γ such that $\phi(e) \neq \gamma$ for every $e \in E(C)-F$, and let $\phi^{\prime}: E(G) \rightarrow \Gamma$ be defined by $\phi^{\prime}(e)=\phi(e)$ if $e \in E(G)-E(C)$ and $\phi^{\prime}(e)=\phi(e)+\gamma$ if $e \in E(C)$. Then ϕ^{\prime} is a Γ-flow in G, as desired. This proves our claim that we may assume that $G \backslash F$ has an isthmus.

If $|E(C)| \leq 3$, then the fact that $G \backslash F$ has an isthmus implies that either G is not 2-connected, or it has a vertex of degree two, contrary to Lemma 4.1. Thus we may assume that $|E(C)|=4$. Let the vertices of C be $v_{1}, v_{2}, v_{3}, v_{4}$ (in order), and let the edges of C be $e_{1}, e_{2}, e_{3}, e_{4}$ in such a way that e_{i} has ends v_{i} and v_{i+1}, where v_{5} means v_{1}. Let f_{1} be an isthmus of $G \backslash\left\{e_{1}, e_{3}\right\}$, and let A, B be the vertex-sets of the two components of $G \backslash\left\{e_{1}, e_{3}, f_{1}\right\}$. Let f_{2} be an isthmus of $G \backslash\left\{e_{2}, e_{4}\right\}$, and let C, D be the vertex-sets of the two components of $G \backslash\left\{e_{2}, e_{4}, f_{2}\right\}$. By symmetry we may assume that $v_{1} \in A$; since G is 2 -connected and has minimum degree at least three we deduce that $f_{1} \notin\left\{e_{1}, e_{3}\right\}$, and hence $u_{2} \in A$ and $u_{3}, u_{4} \in B$. Similarly, we may assume that $u_{2}, u_{3} \in C$ and $u_{1}, u_{4} \in D$. If f_{1} has one end in $A \cap C$ and the other end in $B \cap D$, then $f_{1}=f_{2}$. Thus at least one of the sets $A \cap C, A \cap D, B \cap C, B \cap D$ includes no end of f_{1} or f_{2}, say $A \cap C$ does. Then $G \backslash\left\{e_{1}, e_{4}\right\}$ has no path between u_{1} and u_{2}, contrary to the fact that G is 2 -connected and has minimum degree at least three.

Lemma 4.4. Let G be a minor minimal graph with no isthmus and no Γ-flow. Then G is quasi 4-connected.

Proof. Let G be a minor minimal graph with no isthmus and no Γ-flow. For a contradiction, suppose G is not quasi 4-connected. By Lemma 4.3 and Lemma 4.2, G is simple and 3 -connected. Thus, there is a separation $\left(A_{1}, A_{2}\right)$ of order three such that $\left|A_{1}\right|,\left|A_{2}\right|>5$. Let $A_{1} \cap A_{2}=$ $\left\{u_{1}, u_{2}, u_{3}\right\}$. Let G_{1} be obtained from $G \mid A_{1}$ by adding a new vertex
v_{1} and edges e_{i} with ends u_{i} and v_{1} for $i=1,2,3$. Let G_{2} be obtained from $G \mid A_{2}-E\left(G \mid A_{1}\right)$ by adding a new vertex v_{2} and edges f_{i} with ends u_{i} and v_{2} for $i=1,2,3$. Since G is 3 -connected, neither $G \mid A_{1}$ nor $G \mid A_{2}$ can have an isthmus. Therefore, by the minimality of G, there exist Γ-flows ϕ_{1} and ϕ_{2} in G_{1} and G_{2} respectively. It follows that the values $\phi_{1}\left(e_{1}\right), \phi_{1}\left(e_{2}\right), \phi_{1}\left(e_{3}\right)$ are distinct, and similarly for $\phi_{2}\left(f_{1}\right), \phi_{2}\left(f_{2}\right), \phi_{2}\left(f_{3}\right)$. By the transitivity of Γ we can assume $\phi_{1}\left(e_{i}\right)=\phi_{2}\left(f_{i}\right)$ for $i=1,2,3$. Now, the flow in G given by $\phi(e)=\phi_{1}(e)$ if $e \in E\left(G_{1}\right)-\left\{e_{1}, e_{2}, e_{3}\right\}$ and $\phi(e)=\phi_{2}(e)$ if $e \in E\left(G_{2}\right)-\left\{f_{1}, f_{2}, f_{3}\right\}$ is a Γ-flow, a contradiction.

The following implies Theorem 1.4.
Theorem 4.5. Every graph with no isthmus and no P_{10}^{-}minor has a Γ-flow.

Proof. Let G be a minor minimal graph with no isthmus and no Γ-flow. We will show that G has a P_{10}^{-}minor. By Lemma 4.3 we know that the girth of G is at least five. By Lemma 4.1 we know that the minimum degree of G is at least three. If G is planar then it has a Γ-flow by the four color theorem and Theorem 1.1 of [16]. By Lemma 4.4, G is quasi 4 -connected. Thus G is quasi 4 -connected, nonplanar, has girth at least five, and hence it has a P_{10}^{-}minor by Theorem 1.5, as desired.

References

[1] E. R. L. Aldred, D. A. Holton, B. Jackson, Uniform cyclic edge connectivity in cubic graphs, Combinatorica 11 (1991), 81-96.
[2] K. Appel and W. Haken, Every planar map is four colorable, Part I: discharging, Illinois J. of Math. 21 (1977), 429-490.
[3] K. Appel, W. Haken and J. Koch, Every planar map is four colorable, Part II: reducibility, Illinois J. of Math. 21 (1977), 491-567.
[4] K. Appel and W. Haken, Every planar map is four colorable, Contemp. Math. 98 (1989).
[5] B. Bollobás, Graph Theory, Springer-Verlag, New York 1979.
[6] K. Kilakos and B. Shepherd, Excluding minors in cubic graphs, Combin. Probab. Comput. 5 (1996), 57-78.
[7] W. McCuaig, Edge-reductions in cyclically k-connected cubic graphs, Ph. D. thesis, University of Waterloo, Waterloo, Ontario, October 1987.
[8] W. McCuaig, Edge-reductions in cyclically k-connected cubic graphs, J. Combin. Theory Ser. B 56 (1992), 16-44.
[9] N. Robertson, D. P. Sanders, P. D. Seymour and R. Thomas, The four-colour theorem, J. Combin. Theory Ser. B 70 (1997), 2-44.
[10] N. Robertson, P. D. Seymour and R. Thomas, Cyclically 5-connected cubic graphs, manuscript.
[11] N. Robertson, P. D. Seymour and R. Thomas, Excluded minors in cubic graphs, manuscript.
[12] N. Robertson, P. D. Seymour and R. Thomas, Tutte's edge-coloring conjecture, J. Combin. Theory Ser. B 70 (1997), 166-183.
[13] N. Robertson, P. D. Seymour and R. Thomas, Non-planar extensions of planar graphs, available from http://www.math.gatech.edu/~thomas/ext.ps.
[14] D. P. Sanders, P. D. Seymour and R. Thomas, Edge three-coloring cubic doublecross graphs, in preparation.
[15] D. P. Sanders and R. Thomas, Edge three-coloring cubic apex graphs, manuscript.
[16] P. D. Seymour, Nowhere-zero flows, in: Handbook of combinatorics, (eds. Graham, Grötschel, Lovász), North-Holland, 1995.
[17] P. G. Tait, Note on a theorem in geometry of position, Trans. Roy. Soc. Edinburgh 29 (1880), 657-660.
[18] W. T. Tutte, On the algebraic theory of graph colorings, J. Combin. Theory Ser. B 1 (1966), 15-50.
[19] C.-Q. Zhang, Integer flows and cycle covers of graphs, Marcel Dekker, New York 1997.

[^0]: ${ }^{1}$ Partially supported by NSA under Grant No. MDA904-98-1-0517.
 ${ }^{2}$ Partially supported by NSF under Grant No. DMS-9970514.

