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ABSTRACT

A graph is quasi 4-connected if it is simple, 3-connected, has at least
five vertices, and for every partition (A, B, C) of V (G) either |C| ≥ 4,
or G has an edge with one end in A and the other end in B, or one
of A,B has at most one vertex. We show that any quasi 4-connected
nonplanar graph with minimum degree at least three and no cycle of
length less than five has a minor isomorphic to P−

10, the Petersen graph
with one edge deleted. We deduce the following weakening of Tutte’s
Four Flow Conjecture: every 2-edge connected graph with no minor
isomorphic to P−

10 has a nowhere-zero 4-flow. This extends a result of
Kilakos and Shepherd who proved the same for 3-regular graphs.
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1. Introduction

By a well-known result of Tait [17], the Four Color Theorem (4CT)
[2, 3, 4, 9] is equivalent to the following.

Theorem 1.1. Every 2-edge-connected 3-regular planar graph is edge
3-colorable.

In this paper graphs are finite, and may have loops and multiple
edges. A graph is a minor of another if the first can be obtained from
a subgraph of the second by contracting edges. We say that a graph G
has an H minor if G has a minor isomorphic to H . The Petersen graph
(or Petersen) is the unique 3-regular graph on ten vertices with no cycle
of length less than five. For a drawing of the Petersen graph, see [5] p.
99. Since the Petersen graph is nonplanar and taking minors preserves
planarity, the following conjecture of Tutte [18] implies Theorem 1.1.

Conjecture 1.2. Every 2-edge-connected 3-regular graph with no Pe-
tersen minor is edge 3-colorable.

Kilakos and Shepherd [6] proved that Conjecture 1.2 holds if the
Petersen graph is replaced by P−

10, the graph obtained from the Petersen
graph by deleting one edge. Note that the Petersen graph is edge
transitive and therefore P−

10 is well defined. A proof of Conjecture 1.2
itself was announced by Robertson, Sanders, Seymour and Thomas [10,
11, 12, 14, 15], but the proof is long and has not yet been fully written.

In this paper we are concerned with an even stronger conjecture, also
due to Tutte, which we now introduce. Let Γ denote the group Z2×Z2,
and let G be a graph. A Γ-flow in G is a function φ : E(G) → Γ−{0}
such that for every vertex v of G,

∑
φ(e) = 0, where the sum is taken

over all edges e incident with v. Let us remark that by a classical
result of Tutte a graph has a Γ-flow if and only if it has a “nowhere-
zero 4-flow”. We omit the definition of nowhere-zero 4-flows, because
we do not need them, and instead refer the reader to [16, 19] for more
information on nowhere-zero flows in graphs. It follows immediately
that if G is a 3-regular graph, then every Γ-flow in G is an edge 3-
coloring, and conversely every edge 3-coloring gives rise to a Γ-flow in
G by changing the colors to be the nonzero elements of Γ. Thus the
following conjecture, due to Tutte [18], is stronger than Conjecture 1.2.

Conjecture 1.3. Every 2-edge-connected graph with no Petersen mi-
nor has a Γ-flow.

Our main theorem is a weaker form of Conjecture 1.3, an analogue
of the result of Kilakos and Shepherd mentioned above, namely,
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Theorem 1.4. Every 2-edge-connected graph with no P−
10 minor has a

Γ-flow.

We prove Theorem 1.4 in Section 4. In fact, Theorem 1.4 follows by
standard arguments from the following, which we prove in Section 3.

A separation of a graph G is a pair (A, B) of subsets of V (G) such
that A ∪ B = V (G) , and there is no edge between A − B and B − A.
The order of (A, B) is |A ∩ B| . The separation (A, B) is nontrivial if
both A−B and B −A are nonempty. A graph G is quasi 4-connected
if it is simple, 3-connected, has at least five vertices, and for every
separation (A, B) of G of order three, either |A| ≤ 4 or |B| ≤ 4.

Theorem 1.5. Any quasi 4-connected nonplanar graph with minimum
degree at least three and no cycle of length less than five has a minor
isomorphic to P−

10.

We deduce Theorem 1.5 from the following result, which we prove in
Section 2. By Dodecahedron we mean the unique 3-regular planar graph
with all faces of size five; Triplex and Basket are defined in Figure 1.1.
For a drawing of the Dodecahedron see [5] p. 12.
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Basket Triplex

Figure 1.1

Theorem 1.6. Every graph with minimum degree at least three and
no cycle of length less than five has a minor isomorphic to Triplex,
Petersen, Dodecahedron or Basket.
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2. Graphs of girth at least five

We define a cycle to be short if it has length less than five. (Paths
and cycles have no “repeated” vertices or edges.) Further, we define
an edge of a graph G to be special if it is in all short cycles of G. Let
F be the set of graphs with minimum degree at least three that have
at least one special edge. Note that F includes all graphs of girth at
least five. We say that a graph G is a minor minimal graph of F if G
is in F , but every proper minor of G is not in F . Theorem 1.6 follows
from the following, which is the main result of this section.

Theorem 2.1. The minor minimal graphs of F are Triplex, Petersen,
Dodecahedron and Basket.

Before proving the theorem, we need several lemmas. The girth of a
graph is the length of the shortest cycle, or infinity if the graph has no
cycles. Let G be a graph, and let v be a vertex of G of degree two not
incident with a loop. By suppressing v we mean contracting one of the
edges incident with v; the other edge incident with v will be called the
surviving edge.

Lemma 2.2. Let G be a minor minimal graph of F . Then G is con-
nected and the girth of G is at least three.

Proof. The graph G is clearly connected. To prove the other part
suppose for a contradiction that G has a cycle C of length less than
three, and let e ∈ E(C). Let G′ be the graph obtained from G\e by
deleting the vertex of degree one if there is one, and then suppressing
the resulting vertices of degree two. This is well-defined, because G
is not the loopless two-vertex graph with three edges. Then G′ ∈ F ,
because either G′ has girth at least five, or the surving edge is special,
contrary to the minimality of G. �
Lemma 2.3. Let G be a minor minimal graph of F , and let u be an
end of a special edge. Then u and all its neighbors have degree three in
G.

Proof. Let G and u be as stated, and suppose for a contradiction that
the lemma is false. Let e be an edge incident with u such that e is
special if u has degree at least four, and otherwise the other end of e
has degree at least four. Let G′ be obtained from G\e by suppressing
the vertex of degree two if it exists; otherwise let G′ = G\e. Then
G′ ∈ F , contrary to the minimality of G. �

The notation G|A is used to mean the restriction of the graph G to
the vertex set A.
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Lemma 2.4. Let G be a minor minimal graph of F . Then G is 3-
connected.

Proof. Let G be a minor minimal graph of F , and let e be a special
edge in G. Then clearly |V (G)| ≥ 3. For a contradiction, suppose that
there is a nontrivial separation of order at most 2 of G. Let (A, B) be
one such separation with e ∈ E (G|B) and minimal order, and subject
to that with |A| minimum. By Lemma 2.2, G is connected and hence
|A ∩ B| ≥ 1. If |A ∩ B| = 1, then let G′ be obtained from G|A by
adding a loop at the vertex in |A ∩ B|; otherwise let G′ be obtained
from G|A by adding an edge joining the two elements of A ∩ B. Then
G′ ∈ F , contrary to the minimality of G. �
Lemma 2.5. Let G ∈ F , let e1, e2, e3 be edges of G such that G\{e1, e2, e3}
has two components G1 and G2 such that both G1, G2 have at least two
vertices and neither is a cycle. Then G is not a minor minimal graph
of F .

Proof. Let G, e1, e2, e3, G1,and G2 be as in the lemma. By Lemma 2.4
the edges e1, e2, e3 form a matching. From the symmetry we may as-
sume that G2 has no short cycles. For i = 1, 2, 3 let ei have ends ui

and vi with ui ∈ V (G1) . If the degree of v1 in G is greater than three,
then the graph obtained from G2 by joining v2 and v3 with an edge is
a minor of G and is in F , therefore G is not a minor minimal graph
of F . We may therefore assume that each vi has degree three. Let G′

be the graph obtained from G\ (V (G1) − {u1, u2, u3}) by adding edges
e12 from u1 to u2, e23 from u2 to u3, and e13 from u1 to u3. We know
that G′ is a minor of G since by Menger’s Theorem and Lemma 2.4
there are three disjoint paths between {u1, u2, u3} and the vertices of a
cycle in G1. Moreover, G′ is a proper minor of G, because G1 is not a
cycle. We claim that G′ ∈ F . To prove this claim suppose for a contra-
diction that no edge of G′ is special. Thus G′ must have a short cycle
not using e12, a short cycle not using e23 and a short cycle not using
e13. On the other hand, any short cycle in G′ must use at least one
of the edges e12, e23, or e13 since G2 has no short cycles. We conclude
that at least two edges of G have ends in {v1, v2, v3}, say v1v2 and v1v3.
Now {v2, v3} is a vertex cut in G, contrary to Lemma 2.4. This proves
our claim that G′ ∈ F , and hence G is not a minor minimal graph of
F . �
Lemma 2.6. Let G be a minor minimal graph of F . Then the girth of
G is at least four.

Proof. Let G be a minor minimal graph of F . By Lemma 2.2 we know
that the girth of G is at least three. Suppose, for a contradiction, that
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G has a triangle with vertex set {u1, u2, u3} . One of the edges of the
triangle must be special. From Lemma 2.3 it follows that u1, u2 and
u3 have degree three. For i = 1, 2, 3 let vi be the third neighbor of
ui. Now v1, v2 and v3 are pairwise distinct, because otherwise no edge
is special. If v1 is adjacent to v2 then u1u2 must a special edge in
G. By Lemma 2.3 we know that v1 and v2 have degree three. Let v′

1

and v′
2 be the remaining neighbors of v1 and v2 respectively. Now the

set {v1v
′
1, v2v

′
2, u3v3} is a 3-edge cut contradicting Lemma 2.5 (because

either v′
1 6= v3 or v′

2 6= v3, for otherwise no edge of G is special).
Thus v1 and v2 are not adjacent, and similarly v3 is not adjacent to
v1 or v2. Thus G has a unique short cycle. Consequently, the edges
u1u2, u1u3, u2u3 are special, and hence it follows from Lemma 2.3 that
v1, v2, and v3 all have degree three.

Let G′ be obtained from G\u1u2 by first suppressing u1 and then
suppressing u2. Let f1 be the surviving edge of u1 and f2 be the sur-
viving edge of u2. Since G′ /∈ F , for any edge there is a short cycle
that does not use it. Any short cycles in G′ must use either f1 or f2,
otherwise they would have been short in G. Since u3v3 is not special
in G′, there is a short cycle in G′ not using u3v3. Therefore v1 and v2

have a common neighbor in G′, say v12. Using symmetry we see that
v2 and v3 have a common neighbor, say v23, and that v1 and v3 have a
common neighbor, v13, both in G′.

Suppose that v12 = v13. If v12 has degree greater than three then let
G′ be the graph obtained from G\v12v1 by suppressing v1 and let f1 be
the surviving edge of v1. Since G′ /∈ F , for any edge there is a short
cycle that does not use it. Any new short cycles in G′ must use f1,
otherwise they would have been short in G. Since there is a short cycle
using f1 but not u1u2 we know that v1 and v3 have a common neighbor,
say v′

13, in G′. Now {v1, v
′
13, v3, v13} is the vertex set of a short cycle in

G distinct from our unique short cycle on {u1, u2, u3} , a contradiction.
Therefore v12 has degree three in G. The remaining edges incident with
v1, v2, and v3 form a 3-edge cut contradicting Lemma 2.5. Therefore
v12 6= v13 and by symmetry, v12, v23, and v13 are all pairwise distinct.

If v12 has degree greater than three then the graph obtained from
G\v1v12 by suppressing the vertex v1 is in F because the edge u1u3

is special. Therefore v12 has degree three, and by symmetry v13 and
v23 also have degree three. Let e1, e2, and e3 be the remaining edges
incident to v12, v23, and v13 respectively. Now {e1, e2, e3} is a three
edge cut contradicting Lemma 2.5. Therefore G has no triangle and
the girth of G is at least four. �
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Lemma 2.7. Let G be a minor minimal graph of F . If the girth of G
is four, then there is exactly one short cycle.

Proof. We know that G has no loops or parallel edges since the girth of
G is four. Let e be a special edge in G, with ends u and v. Then u and
v have degree three by Lemma 2.3. Let u1 and u2 be the remaining
neighbors of u. Similarly, let v1 and v2 be the remaining neighbors of
v. Then u1, u2, v1, v2 all have degree three by Lemma 2.3. Again, since
the girth of G is four, all of u1, u2, v1, and v2 are distinct from each
other and without loss of generality u1 is adjacent to v1. If there is
more than one short cycle in G, then u2 is adjacent to v2. Let u′

1, u
′
2, v

′
1,

and v′
2 be the remaining neighbors of u1, u2, v1, and v2 respectively.

We know that all of u′
1, u

′
2, v

′
1, v

′
2 are distinct from u1, u2, v1, v2, u, v,

and that u′
1 6= v′

1, u′
2 6= v′

2, u′
1 is not adjacent to v′

1, and u′
2 is not

adjacent to v′
2, since any of these cases would give a short cycle in G

not containing e. Notice that if the degree of u′
1 is greater than three

then the graph obtained from G\u1u
′
1 by suppressing u1 is in F because

the edge e is special. Therefore the degree of u′
1 is three. Similarly, all

of u′
2, v

′
1, and v′

2 have degree three. Suppose u′
1 = v′

2, then since G is
3-connected by Lemma 2.4 and every short cycle must use the edge e,
we know u′

2 6= v′
1. Let e1 be the remaining edge incident with u′

1. Then
{e1, u2u

′
2, v1v

′
1} form a 3-edge cut contradicting Lemma 2.5. Therefore

u′
1 6= v′

2 and by symmetry u′
2 6= v′

1, so u′
1, u

′
2, v

′
1, v

′
2 are pairwise distinct.

Let G′ be the graph obtained from G\e by suppressing both vertices
of degree two. Let f1 be the surviving edge of u, and f2 be the surviving
edge of v. Any short cycle in G′ must use either f1 or f2. Since G′ is
not in F , neither f1 nor f2 can be special in G′. Since f1 is not special
in G′, u′

2 6= v′
1 and u′

1 6= v′
2, v′

1 must be adjacent to v′
2 in G′. Similarly,

since f2 is not special in G′, u′
1 must be adjacent to u′

2 in G′.
Now let G′ be the graph obtained from G\u1u by suppressing both

vertices of degree two. Let e be the surviving edge of u, and e1 be the
surviving edge of u1. Any short cycle in G′ must use either e or e1.
Since G′ is not in F , e cannot be special in G′. Thus u′

1 and v′
1 must

have a common neighbor, say w1. By symmetry we see that u′
2 and v′

2

must have a common neighbor, say w2. If w1 = u′
2 and u′

1 is adjacent
to v′

2 then {u′
1, u

′
2, v

′
1, v

′
2} is the vertex set of a short cycle in G not

containing e. If on the other hand, w1 = u′
2 and u′

1 is not adjacent to
v′
2 then {u′

1, v
′
2} is a vertex cut in G which is a contradition to Lemma

2.4. Therefore w1 6= u′
2 and by symmetry w1 6= v′

2. Similarly, we see
that w2 is also distinct from all of u, u1, u2, u

′
1, u

′
2, v, v1, v2, v

′
1, and v′

2.
Further, w1 6= w2, for otherwise {w1, u

′
1, u

′
2} is the vertex set of a short

cycle in G that does not use e, and w1 is not adjacent to w2, because
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otherwise {w1, w2, u
′
2, u

′
1} is the vertex set of a short cycle in G that

does not use e. Now {w1, w2} is a vertex cut in G, a contradiction to
Lemma 2.4. Therefore G has at most one short cycle. �
Lemma 2.8. Let G be a minor minimal graph of F . If G has a short
cycle, then G is isomorphic to Basket.

Proof. Let G be a minor minimal graph of F with a short cycle. By
Lemma 2.6 the girth of G is four. By Lemma 2.7 there is a unique
cycle of length four. Let {u1, u2, u3, u4} be the vertex set of the unique
short cycle in G. Let eij be the edge between ui and uj. Since each eij

is special, each of u1, u2, u3, and u4 have degree three by Lemma 2.3.
Let u′

1, u
′
2, u

′
3, and u′

4 be the remaining neighbors of u1, u2, u3, and u4

respectively. By Lemma 2.3, each of u′
1, u

′
2, u

′
3, and u′

4 have degree three.
Since there is only one short cycle, all of u′

1, u
′
2, u

′
3, and u′

4 are distinct
from each other and from u1, u2, u3, and u4, and u′

i is not adjacent to
u′

i+1, where u′
5 means u′

1. Let ei be the edge between ui and u′
i. Let

G′ be the graph obtained from G\e14 by suppressing both vertices of
degree two. Let the surviving edge of u1 be e1 and the surviving edge of
u4 be e4. Any short cycle in G′ must use either e1 or e4. Since G′ is not
in F none of the edges can be special. Since e23 is not special, either u′

1

and u′
2 have a common neighbor or u′

3 and u′
4 have a common neighbor.

Without loss of generality u′
1 and u′

2 have a common neighbor, say u12.
It follows that u12 is distinct from all vertices named. Since e1 is not
special in G′, either u′

2 is adjacent to u′
4 in G′ or u′

3 and u′
4 have a

common neighbor in G′. Suppose u′
3 and u′

4 do not have a common
neighbor in G′, so u′

2 must be adjacent to u′
4 in G′. Since e2 is not

special in G′, u′
1 must be adjacent to u′

3 in G′. Let G′′ be the graph
obtained from G\e12 by suppressing both vertices of degree two. Since
e34 is not special in G′′ and u′

3 is not adjacent to u′
4, either u12 is

adjacent to u′
3 in G′′ or u12 is adjacent to u′

4 in G′′. Each case gives a
two vertex cut {u12, u

′
4} or {u12, u

′
3}, respectively, contradicting Lemma

2.4. Therefore, u′
3 and u′

4 must have a common neighbor in G′. Let
u34 be the common neighbor of u′

3 and u′
4 in G′. If u12 = u34 then let

G′′ be the graph obtained from G\u′
1u12 by suppressing u′

1. Since e12

is not special in G′′, either u′
1 is adjacent to u′

3 in G′′ or u′
1 and u′

4

have a common neighbor in G′′. Either of these cases give a short cycle
in G distinct from the unique short cycle already present. Therefore,
u12 6= u34.

By symmetry we know that u2 and u3 have a common neighbor in G,
say u23, that u1 and u4 have a common neighbor in G, say u14, and that
u23 6= u14. Suppose for a contradiction that u23 = u12. Then u14 6= u34

since otherwise {u12, u
′
1, u14, u

′
3} is the vertex-set of a short cycle in
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G. Therefore u14 is distinct from all vertices previously named. The
degree of u34 is three since otherwise the graph obtained from G\u′

4u34

by suppressing u′
4 is in F because the edge e14 would be special. By

symmetry u14 has degree three. The vertex u′
2 is not adjacent to u14

or u34, for otherwise {u12, u34} or {u12, u14} is a vertex-cut, contrary to
Lemma 2.4. It follows that the degree of u12 is three since otherwise
the graph obtained from G\u′

2u12 by suppressing u′
2 has a unique short

cycle, and hence is in F . Now the remaining edges leaving u′
2, u34, and

u14 are a three edge cut meeting the criteria of Lemma 2.5, and hence G
is not minimal, a contradiction. Therefore u23 6= u12 and by symmetry
u12, u23, u34, u14 are pairwise distinct.

If the degree of u12 is greater than three then the graph obtained
from G\u′

1u12 by suppressing u′
1 is in F , because the edge u1, u4 is

special. Therefore the degree of u12 is three. Similarly the degrees of
each of u23, u34, and u14 are all three. Let u′

12 be the neighbor of u12

other than u′
1 and u′

2, and let u′
23, u

′
34, u

′
14 be defined analogously. If

u′
12 = u34, then u′

23 = u14 (otherwise {u14, u23} is a vertex-cut violating
Lemma 2.5), and hence G is isomorphic to Basket, as desired. We may
therefore assume that u′

12 6= u34, and likewise u′
23 6= u14. It follows that

the vertices u′
12, u

′
23, u

′
34, u

′
14 are distinct from all the vertices considerd

so far, and it also follows that consecutive vertices in the sequence
u′

12, u
′
23, u

′
34, u

′
14, u

′
12 are distinct.

Let G′ be the graph obtained from G\u′
1u12 by suppressing both

vertices of degree two. Since G′ is not in F , the edge u1u4 is not spe-
cial, and hence u′

12 and u′
23 must be adjacent. Similarly, u′

23 is adja-
cent to u′

34, u′
34 is adjacent to u′

14 and u′
14 is adjacent to u′

12. Thus if
u′

12, u
′
23, u

′
34, u

′
14 are pairwise distinct then they form the vertex set of

a short cycle sharing no edge with the short cycle on {u1, u2, u3, u4},
a contradiction. Thus, we may assume that u′

12 = u′
34. Since G is 3-

connected, there exists a path in G with ends u′
14 and u′

23 and otherwise
disjoint from all the vertices which have been named. Thus G has a
proper minor isomorphic to Basket, a contradiction. �

Let G be a graph, and let X ⊆ V (G). We define δ(X) to be the set
of all edges of G with one end in X and the other end in V (G)−X. A
3-regular graph G is cyclically 5-connected if it has at least six vertices,
and for every set X ⊆ V (G) with |δ(X)| ≤ 4, one of G | X, G\X has
no cycles.

Lemma 2.9. Let G be a minor minimal graph of F with no short
cycles. Then G is cyclically 5-connected.
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Proof. Let G be as stated. Then every edge of G is special, and hence
G is 3-regular by Lemma 2.3. It follows that G has at least six vertices.
Suppose for a contradiction that G has a set X of vertices such that
|δ(X)| ≤ 4 and both G | X and G\X have cycles. Let us choose
such a set X with |δ(X)| minimum, and, subject to that, with |X|
minimum. Since G is 3-regular, we see that δ(X) is a matching, and
from Lemmas 2.4 and 2.5 we deduce that |δ(X)| = 4. Let u, v ∈ X be
distinct vertices incident with edges of δ(X). We claim that u and v
are not adjacent in G. To prove this claim suppose for a contradiction
that u and v are adjacent. Since G is 3-regular and has no short cycles
it is easy to see that G | (X − {u, v}) has a cycle. Thus X − {u, v}
contradicts the minimality of |X|.

Let u1, u2, u3, u4 be the ends of edges in δ(X) that belong to V (G)−
X, and let C be a cycle in G\X. By Menger’s theorem and the min-
imality of |δ(X)| there exist four disjoint paths P1, P2, P3, P4 between
{u1, u2, u3, u4} and V (C). Let the ends of Pi be ui and vi; we may
assume that v1, v2, v3, v4 occur on C in the order listed. Let G′ be ob-
tained from G by deleting V (G) − (X − {u1, u2, u3, u4}) and all edges
incident with {u1, u2, u3, u4} except those in δ(X), and adding the edges
u1u2, u2u3, u3u4, u4u1. By contracting the paths P1, P2, P3, P4 and cer-
tain edges of C we see that G′ is isomorphic to a minor of G. By the
claim of the previous paragraph the graph G′ has a unique short cycle,
and hence G′ ∈ , contrary to the minimality of G. �
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Box

Figure 2.1

The following is a result of McCuaig [7, 8], independently obtained
by Aldred, Holton and Jackson [1]. Box and Ruby are defined in Fig-
ures 2.1 and 2.2.
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Ruby

Figure 2.2

Lemma 2.10. Every cyclically 5-connected 3-regular graph of girth
at least five has a minor isomorphic to Ruby, Triplex, Dodecahedron,
Petersen, or Box.

Proof of Theorem 2.1. Let G be a minor minimal graph of F . If G has
any short cycles, then it has exactly one short cycle by Lemma 2.7 and
G is isomorphic to Basket by Lemma 2.8. On the other hand, if G
has no short cycles, then every edge of G is special, and hence G is
3-regular by Lemma 2.3. By Lemma 2.9 we know that G is cyclically
5-connected. It now follows from Lemma 2.10 that G has a minor
isomorphic to one of Ruby, Triplex, Dodecahedron, Petersen, or Box.
Both Ruby and Box have a minor isomorphic to Basket, and therefore
G must be one of Triplex, Petersen, Dodecahedron or Basket. �

3. Nonplanar graphs of girth at least five

Recall that a graph G is quasi 4-connected if it is simple, 3-connected,
has at least five vertices, and for every separation (A, B) of G of order
three, either |A| ≤ 4 or |B| ≤ 4. A graph K is a subdivision of a graph
G if K is obtained from G by replacing its edges by internally disjoint
nonzero length paths with the same ends.

Let H be a simple 3-connected planar graph. Then H has a unique
planar embedding. In particular, a cycle in H bounds a region in some
planar embedding of H if and only if it bounds a region in every planar
embedding of H . Such cycles will be called peripheral. Let u, v be two
vertices of H such that no peripherial cycle includes both of them, and
let H1 be obtained from H by adding an edge with ends u and v. We
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say that H1 is a jump extension of H . Let C be a peripheral cycle in
G on at least four vertices, and let u, v, x, y be distinct vertices of C
appearing on C in the order listed. Let H2 be obtained from H by
adding two edges, one with ends u and x, and the other with ends v
and y. We say that H2 is a cross extension of H . The following is
shown in [13].

Lemma 3.1. Let H be a quasi 4-connected planar graph with no cycles
of length three, and let G be a quasi 4-connected nonplanar graph such
that G has a subgraph isomorphic to a subdivision of H. Then a jump
extension or a cross extension of H is isomorphic to a minor of G.

Now we are ready to prove Theorem 1.5, which we restate.
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Figure 3.1. Jump extensions of the Dodecahedron

Theorem 3.2. Any quasi 4-connected nonplanar graph with minimum
degree at least three and no cycle of length less than five has a minor
isomorphic to P−

10.

Proof. Let G be a quasi 4-connected nonplanar graph with minimum
degree at least three and no cycle of length less than five. By The-
orem 1.6, G has a minor isomorphic to Triplex, Petersen, Basket, or
Dodecahedron. Each of Triplex, Petersen and Basket in turn have a
minor isomorphic to P−

10. Let D denote the Dodecahedron; we may
therefore assume that G has a minor isomorphic to D. Since D is 3-
regular, it follows that G has a subgraph isomorphic to a subdivision
of D. The graph D is quasi 4-connected, as can be seen by inspection.
By Lemma 3.1 applied to G = G and H = D we deduce that a jump
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extension or a cross extension of D is isomorphic to a minor of G. But
Figure 3.1 shows that every jump extension of D has a minor isomor-
phic to P−

10, and Figure 3.2 shows that the same holds for the unique
(up to isomorphism) cross extension of D, as desired. �
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Figure 3.2. Cross extension of the Dodecahedron

4. Γ-flows

We will now proceed with the proof of Theorem 1.4. An isthmus in
a graph is an edge whose deletion increases the number of connected
components. We need four lemmas. The first [19, Lemma 2.8.4] is
well-known and straightforward to prove.

Lemma 4.1. Let G be a minor minimal graph with no isthmus and no
Γ-flow. Then G is 2-connected and has minimum degree at least three.

Lemma 4.2. Let G be a minor minimal graph with no isthmus and no
Γ-flow. Then G is 3-connected.

Proof. Let G be a minor minimal graph with no isthmus and no Γ-
flow. Then G is 2-connected by Lemma 4.1. For a contradiction,
suppose there is a nontrivial separation (A1, A2) of order two. Let
A1 ∩ A2 = {u, v} . Let G1 be obtained from G|A1 by adding an edge
e1 with ends u and v and let G2 be obtained from G|A2 − E (G|A1)
by adding an edge e2 with ends u and v. Since G is 2-connected and
has no isthmus, neither G1 nor G2 can have an isthmus. Therefore,
by the minimality of G, there exist Γ-flows φ1 and φ2 in G1 and G2

respectively. By the transitivity of Γ we can assume φ1 (e1) = φ2 (e2).
Now, the flow in G given by φ (e) = φ1 (e) if e ∈ E (G1) − {e1} and
φ (e) = φ2 (e) if e ∈ E (G2) − {e2} is a Γ-flow, a contradiction. �
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Our third lemma follows from [19, Theorem 3.8.10], but for the con-
venience of the readers we give a proof from first principles.

Lemma 4.3. Let G be a minor minimal graph with no isthmus and no
Γ-flow. Then the girth of G is at least five.

Proof. Let G be a minor minimal graph with no isthmus and no Γ-
flow. For a contradiction, suppose that C is a short cycle in G. Let
F ⊆ E(C) be such that |F | = 1 if C has at most three edges, and let
F consist of two diagonally opposite edges of C otherwise. We claim
that we may assume that G\F has an isthmus. Indeed, otherwise G\F
has a Γ-flow by the minimality of G, and hence there exists a function
φ : E(G) → Γ such that φ(e) = 0 if and only if e ∈ F , and

∑
φ(e) = 0

for every vertex v ∈ V (G), where the summation is over all edges of G
incident with v. Let γ be a nonzero element of Γ such that φ(e) 6= γ for
every e ∈ E(C)− F , and let φ′ : E(G) → Γ be defined by φ′(e) = φ(e)
if e ∈ E(G) − E(C) and φ′(e) = φ(e) + γ if e ∈ E(C). Then φ′ is a
Γ-flow in G, as desired. This proves our claim that we may assume
that G\F has an isthmus.

If |E(C)| ≤ 3, then the fact that G\F has an isthmus implies that
either G is not 2-connected, or it has a vertex of degree two, contrary
to Lemma 4.1. Thus we may assume that |E(C)| = 4. Let the vertices
of C be v1, v2, v3, v4 (in order), and let the edges of C be e1, e2, e3, e4

in such a way that ei has ends vi and vi+1, where v5 means v1. Let f1

be an isthmus of G\{e1, e3}, and let A, B be the vertex-sets of the two
components of G\{e1, e3, f1}. Let f2 be an isthmus of G\{e2, e4}, and
let C, D be the vertex-sets of the two components of G\{e2, e4, f2}. By
symmetry we may assume that v1 ∈ A; since G is 2-connected and has
minimum degree at least three we deduce that f1 6∈ {e1, e3}, and hence
u2 ∈ A and u3, u4 ∈ B. Similarly, we may assume that u2, u3 ∈ C and
u1, u4 ∈ D. If f1 has one end in A ∩ C and the other end in B ∩ D,
then f1 = f2. Thus at least one of the sets A∩C, A∩D, B ∩C, B ∩D
includes no end of f1 or f2, say A ∩ C does. Then G\{e1, e4} has no
path between u1 and u2, contrary to the fact that G is 2-connected and
has minimum degree at least three. �
Lemma 4.4. Let G be a minor minimal graph with no isthmus and no
Γ-flow. Then G is quasi 4-connected.

Proof. Let G be a minor minimal graph with no isthmus and no Γ−flow.
For a contradiction, suppose G is not quasi 4-connected. By Lemma 4.3
and Lemma 4.2, G is simple and 3-connected. Thus, there is a sepa-
ration (A1, A2) of order three such that |A1| , |A2| > 5. Let A1 ∩ A2 =
{u1, u2, u3} . Let G1 be obtained from G|A1 by adding a new vertex
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v1 and edges ei with ends ui and v1 for i = 1, 2, 3. Let G2 be ob-
tained from G|A2 − E (G|A1) by adding a new vertex v2 and edges
fi with ends ui and v2 for i = 1, 2, 3. Since G is 3-connected, nei-
ther G|A1 nor G|A2 can have an isthmus. Therefore, by the min-
imality of G, there exist Γ-flows φ1 and φ2 in G1 and G2 respec-
tively. It follows that the values φ1 (e1) , φ1 (e2) , φ1 (e3) are distinct,
and similarly for φ2 (f1) , φ2 (f2) , φ2 (f3). By the transitivity of Γ we
can assume φ1 (ei) = φ2 (fi) for i = 1, 2, 3. Now, the flow in G given
by φ (e) = φ1 (e) if e ∈ E (G1) − {e1, e2, e3} and φ (e) = φ2 (e) if
e ∈ E (G2) − {f1, f2, f3} is a Γ-flow, a contradiction.

�

The following implies Theorem 1.4.

Theorem 4.5. Every graph with no isthmus and no P−
10 minor has a

Γ-flow.

Proof. Let G be a minor minimal graph with no isthmus and no Γ-flow.
We will show that G has a P−

10 minor. By Lemma 4.3 we know that the
girth of G is at least five. By Lemma 4.1 we know that the minimum
degree of G is at least three. If G is planar then it has a Γ-flow by the
four color theorem and Theorem 1.1 of [16]. By Lemma 4.4, G is quasi
4-connected. Thus G is quasi 4-connected, nonplanar, has girth at least
five, and hence it has a P−

10 minor by Theorem 1.5, as desired. �
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