TEMPERLEY-LIEB ALGEBRAS AND THE FOUR-COLOR THEOREM

Louis Kauffman*
Department of Mathematics, Statistics and Computer Science
University of Illinois at Chicago
Chicago, Illinois 60680, USA
kauffman@uic.edu
and
Robin Thomas**
School of Mathematics
Georgia Institute of Technology
Atlanta, Georgia 30332-0160, USA
thomas@math.gatech.edu

Abstract

The Temperley-Lieb algebra T_{n} with parameter 2 is the associative algebra over \mathbf{Q} generated by $1, e_{0}, e_{1}, \ldots, e_{n}$, where the generators satisfy the relations $e_{i}^{2}=2 e_{i}, e_{i} e_{j} e_{i}=e_{i}$ if $|i-j|=1$ and $e_{i} e_{j}=e_{j} e_{i}$ if $|i-j| \geq 2$. We use the Four Color Theorem to give a necessary and sufficient condition for certain elements of T_{n} to be nonzero. It turns out that the characterization is, in fact, equivalent to the Four Color Theorem.

14 March 1999, revised 24 May 2001
Published in Combinatorica 23 (2003), 653-667.

[^0]
1. INTRODUCTION

Let $n \geq 1$ be an integer. The Temperley-Lieb algebra [11] T_{n} with parameter 2 is the associative algebra over \mathbf{Q} generated by $1, e_{0}, e_{1}, \ldots, e_{n}$, where the generators satisfy the relations

$$
\begin{align*}
& e_{i} e_{j} e_{i}=e_{i} \tag{2}\\
& \text { if }|i-j|=1 \tag{3}\\
& e_{i} e_{j}=e_{j} e_{i} \\
& \text { if }|i-j| \geq 2
\end{align*}
$$

for all $i, j=0,1, \ldots, n$. For $i=1,2, \ldots, n$ we define

$$
r_{i}= \begin{cases}1-\frac{1}{2} e_{i} & \text { if } i \text { is odd } \\ 2 e_{i}-1 & \text { if } i \text { is even }\end{cases}
$$

Notice that for $i, j=0,1, \ldots, n$ with $|i-j| \neq 1$ we have

$$
\begin{equation*}
e_{i} r_{j}=r_{j} e_{i} \tag{4}
\end{equation*}
$$

and for $i, j=0,1, \ldots, n$ with $|i-j|=1$ we have

$$
\begin{array}{cc}
r_{i} e_{i}=0 & \text { if } i \text { is odd } \\
e_{j} r_{i} e_{j}=0 & \text { if } i \text { is even. } \tag{6}
\end{array}
$$

Let \mathcal{W}_{n} denote the set of all finite words over the alphabet $\left\{e_{0}, e_{1}, \ldots, e_{n}, r_{0}, r_{1}, \ldots, r_{n}\right\}$. Following [6] we say that two words in \mathcal{W}_{n} are exterior equivalent if the first can be transformed to the second using the relations (2), (3), (4), and the relations $e_{i}^{2}=e_{i}$ for $i=0,1, \ldots, n$. Let $w \in \mathcal{W}_{n}$. We say that a word $w^{\prime} \in \mathcal{W}_{n}$ is a reduction of w if either $w^{\prime}=w$, or w^{\prime} is obtained from w by repeatedly replacing occurrences of $r_{2 j}$ by $e_{2 j}$, and/or deleting occurrences of $r_{2 j+1}$. Thus for instance the word $e_{3} e_{2} r_{3} e_{2} r_{2} e_{1}$ is a reduction of $e_{3} r_{2} r_{3} e_{2} r_{2} r_{3} e_{1}$. We say that $w^{\prime} \in \mathcal{W}_{n}$ is a complete reduction of a word $w \in \mathcal{W}_{n}$ if either $w^{\prime}=w$ and no r_{i} occurs in w, or w^{\prime} is a reduction of w and exactly one symbol in w^{\prime} is r_{i} for some $i=0,1, \ldots, n$. We say that a word $w \in \mathcal{W}_{n}$ is loopless if no complete reduction of w is exterior equivalent to a word containing $e_{i} r_{i}$ or $e_{i} r_{j} e_{i}$ (in consecutive positions) for some integers i, j, where $i, j \in\{0,1, \ldots, n\},|i-j|=1$, and i is odd. We have the following result.
(1.1) For every integer $n \geq 1$, a word $w \in \mathcal{W}_{n}$ represents a nonzero element of T_{n} if and only if it is loopless.

We deduce (1.1) from the Four Color Theorem (4CT), and show that, conversely, (1.1) implies the 4 CT . Thus (1.1) is equivalent to the 4CT. There are many other equivalent formulations of the Four Color Theorem, some of them rather puzzling. Therefore, (1.1) is not an isolated curiosity, but rather an addition to an already extensive list of equivalent formulations of the 4 CT . We refer the reader to the excellent survey [10] and to [12] for a survey of the newer results $[3,5,7]$.

The statement of (1.1) was inspired by [6]. Unfortunately, the authors of [6] overlooked the existence of large loops, and hence Theorem 6.4 of that paper is incorrect. Our result (1.1) remedies that problem.

2. PLANAR GRAPHS AND COLORING

A graph G consists of a set $V(G)$ of vertices, a set $E(G)$ of edges, and an incidence relation between vertices and edges such that every edge e is incident with precisely two vertices u, v, called the ends of e. If $u=v$, then e is called a loop edge. A graph is loopless if it has no loop edges. A graph is planar if it can be drawn in the plane without crossings. A 4-coloring of a graph G is a function $c: V(G) \rightarrow\{1,2,3,4\}$ such that $c(u) \neq c(v)$ whenever u, v are the ends of some edge of G. A graph is 4 -colorable if it admits at least one 4 -coloring. The Four Color Theorem [1, 2, 8] asserts the following.
(2.1) Every planar graph is 4-colorable if and only if it is loopless.

The "only if" part is, of course, trivial - every 4-colorable (not necessarily planar) graph is loopless, but the converse is much much harder. So far, there are only two proofs of (2.1), and both are computer-assisted.

We need to restate the 4 CT in terms of subgraphs of grid graphs with some edges contracted. For integers $n, t \geq 1$, the $n \times t$ grid is the graph G with vertex-set all pairs (i, j) for $i=0,1, \ldots, n$ and $j=0,1, \ldots, t$ in which (i, j) is is joined by an edge to $\left(i^{\prime}, j^{\prime}\right)$ if and only if $\left|i-i^{\prime}\right|+\left|j-j^{\prime}\right|=1$ and $j+j^{\prime} \neq 2 t$. We also say that G is a grid. See Figure 1

Figure 1. A grid.
for an example. Let G be a graph. A coupling on G is a function $\lambda: E(G) \rightarrow\{0,1, \infty\}$. If G is a grid we call the pair (G, λ) a coupled grid. Given a graph G and a coupling λ on G we wish to define a new graph H, which we shall call the realization of (G, λ). The graph H is obtained from G by deleting all edges α with $\lambda(\alpha)=1$ and contracting all edges α with $\lambda(\alpha)=\infty$. More precisely, let G_{1} be the subgraph of G with vertex-set $V(G)$ and edge-set $\{e \in E(G): \lambda(e)=\infty\}$. Then $V(H)$ is the set of all connected components of $G_{1}, E(H)=\{e \in E(G): \lambda(e)=0\}$, and $e \in E(H)$ is incident with $x \in V(H)$ if and only if an end of e belongs to $V(x)$, the vertex-set of the component x of G_{1}. This is illustrated in Figure 2, where we use the convention that edges α with $\lambda(\alpha)=\infty$ are drawn thicker and edges α with $\lambda(\alpha)=1$ are not drawn. We need the following well-known result. A proof may be found in [9, Theorem (1.5)].
(2.2) For every planar graph H there exists a grid G and a coupling λ on G such that H is isomorphic to the realization of (G, λ).

Let G be a graph, and let λ be a coupling on G. A loop in (G, λ) is a cycle C in G such that for some edge $e \in E(C), \lambda(e)=0$ and $\lambda(f)=\infty$ for all $f \in E(C)-\{e\}$. We say that (G, λ) is loopless if it has no loop. A 4-coloring of (G, λ) is a function $c: V(G) \rightarrow\{1,2,3,4\}$ such that $c(u) \neq c(v)$ whenever u, v are the ends of an edge $e \in E(G)$ with $\lambda(e)=0$ and

Figure 2. A coupled grid and its realization.
$c(u)=c(v)$ whenever u, v are the ends of an edge $e \in E(G)$ with $\lambda(e)=\infty$. We say that (G, λ) is 4 -colorable if it admits at least one 4 -coloring. The following is immediate.
(2.3) Let G be a graph, let λ be a coupling on G, and let H be the realization of (G, λ). Then H is loopless if and only if (G, λ) is loopless, and H is 4-colorable if and only if (G, λ) is 4-colorable.

3. THE POTTS MODEL REPRESENTATION

Let $n \geq 1$ be an integer, and let Σ be the set of all mappings $\{0,1, \ldots, n\} \rightarrow\{1,2,3,4\}$. We define $\Sigma \times \Sigma$ matrices $E_{0}, E_{1}, \ldots, E_{2 n}$ as follows. For $i=0,1, \ldots, n$ we define

$$
\left(E_{2 i}\right)_{\sigma \sigma^{\prime}}= \begin{cases}1 / 2 & \text { if } \sigma(j)=\sigma^{\prime}(j) \text { for all } j \in\{0,1, \ldots, n\}-\{i\} \\ 0 & \text { otherwise }\end{cases}
$$

and for $i=1,2, \ldots, n$ we define

$$
\left(E_{2 i-1}\right)_{\sigma \sigma^{\prime}}= \begin{cases}2 & \text { if } \sigma=\sigma^{\prime} \text { and } \sigma(i)=\sigma(i-1) \\ 0 & \text { otherwise }\end{cases}
$$

It is easy to see that the matrices $E_{0}, E_{1}, \ldots, E_{2 n}$ satisfy the relations (1), (2), (3) of $T_{2 n}$. The matrix algebra generated by $E_{0}, E_{1}, \ldots, E_{2 n}$ is called the Potts model representation, and will be denoted by $P_{2 n}$. Let $\Phi(1)=I$, the identity matrix, and for $i=0,1, \ldots, 2 n$ let $\Phi\left(e_{i}\right)=E_{i}$. Then Φ uniquely extends to a homomorphism $T_{2 n} \rightarrow P_{2 n}$. The following is a special case of [4, Theorem 2.8.5].
(3.1) For every $n \geq 1$ there exists a mapping $\operatorname{Tr}: T_{n} \rightarrow \mathbf{Q}$ such that
(i) $\operatorname{Tr}(x+y)=\operatorname{Tr}(x)+\operatorname{Tr}(y)$ for all $x, y \in T_{n}$,
(ii) $\operatorname{Tr}(1)=4^{n+1}$,
(iii) $\operatorname{Tr}(x y)=\operatorname{Tr}(y x)$ for all $x, y \in T_{n}$,
(iv) $\operatorname{Tr}\left(w e_{i}\right)=\frac{1}{2} \operatorname{Tr}(w)$ for all $i=0,1, \ldots, n$ and all w in the subalgebra of T_{n} generated by $1, e_{0}, e_{1}, \ldots, e_{i-1}$, and
(v) for every nonzero element $x \in T_{n}$ there exists $y \in T_{n}$ such that $\operatorname{Tr}(x y) \neq 0$.

We deduce
(3.2) The homomorphism $\Phi: T_{2 n} \rightarrow P_{2 n}$ is an isomorphism.

Proof. Let $\operatorname{tr}(A)$ denote the usual trace of a matrix; then conditions (i)-(iv) of (3.1) imply that $\operatorname{Tr}(x)=\operatorname{tr}(\Phi(x))$ for every $x \in T_{2 n}$. Now let x be a nonzero element of $T_{2 n}$. It suffices to show that $\Phi(x)$ is a nonzero matrix. By (3.1) (v) there exists $y \in T_{n}$ such that

$$
0 \neq \operatorname{Tr}(x y)=\operatorname{tr}(\Phi(x y))=\operatorname{tr}(\Phi(x) \Phi(y))
$$

which implies that $\Phi(x)$ is a nonzero matrix, as desired.

4. GRIDS AND WORDS

Let $w \in \mathcal{W}_{n}$, and let us write w as $w=w_{1} w_{2} \ldots w_{2 t}$, a concatentation of $2 t$ (possibly null) words, where for each $i=1,2, \ldots, 2 t$ and each $j=0,1, \ldots, n$
(i) at most one of e_{j}, r_{j} occurs in w_{i}, and if it does, then it occurs at most once,
(ii) if e_{j} or r_{j} occurs in w_{i}, then i and j have the same parity.

We say that $w=w_{1} w_{2}, \ldots, w_{2 t}$ is a decomposition of w. Clearly every word $w \in \mathcal{W}_{n}$ has a decomposition.

Let $w=w_{1} w_{2} \ldots w_{2 t}$ be a decomposition of a word $w \in \mathcal{W}_{2 n}$. With this decomposition we associate the pair (G, λ), where G is the $n \times t$ grid, and λ is a coupling on G, defined as follows. Let $i \in\{1,2, \ldots, n\}$ and $j \in\{0,1, \ldots, t-1\}$, and let α denote the edge of G with ends $(i-1, j)$ and (i, j). We put

$$
\lambda(\alpha)= \begin{cases}0 & \text { if } r_{2 i-1} \text { occurs in } w_{2 j+1} \\ \infty & \text { if } e_{2 i-1} \text { occurs in } w_{2 j+1} \\ 1 & \text { otherwise }\end{cases}
$$

Now let $i \in\{0,1, \ldots, n\}$ and $j \in\{1,2, \ldots, t\}$, and let β denote the edge of G with ends $(i, j-1)$ and (i, j). We put

$$
\lambda(\beta)= \begin{cases}0 & \text { if } r_{2 i} \text { occurs in } w_{2 j} \\ 1 & \text { if } e_{2 i} \text { occurs in } w_{2 j} \\ \infty & \text { otherwise }\end{cases}
$$

We say that (G, λ) is associated with the decomposition $w=w_{1} w_{2} \ldots w_{2 t}$. Conversely, for every coupled $\operatorname{grid}(G, \lambda)$ there exists a word w and a decomposition $w=w_{1} w_{2} \ldots w_{2 t}$ of w such that (G, λ) is the associated coupled grid. Moreover, if $w=w_{1}^{\prime} w_{2}^{\prime} \ldots w_{2 t^{\prime}}^{\prime}$ is another decomposition of the same word w such that (G, λ) is also associated with the decomposition $w_{1}^{\prime} w_{2}^{\prime} \ldots w_{2 t^{\prime}}^{\prime}$, then $t=t^{\prime}$, and for each $i=1,2, \ldots, 2 t, w_{i}$ and w_{i}^{\prime} differ only by a permutation of their entries. Thus w and w^{\prime} are exterior equivalent.
(4.1) Let $n \geq 1$ be an integer, let $w \in \mathcal{W}_{2 n}$, let $w=w_{1} w_{2} \ldots w_{2 t}$ and $w=w_{1}^{\prime} w_{2}^{\prime} \ldots w_{2 t^{\prime}}^{\prime}$ be two decompositions of w, and let $(G, \lambda),\left(G^{\prime}, \lambda^{\prime}\right)$ be the respective associated coupled grids. Then the realizations of (G, λ) and $\left(G^{\prime}, \lambda^{\prime}\right)$ are isomorphic.

Proof. Let $w=w_{1} w_{2} \ldots w_{2 t}$ and $w=w_{1}^{\prime} w_{2}^{\prime} \ldots w_{2 t^{\prime}}^{\prime}$ be two decompositions of w such that either $t^{\prime}=t-2$ and for some integer $i \in\{1,2, \ldots, 2 t\}$ the words w_{i-1} and w_{i} are null, $w_{j}=w_{j}^{\prime}$ for $j<i-1$ and $w_{j}=w_{j-2}^{\prime}$ for $j>i$, or $t=t^{\prime}$ and for some integer $i \in\{2,3, \ldots, 2 t-1\}, w_{i}$ and w_{i}^{\prime} are null, and for some word $x \in \mathcal{W}_{2 n}$ we have $w_{i-1}^{\prime}=w_{i-1} x$, $w_{i+1}=x w_{i+1}^{\prime}$ and $w_{j}=w_{j}^{\prime}$ for all other j. In those circumstances we say that the two decompositions of w are adjacent. It is easy to see that
(i) if two decompositions of w are adjacent, then the realizations of the corresponding associated coupled grids are isomorphic, and
(ii) for any two decompositions d, d^{\prime} of w there exist decompositions $d_{0}=d, d_{1}, \ldots, d_{k}=d^{\prime}$ such that d_{i-1} and d_{i} are adjacent for all $i=1,2, \ldots, k$.
The result follows from (i) and (ii).
(4.2) Let $n \geq 1$ be an integer, let $w_{1}, w_{2} \in \mathcal{W}_{2 n}$ be two exterior equivalent words, for $i=1,2$ let $\left(G_{i}, \lambda_{i}\right)$ be the coupled grid associated with some decomposition of w_{i}, let H_{i} be the realization of $\left(G_{i}, \lambda_{i}\right)$, and let H_{i}^{\prime} be obtained from H_{i} by deleting isolated vertices. Then H_{1}^{\prime} is isomorphic to H_{2}^{\prime}.

Proof. Let $w_{i},\left(G_{i}, \lambda_{i}\right), H_{i}$ and H_{i}^{\prime} be as stated. It suffices to prove the lemma in the case when w_{1} is obtained from w_{2} by means of the relations (2), (3), (4), or the relations $e_{i}^{2}=e_{i}$. We shall do so for the relation $e_{2 i}^{2}=e_{2 i}$, leaving the other cases to the reader. (In the other cases H_{1} and H_{2} are isomorphic.)

Let us assume then that $w_{1}=x e_{2 i} e_{2 i} y$ and $w_{2}=x e_{2 i} y$ for some $x, y \in \mathcal{W}_{2 n}$. Let $w_{1}=w_{1}^{\prime \prime} w_{2}^{\prime \prime} \ldots w_{2 t}^{\prime \prime}$ and $w_{2}=w_{1}^{\prime} w_{2}^{\prime} \ldots w_{2 t^{\prime}}^{\prime}$ be the decompositions of w that give rise to $\left(G_{1}, \lambda_{1}\right)$ and $\left(G_{2}, \lambda_{2}\right)$, respectively. By (4.1) we may assume that $t=t^{\prime}$ and for some integer $j \in\{1,2, \ldots, t-1\}, w_{2 j}^{\prime \prime}=w_{2 j}^{\prime}=w_{2 j+2}^{\prime \prime}=e_{2 i}$, and $w_{2 j+1}^{\prime \prime}, w_{2 j+1}^{\prime}$ and $w_{2 j+2}^{\prime}$ are null, and $w_{j^{\prime}}^{\prime \prime}=w_{j^{\prime}}^{\prime}$ for all other indices j^{\prime}. Then it follows that the subgraph of G with vertex-set $\{(i, j)\}$ and no edges is an isolated vertex of H_{1}, and that the graph obtained from H_{1} by deleting this vertex is isomorphic to H_{2}, as desired.

We deduce
(4.3) Let $n \geq 1$ be an integer, let $w_{1}, w_{2} \in \mathcal{W}_{2 n}$ be two exterior equivalent words, and for $i=1,2$ let $\left(G_{i}, \lambda_{i}\right)$ be the coupled grid associated with some decomposition of w_{i}. Then $\left(G_{1}, \lambda_{1}\right)$ is loopless if and only if $\left(G_{2}, \lambda_{2}\right)$ is loopless.

Proof. This follows immediately from (4.2).
(4.4) Let $n \geq 1$ be an integer, let $w \in \mathcal{W}_{2 n}$, and let (G, λ) be the coupled grid associated with some decomposition of w. If (G, λ) has a loop of length four, then w is exterior equivalent to a word containing $e_{2 j-1} r_{2 j-1}$, or $e_{2 j-1} r_{2 j} e_{2 j-1}$ or $e_{2 j+1} r_{2 j} e_{2 j+1}$ for some j.

Proof. Let C be a loop in (G, λ) of length four. Then the existence of C implies that w has one of the following forms: $w=x e_{2 i-1} y_{1} r_{2 i-1} z, w=x e_{2 i-1} y_{1} r_{2 i} y_{2} e_{2 i-1} z, w=$ $x e_{2 i-1} y_{1} r_{2 i-2} y_{2} e_{2 i-1} z$, or $w=x r_{2 i-1} y_{1} e_{2 i-1} z$, where the words y_{1} and y_{2} include no terms with index within one from the indices of the entries immediately surrounding y_{1} and y_{2} in the expression for w. Using (3) and (4) it follows that w is exterior equivalent to one of the desired words.

Let G be a grid, and let λ_{1}, λ_{2} be two couplings on G such that for some edge α, $\lambda_{1}(\alpha)=1, \lambda_{2}(\alpha)=\infty$ and $\lambda_{1}(\beta)=\lambda_{2}(\beta)$ for every edge $\beta \in E(G)-\{\alpha\}$. If u is a vertex of G incident with α such that $\lambda_{1}(\beta)=1$ for every edge β incident with u, then we say that λ_{1}, λ_{2} are 1 -similar. If C is a cycle in G of length four such that $\alpha \in E(C)$ and $\lambda_{2}(\beta)=\infty$ for every $\beta \in E(C)$, then we say that λ_{1} and λ_{2} are 2 -similar. We say that two couplings $\lambda, \lambda^{\prime}$ on G are similar if there exists a sequence $\lambda_{0}=\lambda, \lambda_{1}, \ldots, \lambda_{k}=\lambda^{\prime}$ of couplings on G such that λ_{i-1} and λ_{i} are 1 -similar or 2 -similar for all $i=1,2, \ldots, k$.
(4.5) Let $n \geq 1$, let $w_{1}, w_{2} \in \mathcal{W}_{2 n}$, let G be a grid, and let λ_{1}, λ_{2} be couplings on G such that for $i=1,2$ the coupled grid $\left(G, \lambda_{i}\right)$ is associated with some decomposition of w_{i}. If λ_{1} and λ_{2} are similar, then w_{1} and w_{2} are exterior equivalent.

Proof. It suffices to prove the statement in the case when λ_{1} and λ_{2} are 1 -similar or 2-similar. Assume first that they are 1-similar, and let $u=(i, j) \in V(G)$ be as in the definition of 1 -similar. Using relations (3) and (4) we may assume that w_{1} has the form $w_{1}=x e_{2 i} e_{2 i} y$ and that $w_{2}=x e_{2 i} e_{2 i-1} e_{2 i} y$ or $w_{2}=x e_{2 i} e_{2 i+1} e_{2 i} y$ or $w_{2}=x e_{2 i} y$. In each case we see that w_{1} and w_{2} are exterior equivalent, as desired.

Assume now that λ_{1} and λ_{2} are 2 -similar, and let C be a cycle in G as in the definition of 2 -similar. Then using relations (3) and (4) we may assume that w_{2} has the form $w_{2}=x e_{2 i+1} e_{2 i+1} y$ for some integer i, and that $w_{1}=x e_{2 i+1} y$ or $w_{1}=x e_{2 i+1} e_{2 i} e_{2 i+1} y$ or
$w_{1}=x e_{2 i+1} e_{2 i+2} e_{2 i+1} y$. In each case we see that w_{1} and w_{2} are exterior equivalent, as desired.

We need some terminology and a lemma. Let G be a grid. We say that a sequence $v_{1}, v_{2}, \ldots, v_{k}$ of distinct vertices of G is diagonal if there exist edge-disjoint cycles $D_{1}, D_{2}, \ldots, D_{k-1}$ in G, each of length four, such that for $i=1,2, \ldots, k-1, v_{i+1}$ and v_{i} are diagonally opposite vertices of D_{i}. The cycles $D_{1}, D_{2}, \ldots, D_{k-1}$ are uniquely determined, and we say that $v_{1}, v_{2}, \ldots, v_{k}$ is a diagonal sequence with cycles $D_{1}, D_{2}, \ldots, D_{k-1}$. Now let C be a cycle in G. We say that a vertex v of C is a corner of C if the two edges of C incident with v belong to a cycle D of length four. In that case D is unique, and we say that v is a convex corner if the disk bounded by D is a subset of the disk bounded by C, and we say that it is a concave corner otherwise. Now let v be a convex corner and v^{\prime} a concave corner of a cycle C, and assume that there is a diagonal sequence $v_{1}, v_{2}, \ldots, v_{k}$ with cycles $D_{1}, D_{2}, \ldots, D_{k-1}$ such that $v_{1}=v, v_{k}=v^{\prime}$, none of the vertices $v_{2}, v_{3}, \ldots, v_{k-1}$ belongs to C, the two edges of D_{1} incident with v_{1} belong to C, and so do the two edges incident with v_{k} that do not belong to D_{k-1}. It follows that $v_{2}, v_{3}, \ldots, v_{k-1}$ belong to the open disk bounded by C. In those circumstances we say that v faces v^{\prime}. This is illustrated in Figure 3.

Assume now that $v_{1}, v_{2}, \ldots, v_{k}$ is a diagonal sequence with cycles $D_{1}, D_{2}, \ldots, D_{k-1}$, where the two edges of D_{1} incident with v_{1} belong to C (thus v_{1} is a convex corner of C), and $v_{2}, v_{3}, \ldots, v_{k-1} \notin V(C)$. If $\alpha \in E\left(D_{k-1}\right)$ is not incident with v_{k-1}, then we say that v_{1} faces α. We need the following lemma.
(4.6) Let G be a grid, let C be a cycle in G of length exceeding four, and let $\alpha_{0} \in E(C)$. Then there exists a convex corner of C that faces no concave corner of C and does not face α_{0}.

Proof. Since $\alpha_{0} \in E(C)$, at most two convex corners of C face α_{0}. But the number of convex corners is equal to the number of concave corners plus four, and so the lemma follows.

Figure 3. A convex corner facing a concave corner.

Now let λ be a coupling on G, let C be a cycle in G, and let v_{1} be a convex corner of C. A (λ, C)-stairway based at v_{1} is a diagonal sequence $v_{1}, v_{2}, \ldots, v_{k}$ with cycles $D_{1}, D_{2}, \ldots, D_{k-1}$ such that
(i) the two edges of D_{1} incident with v_{1} belong to C,
(ii) for $i=1,2, \ldots, k-1, \lambda(\alpha)=\infty$ if $\alpha \in E\left(D_{i}\right)$ is incident with v_{i} and $\lambda(\alpha)=1$ if $\alpha \in E\left(D_{i}\right)$ is not incident with v_{i}, and
(iii) subject to (i) and (ii), k is maximum.

Thus for every convex corner v of C there is a unique (λ, C)-stairway based at v. See Figure 4.
(4.7) Let $n, t \geq 1$, let G be the $n \times t$ grid, and let λ_{0} be a coupling on G such that exactly one edge α_{0} of G satisfies $\lambda\left(\alpha_{0}\right)=0$. If $\left(G, \lambda_{0}\right)$ has a loop, then λ_{0} is similar to a coupling λ such that (G, λ) has a loop of length four.

Proof. Let $G, \lambda_{0}, \alpha_{0}$ be as stated. We choose λ and C such that
(i) λ is a coupling on G similar to λ_{0},
(ii) C is a loop in (G, λ) bounding a disk Δ,
(iii) subject to (i) and (ii), the area of Δ is minimum,

Figure 4. A (λ, C)-stairway.
(iv) subject to (i)-(iii), the number of edges $\alpha \in E(G)$ with $\lambda(\alpha)=\infty$ is minimum, and (v) subject to (i)-(iv), $\eta(\lambda, C)$ is minimum,
where $\eta(\lambda, C)=0$ if C has length four, and otherwise it is defined as the minimum length of a (λ, C)-stairway based at a convex corner v of C such that v does not face α_{0} or a concave corner of C. It follows from (4.6) that this quantity is well-defined. The choice of λ and C is possible, because λ_{0} and any loop in $\left(G, \lambda_{0}\right)$ satisfy (i) and (ii). We shall prove that C has length four, which will complete the proof. We first notice the following.
(*) No vertex of $G \backslash V(C)$ is incident with exactly one edge $\alpha \in E(G)$ satisfying $\lambda(\alpha)=\infty$.

To prove (*) suppose for a contradiction that $v \in V(G)-V(C)$ is incident with α, where $\lambda(\alpha)=\infty$, and α is the only such edge incident with v. Since $v \notin V(C)$ we see that $\lambda(\beta)=1$ for every edge $\beta \neq \alpha$ incident with v. Let $\lambda^{\prime}(\alpha)=1$ and let $\lambda^{\prime}(\beta)=\lambda(\beta)$ for all $\beta \in E(G)-\{\alpha\}$. Then λ^{\prime} is similar to λ, the area of Δ has not changed, and yet $\left(G, \lambda^{\prime}\right)$ has fewer edges β satisfying $\lambda(\beta)=\infty$, contrary to (iv). This proves (*).

Suppose for a contradiction that C has length strictly greater than four. Let v_{1} be a convex corner of C not facing α_{0} or any concave corner such that the (λ, C)-stairway based at v_{1}, say $v_{1}, v_{2}, \ldots, v_{k}$, satisfies $k=\eta(\lambda, C)$. Let $D_{1}, D_{2}, \ldots, D_{k-1}$ be the circuits of
length four as in the definition of diagonal sequence. We claim that $v_{2}, v_{3}, \ldots, v_{k} \notin V(C)$. To see this, suppose for a contradiction that one of those vertices belongs to $V(C)$, and let $i \in\{2,3, \ldots, k\}$ be the minimum integer such that $v_{i} \in V(C)$. Since $\lambda(\beta)=1$ for both edges β of D_{i-1} incident with v_{i}, we deduce that the two edges of D_{i} incident with v_{i} belong to C (where D_{k} is defined in the natural way). But then v_{i} is a concave corner of C, and v_{1} faces v_{i}, a contradiction. Thus $v_{2}, v_{3}, \ldots, v_{k} \notin V(C)$.

Next we claim that every edge α incident with v_{k} satisfies $\lambda(\alpha)=1$. To prove this suppose otherwise. Since $v_{k} \notin V(C)$ and α_{0} is the only edge with $\lambda\left(\alpha_{0}\right)=0$, we see that v_{k} is incident with an edge α satisfying $\lambda(\alpha)=\infty$. By $(*) v_{k}$ is incident with at least two such edges, and hence it is incident with exactly two such edges, say α^{\prime} and β^{\prime}. Then α^{\prime} and β^{\prime} are the two edges incident with v_{k} that do not belong to D_{k-1}. Let D_{k} be the unique cycle of length four in G with $\alpha^{\prime}, \beta^{\prime} \in E\left(D_{k}\right)$, and let v_{k+1} be the vertex of D_{k} not equal or adjacent to v_{k}. Let $\gamma^{\prime}, \delta^{\prime}$ be the two remaining edges of D_{k}. Since v_{1} does not face α_{0} we deduce that γ^{\prime} and δ^{\prime} are not equal to α_{0}, and hence $\lambda\left(\gamma^{\prime}\right) \neq 0 \neq \lambda\left(\delta^{\prime}\right)$. The sequence $v_{1}, v_{2}, \ldots, v_{k+1}$ is not a (λ, C)-stairway by condition (iii) in the definition of (λ, C)-stairway. Thus one of $\lambda\left(\gamma^{\prime}\right), \lambda\left(\delta^{\prime}\right)$ is not equal to one, and so we may assume that $\lambda\left(\gamma^{\prime}\right)=\infty$, because α_{0} is the only edge with $\lambda\left(\alpha_{0}\right)=0$. If $\lambda\left(\delta^{\prime}\right)=\infty$, then the coupling obtained from λ by changing the value of $\lambda\left(\alpha^{\prime}\right)$ to 1 is 2 -similar to λ, contrary to (iv). Thus $\lambda\left(\delta^{\prime}\right)=1$. Now let λ^{\prime} be obtained from λ first by changing the value of $\lambda\left(\delta^{\prime}\right)$ to ∞, then changing the value of $\lambda\left(\alpha^{\prime}\right)$ to 1 , and finally changing the value of $\lambda\left(\beta^{\prime}\right)$ to 1 . The first two changes are done using 2 -similarity, and the third is done using 1-similarity. Thus λ^{\prime} is similar to λ, contrary to (iv). This proves that every edge α incident with v_{k} satisfies $\lambda(\alpha)=1$.

Let $E\left(D_{k-1}\right)=\{\alpha, \beta, \gamma, \delta\}$, where α, β are incident with v_{k-1} and γ, δ are incident with v_{k}. Let λ_{1} be the coupling on G defined by $\lambda_{1}(\alpha)=\lambda_{1}(\beta)=1, \lambda_{1}(\gamma)=\infty, \lambda_{1}(\delta)=\infty$, and $\lambda_{1}(\epsilon)=\lambda(\epsilon)$ for all $\epsilon \in E(G)-E\left(D_{k-1}\right)$. Then λ_{1} is similar to λ. (To see this, first change $\lambda(\gamma)$ to ∞, then change $\lambda(\delta)$ to ∞, then change $\lambda(\beta)$ to 1 , and finally change $\lambda(\alpha)$ to 1 . The first and last changes are done using 1-similarity, and the other two are done using 2 -similarity.) Now if $k \geq 2$, then λ_{1} contradicts (v), and hence $k=1$. Let C_{1} be the cycle in G with edge-set $(E(C)-\{\alpha, \beta\}) \cup\{\gamma, \delta\}$; then the pair λ_{1}, C_{1} contradicts condition
(iii). This completes the proof of the fact that C has length four, and hence finishes the proof of the lemma.
(4.8) Let $n \geq 1$ be an integer, let $w \in \mathcal{W}_{2 n}$, and let (G, λ) be the coupled grid associated with some decomposition of w. Then w is loopless if and only if (G, λ) is loopless.

Proof. Let d be the decomposition of w that gives rise to (G, λ). Suppose first that w is not loopless. Then some complete reduction w^{\prime} of w is exterior equivalent to a word $w^{\prime \prime}$ that contains $e_{2 j-1} r_{2 j-1}$ or $e_{2 j-1} r_{2 j} e_{2 j-1}$ or $e_{2 j+1} r_{2 j} e_{2 j+1}$. Then d induces a decomposition d^{\prime} of w^{\prime} in the natural way; let $\left(G^{\prime}, \lambda^{\prime}\right)$ be the coupled grid associated with d^{\prime}. Then $G=G^{\prime}$. Let $\left(G^{\prime \prime}, \lambda^{\prime \prime}\right)$ be the coupled grid associated with some decomposition of $w^{\prime \prime}$. Since $w^{\prime \prime}$ contains one of the words stated above, it follows that ($G^{\prime \prime}, \lambda^{\prime \prime}$) has a loop (of length four). Thus $\left(G^{\prime}, \lambda^{\prime}\right)$ has a loop by (4.3). But a loop in $\left(G^{\prime}, \lambda^{\prime}\right)$ is also a loop in (G, λ), as desired.

To prove the converse let (G, λ) have a loop, say C. We define a coupling λ^{\prime} on G as follows

$$
\lambda^{\prime}(\alpha)= \begin{cases}1 & \text { if } \alpha \notin E(C) \text { and } \lambda(\alpha)=0 \\ \lambda(\alpha) & \text { otherwise }\end{cases}
$$

It follows that $\left(G, \lambda^{\prime}\right)$ is associated with a decomposition of some complete reduction w^{\prime} of w. Notice that C is a loop in $\left(G, \lambda^{\prime}\right)$, and that there is exactly one edge, say $\alpha_{0} \in E(G)$, such that $\lambda^{\prime}\left(\alpha_{0}\right)=0$.

By (4.7) there exists a coupling $\lambda^{\prime \prime}$ on G such that $\left(G, \lambda^{\prime}\right)$ and $\left(G, \lambda^{\prime \prime}\right)$ are similar, and such that $\left(G, \lambda^{\prime \prime}\right)$ has a loop of length four. Let $w^{\prime \prime} \in \mathcal{W}_{2 n}$ be such that $\left(G, \lambda^{\prime \prime}\right)$ is associated with some decomposition of $w^{\prime \prime}$; by (4.5) the words w^{\prime} and $w^{\prime \prime}$ are exterior equivalent. But $w^{\prime \prime}$ is exterior equivalent to a word containing $e_{2 j-1} r_{2 j-1}$ or $e_{2 j-1} r_{2 j} e_{2 j-1}$ or $e_{2 j+1} r_{2 j} e_{2 j+1}$ by (4.4), and hence so is w^{\prime}, as desired.

5. TRANSFER MATRICES

Let $n, t \geq 1$ be integers, let G be the $n \times t$ grid, and let λ be a coupling on G. Let Σ be as in Section 3, and let a $\Sigma \times \Sigma$ matrix M be defined by saying that $(M)_{\sigma \sigma^{\prime}}$, the $\left(\sigma, \sigma^{\prime}\right)$-entry
of M, is the number of 4-colorings c of (G, λ) such that $c((i, 0))=\sigma(i)$ and $c((i, t))=\sigma^{\prime}(i)$ for all $i=0,1, \ldots, n$. The matrix M is called the transfer matrix of (G, λ).

We now explain how transfer matrices can be calculated using the Potts model representation. Let n, t, and (G, λ) be as above. With each edge α of G we associate a matrix $X(\alpha) \in P_{2 n}$ as follows. If α has ends $(i-1, j)$ and (i, j), then we define $X(\alpha)=I+\frac{1}{2}(\lambda(\alpha)-1) E_{2 i-1}$ if $\lambda(\alpha) \neq \infty$ and $X(\alpha)=\frac{1}{2} E_{2 i-1}$ otherwise. If α has ends $(i, j-1)$ and (i, j), then we define $X(\alpha)=(\lambda(\alpha)-1) I+2 E_{2 i}$ if $\lambda(\alpha) \neq \infty$ and $X(\alpha)=I$ otherwise. For $j=1,2, \ldots, t$ let $\rho_{2 j-1}$ be the set of all edges of G with ends $(i-1, j-1)$ and $(i, j-1)$ for some $i=1,2, \ldots, n$, and let $\rho_{2 j}$ be the set of all edges of G with ends $(i, j-1)$ and (i, j) for some $i=0,1, \ldots, n$. Since the matrices E_{i} satisfy the relations (3) we see that $X(\alpha)$ and $X(\beta)$ commute whenever $\alpha, \beta \in \rho_{j}$ for some j, and hence the expression

$$
\begin{equation*}
\prod_{\alpha \in \rho_{1}} X(\alpha) \prod_{\alpha \in \rho_{2}} X(\alpha) \cdot \ldots \cdot \prod_{\alpha \in \rho_{2 t}} X(\alpha) \tag{7}
\end{equation*}
$$

is well-defined.
(5.1) The transfer matrix of a coupled $\operatorname{grid}(G, \lambda)$ is given by formula (7).

Proof. We proceed by induction on t. If $t=0$, then the graph G consists of $n+1$ isolated vertices, and hence M is the identity matrix. Since $t=0$ the expression (7) consists of the empty product, and hence the result holds.

Let now $t>0$, and assume that the result holds for all smaller integers. Let G^{\prime} be the $n \times(t-1)$ grid; then G^{\prime} is a subgraph of G. Let λ^{\prime} be the restriction of λ to $E\left(G^{\prime}\right)$, let J be the subgraph of G with vertex-set $\{(i, j): i \in\{0,1 \ldots, n\}, j \in\{t-1, t\}\}$ and edge-set $E(G)-E\left(G^{\prime}\right)$ and let μ be the restriction of λ to $E(J)$. Let M, M^{\prime} be the transfer matrices of G, G^{\prime}, respectively. By the induction hypothesis

$$
M^{\prime}=\prod_{\alpha \in \rho_{1}} X(\alpha) \prod_{\alpha \in \rho_{2}} X(\alpha) \cdot \ldots \cdot \prod_{\alpha \in \rho_{2 n-2}} X(\alpha),
$$

and hence it suffices to show that $M=M^{\prime} X$, where

$$
X=\prod_{\alpha \in \rho_{2 n-1}} X(\alpha) \prod_{\alpha \in \rho_{2 n}} X(\alpha) .
$$

So we need to show that for all $\sigma_{1}, \sigma_{2} \in \Sigma$,

$$
(M)_{\sigma_{1} \sigma_{2}}=\sum_{\sigma \in \Sigma}\left(M^{\prime}\right)_{\sigma_{1} \sigma}(X)_{\sigma \sigma_{2}}
$$

This is indeed true, and follows from the following fact. Let $c: V(G) \rightarrow\{1,2,3,4\}$ be defined by $c((i, t-1))=\sigma(i)$ and $c((i, t))=\sigma_{2}(i)$. Then $(X)_{\sigma \sigma_{2}}=1$ if c is a 4-coloring of (J, μ), and $(X)_{\sigma \sigma_{2}}=0$ otherwise.

Thus $M=M^{\prime} X$, and the result follows.
(5.2) Let $n \geq 1$ be an integer, let $w \in \mathcal{W}_{2 n}$, and let (G, λ) be the coupled grid associated with some decomposition $w=w_{1} w_{2} \ldots w_{2 t}$ of w. Then (G, λ) is 4-colorable if and only if w represents a nonzero element of $T_{2 n}$.

Proof. It follows from the definition of the associated coupled grid and from the definition of $X(\alpha)$ that $\prod_{\alpha \in \rho_{i}} X(\alpha)=\Phi\left(w_{i}\right)$ for all $i=1,2, \ldots, 2 t$, where Φ is defined prior to (3.1). From (3.2) and (5.1) we deduce that $w \neq 0$ in $T_{2 n}$ if and only if the transfer matrix M of (G, λ) is a nonzero matrix. But M is a nonzero matrix if and only if (G, λ) is 4-colorable, as desired.

6. PROOF OF THE EQUIVALENCE

We are now ready to prove the equivalence of (1.1) and (2.1).
(6.1) Theorem (2.1) implies (1.1).

Proof. Let $n \geq 1$ be an integer. Since T_{n} is a subalgebra of T_{n+1}, we may assume that n is even. Let $w \in \mathcal{W}_{n}$, and let (G, λ) be the coupled grid associated with some decomposition of w. By (4.8) the word w is loopless if and only if (G, λ) is loopless. Let H be the realization of (G, λ). By (2.3), (G, λ) is loopless if and only if H is loopless. By (2.1) the graph H is loopless if and only if it is 4 -colorable. By (2.3) H is 4 -colorable if and only if (G, λ) is 4-colorable. By $(5.2)(G, \lambda)$ is 4-colorable if and only if w is nonzero in T_{n}. Thus w is loopless if and only if it represents a nonzero element in T_{n}, as desired.
(6.2) Theorem (1.1) implies (2.1).

Proof. Let H be a planar graph. Clearly, if H has a loop, then it is not 4 -colorable. Conversely, suppose that H is loopless. By (2.2) there exists a coupled grid (G, λ) such that H is isomorphic to the realization of (G, λ). By (2.3) the coupled grid (G, λ) is loopless. Let n be such that G is an $n \times t$ grid for some integer t. Let $w \in \mathcal{W}_{2 n}$ be such that (G, λ) is the coupled grid associated with some decomposition of w. By (4.8) the word w is loopless, and hence represents a nonzero element of $T_{2 n}$ by (1.1). From (5.2) we deduce that (G, λ) is 4-colorable. By (2.3) H is 4-colorable, as desired.

References

1. K. Appel and W. Haken, Every planar map is four colorable, Part I: discharging, Illinois J. of Math. 21 (1977), 429-490.
2. K. Appel, W. Haken and J. Koch, Every planar map is four colorable, Part II: reducibility, Illinois J. of Math. 21 (1977), 491-567.
3. D. Bar-Natan, Lie algebras and the four color theorem, Combinatorica 17 (1997), 43-52.
4. F. M. Goodman, P. de la Harpe and V. F. R. Jones, Coxeter graphs and towers of algebras, Springer-Verlag, New York, 1980.
5. L. H. Kauffman, Map coloring and the vector cross product, J. Combin. Theory Ser. B 48 (1990), 145-154.
6. L. H. Kauffman and H. Saleur, An algebraic approach to the planar coloring problem, Comm. Math. Phys. 152 (1993), 565-590.
7. Y. Matiyasevich, The Four Colour Theorem as a possible corollary of binomial summation, manuscript.
8. N. Robertson, D. P. Sanders, P. D. Seymour and R. Thomas, The four-colour theorem, J. Combin. Theory Ser. B 70 (1997), 2-44.
9. N. Robertson, P. D. Seymour and R. Thomas, Quickly excluding a planar graph, J. Combin. Theory Ser. B 62 (1994), 323-348.
10. T. L. Saaty, Thirteen colorful variations on Guthrie's four-color conjecture, Am. Math. Monthly 79 (1972), 2-43.
11. H. N. V. Temperley and E. H. Lieb, Relations between the "percolation" and "colouring" problem and other graph theoretical problems associated with regular planar lattices: some exact results for the "percolation" problem, Proc. Roy. Soc. London Ser. A 322 (1971), 251-280.
12. R. Thomas, An update on the Four-Color Theorem, Notices Amer. Math. Soc. 45 (1998), 848-859.

[^0]: * Partially supported by NSF under Grant DMS-9802859 and by NSA under grant MDA904-97-1-0015.
 ** Partially supported by NSF under Grant DMS-9623031 and by NSA under Grant MDA904-98-1-0517.

