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ABSTRACT

The Temperley-Lieb algebra Tn with parameter 2 is the associative algebra
over Q generated by 1, e0, e1, . . . , en, where the generators satisfy the rela-
tions e2

i = 2ei, eiejei = ei if |i − j| = 1 and eiej = ejei if |i − j| ≥ 2. We
use the Four Color Theorem to give a necessary and sufficient condition for
certain elements of Tn to be nonzero. It turns out that the characterization
is, in fact, equivalent to the Four Color Theorem.
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1. INTRODUCTION

Let n ≥ 1 be an integer. The Temperley-Lieb algebra [11] Tn with parameter 2 is the

associative algebra over Q generated by 1, e0, e1, . . . , en, where the generators satisfy the

relations

(1) e2
i = 2ei

(2) eiejei = ei if |i − j| = 1

(3) eiej = ejei if |i − j| ≥ 2

for all i, j = 0, 1, . . . , n. For i = 1, 2, . . . , n we define

ri =
{

1 − 1
2 ei if i is odd

2ei − 1 if i is even.

Notice that for i, j = 0, 1, . . . , n with |i − j| 6= 1 we have

(4) eirj = rjei

and for i, j = 0, 1, . . . , n with |i − j| = 1 we have

(5) riei = 0 if i is odd

(6) ejriej = 0 if i is even.

Let Wn denote the set of all finite words over the alphabet {e0, e1, . . . , en, r0, r1, . . . , rn}.
Following [6] we say that two words in Wn are exterior equivalent if the first can be

transformed to the second using the relations (2), (3), (4), and the relations e2
i = ei for

i = 0, 1, . . . , n. Let w ∈ Wn. We say that a word w′ ∈ Wn is a reduction of w if either

w′ = w, or w′ is obtained from w by repeatedly replacing occurrences of r2j by e2j , and/or

deleting occurrences of r2j+1. Thus for instance the word e3e2r3e2r2e1 is a reduction of

e3r2r3e2r2r3e1. We say that w′ ∈ Wn is a complete reduction of a word w ∈ Wn if either

w′ = w and no ri occurs in w, or w′ is a reduction of w and exactly one symbol in w′ is ri

for some i = 0, 1, . . . , n. We say that a word w ∈ Wn is loopless if no complete reduction

of w is exterior equivalent to a word containing eiri or eirjei (in consecutive positions) for

some integers i, j, where i, j ∈ {0, 1, . . . , n}, |i−j| = 1, and i is odd. We have the following

result.
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(1.1) For every integer n ≥ 1, a word w ∈ Wn represents a nonzero element of Tn if and

only if it is loopless.

We deduce (1.1) from the Four Color Theorem (4CT), and show that, conversely, (1.1)

implies the 4CT. Thus (1.1) is equivalent to the 4CT. There are many other equivalent

formulations of the Four Color Theorem, some of them rather puzzling. Therefore, (1.1) is

not an isolated curiosity, but rather an addition to an already extensive list of equivalent

formulations of the 4CT. We refer the reader to the excellent survey [10] and to [12] for a

survey of the newer results [3, 5, 7].

The statement of (1.1) was inspired by [6]. Unfortunately, the authors of [6] overlooked

the existence of large loops, and hence Theorem 6.4 of that paper is incorrect. Our result

(1.1) remedies that problem.

2. PLANAR GRAPHS AND COLORING

A graph G consists of a set V (G) of vertices, a set E(G) of edges, and an incidence relation

between vertices and edges such that every edge e is incident with precisely two vertices

u, v, called the ends of e. If u = v, then e is called a loop edge. A graph is loopless if it

has no loop edges. A graph is planar if it can be drawn in the plane without crossings.

A 4-coloring of a graph G is a function c : V (G) → {1, 2, 3, 4} such that c(u) 6= c(v)

whenever u, v are the ends of some edge of G. A graph is 4-colorable if it admits at least

one 4-coloring. The Four Color Theorem [1, 2, 8] asserts the following.

(2.1) Every planar graph is 4-colorable if and only if it is loopless.

The “only if” part is, of course, trivial—every 4-colorable (not necessarily planar)

graph is loopless, but the converse is much much harder. So far, there are only two proofs

of (2.1), and both are computer-assisted.

We need to restate the 4CT in terms of subgraphs of grid graphs with some edges

contracted. For integers n, t ≥ 1, the n × t grid is the graph G with vertex-set all pairs

(i, j) for i = 0, 1, . . . , n and j = 0, 1, . . . , t in which (i, j) is is joined by an edge to (i′, j′) if

and only if |i− i′|+ |j − j′| = 1 and j + j′ 6= 2t. We also say that G is a grid. See Figure 1
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Figure 1. A grid.

for an example. Let G be a graph. A coupling on G is a function λ : E(G) → {0, 1,∞}. If

G is a grid we call the pair (G, λ) a coupled grid. Given a graph G and a coupling λ on G

we wish to define a new graph H, which we shall call the realization of (G, λ). The graph

H is obtained from G by deleting all edges α with λ(α) = 1 and contracting all edges α

with λ(α) = ∞. More precisely, let G1 be the subgraph of G with vertex-set V (G) and

edge-set {e ∈ E(G) : λ(e) = ∞}. Then V (H) is the set of all connected components of

G1, E(H) = {e ∈ E(G) : λ(e) = 0}, and e ∈ E(H) is incident with x ∈ V (H) if and only

if an end of e belongs to V (x), the vertex-set of the component x of G1. This is illustrated

in Figure 2, where we use the convention that edges α with λ(α) = ∞ are drawn thicker

and edges α with λ(α) = 1 are not drawn. We need the following well-known result. A

proof may be found in [9, Theorem (1.5)].

(2.2) For every planar graph H there exists a grid G and a coupling λ on G such that

H is isomorphic to the realization of (G, λ).

Let G be a graph, and let λ be a coupling on G. A loop in (G, λ) is a cycle C in G such

that for some edge e ∈ E(C), λ(e) = 0 and λ(f) = ∞ for all f ∈ E(C)−{e}. We say that

(G, λ) is loopless if it has no loop. A 4-coloring of (G, λ) is a function c : V (G) → {1, 2, 3, 4}
such that c(u) 6= c(v) whenever u, v are the ends of an edge e ∈ E(G) with λ(e) = 0 and
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Figure 2. A coupled grid and its realization.

c(u) = c(v) whenever u, v are the ends of an edge e ∈ E(G) with λ(e) = ∞. We say that

(G, λ) is 4-colorable if it admits at least one 4-coloring. The following is immediate.

(2.3) Let G be a graph, let λ be a coupling on G, and let H be the realization of (G, λ).

Then H is loopless if and only if (G, λ) is loopless, and H is 4-colorable if and only if (G, λ)

is 4-colorable.

3. THE POTTS MODEL REPRESENTATION

Let n ≥ 1 be an integer, and let Σ be the set of all mappings {0, 1, . . . , n} → {1, 2, 3, 4}.
We define Σ × Σ matrices E0, E1, . . . , E2n as follows. For i = 0, 1, . . . , n we define

(E2i)σσ′ =
{

1/2 if σ(j) = σ′(j) for all j ∈ {0, 1, . . . , n} − {i}
0 otherwise

and for i = 1, 2, . . . , n we define

(E2i−1)σσ′ =
{

2 if σ = σ′ and σ(i) = σ(i − 1)
0 otherwise.
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It is easy to see that the matrices E0, E1, . . . , E2n satisfy the relations (1), (2), (3) of

T2n. The matrix algebra generated by E0, E1, . . . , E2n is called the Potts model representa-

tion, and will be denoted by P2n. Let Φ(1) = I, the identity matrix, and for i = 0, 1, . . . , 2n

let Φ(ei) = Ei. Then Φ uniquely extends to a homomorphism T2n → P2n. The following

is a special case of [4, Theorem 2.8.5].

(3.1) For every n ≥ 1 there exists a mapping Tr : Tn → Q such that

(i) Tr(x + y) = Tr(x) + Tr(y) for all x, y ∈ Tn,

(ii) Tr(1) = 4n+1,

(iii) Tr(xy) = Tr(yx) for all x, y ∈ Tn,

(iv) Tr(wei) = 1
2 Tr(w) for all i = 0, 1, . . . , n and all w in the subalgebra of Tn generated

by 1, e0, e1, . . . , ei−1, and

(v) for every nonzero element x ∈ Tn there exists y ∈ Tn such that Tr(xy) 6= 0.

We deduce

(3.2) The homomorphism Φ : T2n → P2n is an isomorphism.

Proof. Let tr(A) denote the usual trace of a matrix; then conditions (i)–(iv) of (3.1) imply

that Tr(x) = tr(Φ(x)) for every x ∈ T2n. Now let x be a nonzero element of T2n. It suffices

to show that Φ(x) is a nonzero matrix. By (3.1) (v) there exists y ∈ Tn such that

0 6= Tr(xy) = tr(Φ(xy)) = tr(Φ(x)Φ(y)),

which implies that Φ(x) is a nonzero matrix, as desired.

4. GRIDS AND WORDS

Let w ∈ Wn, and let us write w as w = w1w2 . . .w2t, a concatentation of 2t (possibly null)

words, where for each i = 1, 2, . . . , 2t and each j = 0, 1, . . . , n

(i) at most one of ej , rj occurs in wi, and if it does, then it occurs at most once,

(ii) if ej or rj occurs in wi, then i and j have the same parity.
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We say that w = w1w2, . . . , w2t is a decomposition of w. Clearly every word w ∈ Wn has

a decomposition.

Let w = w1w2 . . . w2t be a decomposition of a word w ∈ W2n. With this decomposition

we associate the pair (G, λ), where G is the n × t grid, and λ is a coupling on G, defined

as follows. Let i ∈ {1, 2, . . . , n} and j ∈ {0, 1, . . . , t − 1}, and let α denote the edge of G

with ends (i − 1, j) and (i, j). We put

λ(α) =

{ 0 if r2i−1 occurs in w2j+1

∞ if e2i−1 occurs in w2j+1

1 otherwise.

Now let i ∈ {0, 1, . . . , n} and j ∈ {1, 2, . . . , t}, and let β denote the edge of G with ends

(i, j − 1) and (i, j). We put

λ(β) =

{ 0 if r2i occurs in w2j

1 if e2i occurs in w2j

∞ otherwise.

We say that (G, λ) is associated with the decomposition w = w1w2 . . . w2t. Conversely,

for every coupled grid (G, λ) there exists a word w and a decomposition w = w1w2 . . . w2t

of w such that (G, λ) is the associated coupled grid. Moreover, if w = w′
1w

′
2 . . .w′

2t′ is

another decomposition of the same word w such that (G, λ) is also associated with the

decomposition w′
1w

′
2 . . . w′

2t′ , then t = t′, and for each i = 1, 2, . . . , 2t, wi and w′
i differ only

by a permutation of their entries. Thus w and w′ are exterior equivalent.

(4.1) Let n ≥ 1 be an integer, let w ∈ W2n, let w = w1w2 . . .w2t and w = w′
1w

′
2 . . . w′

2t′

be two decompositions of w, and let (G, λ), (G′, λ′) be the respective associated coupled

grids. Then the realizations of (G, λ) and (G′, λ′) are isomorphic.

Proof. Let w = w1w2 . . . w2t and w = w′
1w

′
2 . . . w′

2t′ be two decompositions of w such

that either t′ = t − 2 and for some integer i ∈ {1, 2, . . . , 2t} the words wi−1 and wi

are null, wj = w′
j for j < i − 1 and wj = w′

j−2 for j > i, or t = t′ and for some integer

i ∈ {2, 3, . . . , 2t−1}, wi and w′
i are null, and for some word x ∈ W2n we have w′

i−1 = wi−1x,

wi+1 = xw′
i+1 and wj = w′

j for all other j. In those circumstances we say that the two

decompositions of w are adjacent. It is easy to see that
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(i) if two decompositions of w are adjacent, then the realizations of the corresponding

associated coupled grids are isomorphic, and

(ii) for any two decompositions d, d′ of w there exist decompositions d0 = d, d1, . . . , dk = d′

such that di−1 and di are adjacent for all i = 1, 2, . . . , k.

The result follows from (i) and (ii).

(4.2) Let n ≥ 1 be an integer, let w1, w2 ∈ W2n be two exterior equivalent words, for

i = 1, 2 let (Gi, λi) be the coupled grid associated with some decomposition of wi, let Hi

be the realization of (Gi, λi), and let H ′
i be obtained from Hi by deleting isolated vertices.

Then H ′
1 is isomorphic to H ′

2.

Proof. Let wi, (Gi, λi), Hi and H ′
i be as stated. It suffices to prove the lemma in the

case when w1 is obtained from w2 by means of the relations (2), (3), (4), or the relations

e2
i = ei. We shall do so for the relation e2

2i = e2i, leaving the other cases to the reader. (In

the other cases H1 and H2 are isomorphic.)

Let us assume then that w1 = xe2ie2iy and w2 = xe2iy for some x, y ∈ W2n. Let

w1 = w′′
1w′′

2 . . . w′′
2t and w2 = w′

1w
′
2 . . . w′

2t′ be the decompositions of w that give rise to

(G1, λ1) and (G2, λ2), respectively. By (4.1) we may assume that t = t′ and for some

integer j ∈ {1, 2, . . . , t − 1}, w′′
2j = w′

2j = w′′
2j+2 = e2i, and w′′

2j+1, w′
2j+1 and w′

2j+2 are

null, and w′′
j′ = w′

j′ for all other indices j′. Then it follows that the subgraph of G with

vertex-set {(i, j)} and no edges is an isolated vertex of H1, and that the graph obtained

from H1 by deleting this vertex is isomorphic to H2, as desired.

We deduce

(4.3) Let n ≥ 1 be an integer, let w1, w2 ∈ W2n be two exterior equivalent words, and for

i = 1, 2 let (Gi, λi) be the coupled grid associated with some decomposition of wi. Then

(G1, λ1) is loopless if and only if (G2, λ2) is loopless.

Proof. This follows immediately from (4.2).

8



(4.4) Let n ≥ 1 be an integer, let w ∈ W2n, and let (G, λ) be the coupled grid associated

with some decomposition of w. If (G, λ) has a loop of length four, then w is exterior

equivalent to a word containing e2j−1r2j−1, or e2j−1r2je2j−1 or e2j+1r2je2j+1 for some j.

Proof. Let C be a loop in (G, λ) of length four. Then the existence of C implies that

w has one of the following forms: w = xe2i−1y1r2i−1z, w = xe2i−1y1r2iy2e2i−1z, w =

xe2i−1y1r2i−2y2e2i−1z, or w = xr2i−1y1e2i−1z, where the words y1 and y2 include no

terms with index within one from the indices of the entries immediately surrounding y1

and y2 in the expression for w. Using (3) and (4) it follows that w is exterior equivalent

to one of the desired words.

Let G be a grid, and let λ1, λ2 be two couplings on G such that for some edge α,

λ1(α) = 1, λ2(α) = ∞ and λ1(β) = λ2(β) for every edge β ∈ E(G) − {α}. If u is a vertex

of G incident with α such that λ1(β) = 1 for every edge β incident with u, then we say that

λ1, λ2 are 1-similar. If C is a cycle in G of length four such that α ∈ E(C) and λ2(β) = ∞
for every β ∈ E(C), then we say that λ1 and λ2 are 2-similar. We say that two couplings

λ, λ′ on G are similar if there exists a sequence λ0 = λ, λ1, . . . , λk = λ′ of couplings on G

such that λi−1 and λi are 1-similar or 2-similar for all i = 1, 2, . . . , k.

(4.5) Let n ≥ 1, let w1, w2 ∈ W2n, let G be a grid, and let λ1, λ2 be couplings on G such

that for i = 1, 2 the coupled grid (G, λi) is associated with some decomposition of wi. If

λ1 and λ2 are similar, then w1 and w2 are exterior equivalent.

Proof. It suffices to prove the statement in the case when λ1 and λ2 are 1-similar or

2-similar. Assume first that they are 1-similar, and let u = (i, j) ∈ V (G) be as in the

definition of 1-similar. Using relations (3) and (4) we may assume that w1 has the form

w1 = xe2ie2iy and that w2 = xe2ie2i−1e2iy or w2 = xe2ie2i+1e2iy or w2 = xe2iy. In each

case we see that w1 and w2 are exterior equivalent, as desired.

Assume now that λ1 and λ2 are 2-similar, and let C be a cycle in G as in the definition

of 2-similar. Then using relations (3) and (4) we may assume that w2 has the form

w2 = xe2i+1e2i+1y for some integer i, and that w1 = xe2i+1y or w1 = xe2i+1e2ie2i+1y or

9



w1 = xe2i+1e2i+2e2i+1y. In each case we see that w1 and w2 are exterior equivalent, as

desired.

We need some terminology and a lemma. Let G be a grid. We say that a se-

quence v1, v2, . . . , vk of distinct vertices of G is diagonal if there exist edge-disjoint cycles

D1, D2, . . . , Dk−1 in G, each of length four, such that for i = 1, 2, . . . , k−1, vi+1 and vi are

diagonally opposite vertices of Di. The cycles D1, D2, . . . , Dk−1 are uniquely determined,

and we say that v1, v2, . . . , vk is a diagonal sequence with cycles D1, D2, . . . , Dk−1. Now

let C be a cycle in G. We say that a vertex v of C is a corner of C if the two edges of C

incident with v belong to a cycle D of length four. In that case D is unique, and we say

that v is a convex corner if the disk bounded by D is a subset of the disk bounded by C,

and we say that it is a concave corner otherwise. Now let v be a convex corner and v′ a

concave corner of a cycle C, and assume that there is a diagonal sequence v1, v2, . . . , vk

with cycles D1, D2, . . . , Dk−1 such that v1 = v, vk = v′, none of the vertices v2, v3, . . . , vk−1

belongs to C, the two edges of D1 incident with v1 belong to C, and so do the two edges

incident with vk that do not belong to Dk−1. It follows that v2, v3, . . . , vk−1 belong to the

open disk bounded by C. In those circumstances we say that v faces v′. This is illustrated

in Figure 3.

Assume now that v1, v2, . . . , vk is a diagonal sequence with cycles D1, D2, . . . , Dk−1,

where the two edges of D1 incident with v1 belong to C (thus v1 is a convex corner of C),

and v2, v3, . . . , vk−1 6∈ V (C). If α ∈ E(Dk−1) is not incident with vk−1, then we say that

v1 faces α. We need the following lemma.

(4.6) Let G be a grid, let C be a cycle in G of length exceeding four, and let α0 ∈ E(C).

Then there exists a convex corner of C that faces no concave corner of C and does not

face α0.

Proof. Since α0 ∈ E(C), at most two convex corners of C face α0. But the number of

convex corners is equal to the number of concave corners plus four, and so the lemma

follows.
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Figure 3. A convex corner facing a concave corner.

Now let λ be a coupling on G, let C be a cycle in G, and let v1 be a convex cor-

ner of C. A (λ, C)-stairway based at v1 is a diagonal sequence v1, v2, . . . , vk with cycles

D1, D2, . . . , Dk−1 such that

(i) the two edges of D1 incident with v1 belong to C,

(ii) for i = 1, 2, . . . , k − 1, λ(α) = ∞ if α ∈ E(Di) is incident with vi and λ(α) = 1 if

α ∈ E(Di) is not incident with vi, and

(iii) subject to (i) and (ii), k is maximum.

Thus for every convex corner v of C there is a unique (λ, C)-stairway based at v. See

Figure 4.

(4.7) Let n, t ≥ 1, let G be the n×t grid, and let λ0 be a coupling on G such that exactly

one edge α0 of G satisfies λ(α0) = 0. If (G, λ0) has a loop, then λ0 is similar to a coupling

λ such that (G, λ) has a loop of length four.

Proof. Let G, λ0, α0 be as stated. We choose λ and C such that

(i) λ is a coupling on G similar to λ0,

(ii) C is a loop in (G, λ) bounding a disk ∆,

(iii) subject to (i) and (ii), the area of ∆ is minimum,

11
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Figure 4. A (λ, C)-stairway.

(iv) subject to (i)–(iii), the number of edges α ∈ E(G) with λ(α) = ∞ is minimum, and

(v) subject to (i)–(iv), η(λ, C) is minimum,

where η(λ, C) = 0 if C has length four, and otherwise it is defined as the minimum length

of a (λ, C)-stairway based at a convex corner v of C such that v does not face α0 or a

concave corner of C. It follows from (4.6) that this quantity is well-defined. The choice of

λ and C is possible, because λ0 and any loop in (G, λ0) satisfy (i) and (ii). We shall prove

that C has length four, which will complete the proof. We first notice the following.

(∗) No vertex of G\V (C) is incident with exactly one edge α ∈ E(G) satisfying

λ(α) = ∞.

To prove (∗) suppose for a contradiction that v ∈ V (G) − V (C) is incident with α, where

λ(α) = ∞, and α is the only such edge incident with v. Since v 6∈ V (C) we see that

λ(β) = 1 for every edge β 6= α incident with v. Let λ′(α) = 1 and let λ′(β) = λ(β) for all

β ∈ E(G) − {α}. Then λ′ is similar to λ, the area of ∆ has not changed, and yet (G, λ′)

has fewer edges β satisfying λ(β) = ∞, contrary to (iv). This proves (∗).

Suppose for a contradiction that C has length strictly greater than four. Let v1 be

a convex corner of C not facing α0 or any concave corner such that the (λ, C)-stairway

based at v1, say v1, v2, . . . , vk, satisfies k = η(λ, C). Let D1, D2, . . . , Dk−1 be the circuits of
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length four as in the definition of diagonal sequence. We claim that v2, v3, . . . , vk 6∈ V (C).

To see this, suppose for a contradiction that one of those vertices belongs to V (C), and

let i ∈ {2, 3, . . . , k} be the minimum integer such that vi ∈ V (C). Since λ(β) = 1 for both

edges β of Di−1 incident with vi, we deduce that the two edges of Di incident with vi

belong to C (where Dk is defined in the natural way). But then vi is a concave corner of

C, and v1 faces vi, a contradiction. Thus v2, v3, . . . , vk 6∈ V (C).

Next we claim that every edge α incident with vk satisfies λ(α) = 1. To prove this

suppose otherwise. Since vk 6∈ V (C) and α0 is the only edge with λ(α0) = 0, we see that

vk is incident with an edge α satisfying λ(α) = ∞. By (∗) vk is incident with at least two

such edges, and hence it is incident with exactly two such edges, say α′ and β′. Then α′

and β′ are the two edges incident with vk that do not belong to Dk−1. Let Dk be the

unique cycle of length four in G with α′, β′ ∈ E(Dk), and let vk+1 be the vertex of Dk

not equal or adjacent to vk. Let γ′, δ′ be the two remaining edges of Dk. Since v1 does

not face α0 we deduce that γ′ and δ′ are not equal to α0, and hence λ(γ′) 6= 0 6= λ(δ′).

The sequence v1, v2, . . . , vk+1 is not a (λ, C)-stairway by condition (iii) in the definition of

(λ, C)-stairway. Thus one of λ(γ′), λ(δ′) is not equal to one, and so we may assume that

λ(γ′) = ∞, because α0 is the only edge with λ(α0) = 0. If λ(δ′) = ∞, then the coupling

obtained from λ by changing the value of λ(α′) to 1 is 2-similar to λ, contrary to (iv).

Thus λ(δ′) = 1. Now let λ′ be obtained from λ first by changing the value of λ(δ′) to ∞,

then changing the value of λ(α′) to 1, and finally changing the value of λ(β′) to 1. The

first two changes are done using 2-similarity, and the third is done using 1-similarity. Thus

λ′ is similar to λ, contrary to (iv). This proves that every edge α incident with vk satisfies

λ(α) = 1.

Let E(Dk−1) = {α, β, γ, δ}, where α, β are incident with vk−1 and γ, δ are incident

with vk. Let λ1 be the coupling on G defined by λ1(α) = λ1(β) = 1, λ1(γ) = ∞, λ1(δ) = ∞,

and λ1(ε) = λ(ε) for all ε ∈ E(G) − E(Dk−1). Then λ1 is similar to λ. (To see this, first

change λ(γ) to ∞, then change λ(δ) to ∞, then change λ(β) to 1, and finally change λ(α)

to 1. The first and last changes are done using 1-similarity, and the other two are done

using 2-similarity.) Now if k ≥ 2, then λ1 contradicts (v), and hence k = 1. Let C1 be the

cycle in G with edge-set (E(C)−{α, β})∪{γ, δ}; then the pair λ1, C1 contradicts condition
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(iii). This completes the proof of the fact that C has length four, and hence finishes the

proof of the lemma.

(4.8) Let n ≥ 1 be an integer, let w ∈ W2n, and let (G, λ) be the coupled grid associated

with some decomposition of w. Then w is loopless if and only if (G, λ) is loopless.

Proof. Let d be the decomposition of w that gives rise to (G, λ). Suppose first that w is not

loopless. Then some complete reduction w′ of w is exterior equivalent to a word w′′ that

contains e2j−1r2j−1 or e2j−1r2je2j−1 or e2j+1r2je2j+1. Then d induces a decomposition d′

of w′ in the natural way; let (G′, λ′) be the coupled grid associated with d′. Then G = G′.

Let (G′′, λ′′) be the coupled grid associated with some decomposition of w′′. Since w′′

contains one of the words stated above, it follows that (G′′, λ′′) has a loop (of length four).

Thus (G′, λ′) has a loop by (4.3). But a loop in (G′, λ′) is also a loop in (G, λ), as desired.

To prove the converse let (G, λ) have a loop, say C. We define a coupling λ′ on G as

follows

λ′(α) =
{

1 if α 6∈ E(C) and λ(α) = 0
λ(α) otherwise.

It follows that (G, λ′) is associated with a decomposition of some complete reduction w′ of

w. Notice that C is a loop in (G, λ′), and that there is exactly one edge, say α0 ∈ E(G),

such that λ′(α0) = 0.

By (4.7) there exists a coupling λ′′ on G such that (G, λ′) and (G, λ′′) are similar,

and such that (G, λ′′) has a loop of length four. Let w′′ ∈ W2n be such that (G, λ′′) is

associated with some decomposition of w′′; by (4.5) the words w′ and w′′ are exterior

equivalent. But w′′ is exterior equivalent to a word containing e2j−1r2j−1 or e2j−1r2je2j−1

or e2j+1r2je2j+1 by (4.4), and hence so is w′, as desired.

5. TRANSFER MATRICES

Let n, t ≥ 1 be integers, let G be the n× t grid, and let λ be a coupling on G. Let Σ be as

in Section 3, and let a Σ×Σ matrix M be defined by saying that (M)σσ′, the (σ, σ′)-entry
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of M , is the number of 4-colorings c of (G, λ) such that c((i, 0)) = σ(i) and c((i, t)) = σ′(i)

for all i = 0, 1, . . . , n. The matrix M is called the transfer matrix of (G, λ).

We now explain how transfer matrices can be calculated using the Potts model rep-

resentation. Let n, t, and (G, λ) be as above. With each edge α of G we associate

a matrix X(α) ∈ P2n as follows. If α has ends (i − 1, j) and (i, j), then we define

X(α) = I + 1
2

(λ(α) − 1)E2i−1 if λ(α) 6= ∞ and X(α) = 1
2

E2i−1 otherwise. If α has

ends (i, j − 1) and (i, j), then we define X(α) = (λ(α) − 1)I + 2E2i if λ(α) 6= ∞ and

X(α) = I otherwise. For j = 1, 2, . . . , t let ρ2j−1 be the set of all edges of G with ends

(i − 1, j − 1) and (i, j − 1) for some i = 1, 2, . . . , n, and let ρ2j be the set of all edges of

G with ends (i, j − 1) and (i, j) for some i = 0, 1, . . . , n. Since the matrices Ei satisfy the

relations (3) we see that X(α) and X(β) commute whenever α, β ∈ ρj for some j, and

hence the expression

(7)
∏

α∈ρ1

X(α)
∏

α∈ρ2

X(α) · . . . ·
∏

α∈ρ2t

X(α).

is well-defined.

(5.1) The transfer matrix of a coupled grid (G, λ) is given by formula (7).

Proof. We proceed by induction on t. If t = 0, then the graph G consists of n + 1 isolated

vertices, and hence M is the identity matrix. Since t = 0 the expression (7) consists of the

empty product, and hence the result holds.

Let now t > 0, and assume that the result holds for all smaller integers. Let G′ be the

n× (t− 1) grid; then G′ is a subgraph of G. Let λ′ be the restriction of λ to E(G′), let J

be the subgraph of G with vertex-set {(i, j) : i ∈ {0, 1 . . . , n}, j ∈ {t − 1, t}} and edge-set

E(G)−E(G′) and let µ be the restriction of λ to E(J). Let M, M ′ be the transfer matrices

of G, G′, respectively. By the induction hypothesis

M ′ =
∏

α∈ρ1

X(α)
∏

α∈ρ2

X(α) · . . . ·
∏

α∈ρ2n−2

X(α),

and hence it suffices to show that M = M ′X , where

X =
∏

α∈ρ2n−1

X(α)
∏

α∈ρ2n

X(α).
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So we need to show that for all σ1, σ2 ∈ Σ,

(M)σ1σ2 =
∑
σ∈Σ

(M ′)σ1σ(X)σσ2.

This is indeed true, and follows from the following fact. Let c : V (G) → {1, 2, 3, 4} be

defined by c((i, t − 1)) = σ(i) and c((i, t)) = σ2(i). Then (X)σσ2 = 1 if c is a 4-coloring of

(J, µ), and (X)σσ2 = 0 otherwise.

Thus M = M ′X , and the result follows.

(5.2) Let n ≥ 1 be an integer, let w ∈ W2n, and let (G, λ) be the coupled grid associated

with some decomposition w = w1w2 . . . w2t of w. Then (G, λ) is 4-colorable if and only if

w represents a nonzero element of T2n.

Proof. It follows from the definition of the associated coupled grid and from the definition

of X(α) that
∏

α∈ρi

X(α) = Φ(wi) for all i = 1, 2, . . . , 2t, where Φ is defined prior to (3.1).

From (3.2) and (5.1) we deduce that w 6= 0 in T2n if and only if the transfer matrix M of

(G, λ) is a nonzero matrix. But M is a nonzero matrix if and only if (G, λ) is 4-colorable,

as desired.

6. PROOF OF THE EQUIVALENCE

We are now ready to prove the equivalence of (1.1) and (2.1).

(6.1) Theorem (2.1) implies (1.1).

Proof. Let n ≥ 1 be an integer. Since Tn is a subalgebra of Tn+1, we may assume that n is

even. Let w ∈ Wn, and let (G, λ) be the coupled grid associated with some decomposition

of w. By (4.8) the word w is loopless if and only if (G, λ) is loopless. Let H be the

realization of (G, λ). By (2.3), (G, λ) is loopless if and only if H is loopless. By (2.1) the

graph H is loopless if and only if it is 4-colorable. By (2.3) H is 4-colorable if and only if

(G, λ) is 4-colorable. By (5.2) (G, λ) is 4-colorable if and only if w is nonzero in Tn. Thus

w is loopless if and only if it represents a nonzero element in Tn, as desired.
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(6.2) Theorem (1.1) implies (2.1).

Proof. Let H be a planar graph. Clearly, if H has a loop, then it is not 4-colorable.

Conversely, suppose that H is loopless. By (2.2) there exists a coupled grid (G, λ) such

that H is isomorphic to the realization of (G, λ). By (2.3) the coupled grid (G, λ) is

loopless. Let n be such that G is an n × t grid for some integer t. Let w ∈ W2n be such

that (G, λ) is the coupled grid associated with some decomposition of w. By (4.8) the

word w is loopless, and hence represents a nonzero element of T2n by (1.1). From (5.2) we

deduce that (G, λ) is 4-colorable. By (2.3) H is 4-colorable, as desired.
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