WELL-QUASI-ORDERING

Robin Thomas

School of Mathematics Georgia Institute of Technology www.math.gatech.edu/~thomas

GRAPH MINOR THEOREM

THM Robertson, Seymour Every infinite set of finite graphs contains two graphs such that one is a minor of another.

GRAPH MINOR THEOREM

THM Robertson, Seymour Every infinite set of finite graphs contains two graphs such that one is a minor of another.

Finite graphs are well-quasi-ordered by \leq_m .

A quasi-order is (Q, \leq) , where \leq is reflexive and transitive.

NOTE Let $x \equiv y$ mean $x \leq y$ and $y \leq x$. Then Q/\equiv is a partial order. Define x < y to mean $x \leq y$ and $y \not\leq x$.

A quasi-order is (Q, \leq) , where \leq is reflexive and transitive.

NOTE Let $x \equiv y$ mean $x \leq y$ and $y \leq x$. Then Q/\equiv is a partial order. Define x < y to mean $x \leq y$ and $y \not\leq x$.

 (Q, \leq) is well-quasi-ordered (wqo) if for every infinite sequence q_1, q_2, \ldots there exist i < j with $q_i \leq q_j$.

NOTE Equivalent to

- no infinite antichain, and
- no infinite descending sequence $q_1 > q_2 > \cdots$

LEMMA If (Q, \leq) is wqo, then for every infinite sequence q_1, q_2, \ldots there exist $i_1 < i_2 < \cdots$ with $q_{i_1} \leq q_{i_2} \leq \cdots$. **LEMMA** If (Q, \leq) is wqo, then for every infinite sequence q_1, q_2, \ldots there exist $i_1 < i_2 < \cdots$ with $q_{i_1} \leq q_{i_2} \leq \cdots$.

PROOF Say *i* is terminal if $q_i \leq q_j$ for no j > i. There are only finitely many terminal indices. Let i_1 be larger than all terminal indices. $\exists i_2 > i_1$ with $q_{i_1} \leq q_{i_2} \exists i_3$ with $q_{i_2} \leq q_{i_3}$, etc.

LEMMA If (Q_1, \leq_1) and (Q_2, \leq_2) are wqo, then $(Q_1 \times Q_2, \leq)$ is wqo. Here $(q_1, q_2) \leq (q'_1, q'_2)$ if $q_1 \leq_1 q'_1$ and $q_2 \leq_2 q'_2$. **LEMMA** If (Q_1, \leq_1) and (Q_2, \leq_2) are wqo, then $(Q_1 \times Q_2, \leq)$ is wqo. Here $(q_1, q_2) \leq (q'_1, q'_2)$ if $q_1 \leq_1 q'_1$ and $q_2 \leq_2 q'_2$.

PROOF Let $(x_1, y_1), (x_2, y_2), \dots$ be given. Find $i_1 < i_2 < \cdots$ with $x_{i_1} \leq_1 x_{i_2} \leq_1 \cdots$ Find r < s with $y_{i_r} \leq_2 y_{i_s}$. Then

 $(x_{i_r}, y_{i_r}) \leq (x_{i_s}, y_{i_s}).$

THEOREM (Higman) If Q is wqo, then $Q^{<w}$ is wqo. $Q^{<w}$ = finite sequences of elements of Q, quasi-ordered by monotone domination:

$$(x_1,x_2,\ldots,x_k)\leq (y_1,y_2,\ldots,y_\ell)$$

if there is a strictly increasing mapping $f: \{1, 2, \ldots, k\} \rightarrow \{1, 2, \ldots, \ell\}$ such that $x_i \leq y_{f(i)}$. EXAMPLE $(1, 5, 7, 3) \leq (2, 3, 4, 6, 7, 1, 3)$ **PROOF** An infinite sequence s_1, s_2, \ldots of elements of $Q^{\leq w}$ is bad if it violates the definition of wqo. We want to choose a minimal bad sequence. Let $s_1 \in Q^{\leq w}$ be shortest such that s_1 starts a bad

sequence.

Let $s_2 \in Q^{\leq w}$ be shortest such that s_1, s_2 starts a bad sequence.

Let $s_3 \in Q^{<w}$ be shortest such that s_1, s_2, s_3 starts a bad sequence.

etc.

Let $s_i = q_i + s'_i$

CLAIM $\{s'_1, s'_2, \ldots\}$ is wqo PROOF OF CLAIM Let $s'_{i_1}, s'_{i_2}, \ldots$ be a bad sequence. WMA $i_1 < i_2 < \cdots$ Then

$$s_1, s_2, \ldots, s_{i_1-1}, s_{i_1}', s_{i_2}', \ldots$$

is a bad sequence, contrary to the choice of s_{i_1} .

By the product theorem $Q \times \{s'_1, s'_2, \ldots,\}$ is wqo. So $\exists i < j \ q_i \leq q_j$ and $s'_i \leq s'_j$. But then $s_i \leq s_j$, as required.

 $T_1 \leq_t T_2$ if \exists a 1-1 mapping $f: V(T_1) \rightarrow V(T_2)$ such that $f(t_1 \wedge t_2) = f(t_1) \wedge f(t_2)$.

 $T_1 \leq_t T_2$ if \exists a 1-1 mapping $f: V(T_1) \rightarrow V(T_2)$ such that $f(t_1 \wedge t_2) = f(t_1) \wedge f(t_2)$.

THEOREM (Kruskal) Rooted by topological containment.

finite trees are wqo

 $T_1 \leq_t T_2$ if \exists a 1-1 mapping $f: V(T_1) \rightarrow V(T_2)$ such that $f(t_1 \wedge t_2) = f(t_1) \wedge f(t_2)$.

THEOREM (Kruskal) Rooted ternary finite trees are wqo by topological containment.

 $T_1 \leq_t T_2$ if \exists a 1-1 mapping $f: V(T_1) \rightarrow V(T_2)$ such that $f(t_1 \wedge t_2) = f(t_1) \wedge f(t_2)$.

THEOREM (Kruskal) Rooted ternary finite trees are wqo by topological containment.

Let T_1, T_2, \ldots be fixed. A section is e_1, e_2, \ldots such that $e_i \in E(T_{k_i})$, where $k_1 < k_2 < \cdots$.

 $T_1 \leq_t T_2$ if \exists a 1-1 mapping $f: V(T_1) \rightarrow V(T_2)$ such that $f(t_1 \wedge t_2) = f(t_1) \wedge f(t_2)$.

THEOREM (Kruskal) Rooted ternary finite trees are wqo by topological containment.

Let T_1, T_2, \ldots be fixed. A section is e_1, e_2, \ldots such that $e_i \in E(T_{k_i})$, where $k_1 < k_2 < \cdots$. A section is bad if $\uparrow e_1, \uparrow e_2, \ldots$ violates def of wqo.

 $T_1 \leq_t T_2$ if \exists a 1-1 mapping $f: V(T_1) \rightarrow V(T_2)$ such that $f(t_1 \wedge t_2) = f(t_1) \wedge f(t_2)$.

THEOREM (Kruskal) Rooted ternary finite trees are wqo by topological containment.

Let T_1, T_2, \ldots be fixed. A section is e_1, e_2, \ldots such that $e_i \in E(T_{k_i})$, where $k_1 < k_2 < \cdots$. A section is bad if $\uparrow e_1, \uparrow e_2, \ldots$ violates def of wqo. A section is minimal bad if there is no bad section $e_1, e_2, \ldots, e_{j-1}, e'_j, e'_{j+1}, \ldots$ with e'_j higher in T_{k_j} .

 $T_1 \leq_t T_2$ if \exists a 1-1 mapping $f: V(T_1) \rightarrow V(T_2)$ such that $f(t_1 \wedge t_2) = f(t_1) \wedge f(t_2)$.

THEOREM (Kruskal) Rooted ternary finite trees are wqo by topological containment.

Let T_1, T_2, \ldots be fixed. A section is e_1, e_2, \ldots such that $e_i \in E(T_{k_i})$, where $k_1 < k_2 < \cdots$. A section is bad if $\uparrow e_1, \uparrow e_2, \ldots$ violates def of wqo. A section is minimal bad if there is no bad section $e_1, e_2, \ldots, e_{j-1}, e'_j, e'_{j+1}, \ldots$ with e'_j higher in T_{k_j} . LEMMA There is a minimal bad section.

LEMMA There is a minimal bad section.

LEMMA There is a minimal bad section.

PROOF Choose e_1 as high as possible such that it starts a section.

LEMMA There is a minimal bad section.

PROOF Choose e_1 as high as possible such that it starts a section. Choose e_2 as high as possible such that e_1, e_2 start a section. Etc.

LEMMA There is a minimal bad section.

Let T_1, T_2, \ldots be fixed. A section is e_1, e_2, \ldots such that $e_i \in E(T_{k_i})$, where $k_1 < k_2 < \cdots$. A section is bad if $\uparrow e_1, \uparrow e_2, \ldots$ violates def of wqo. A section is minimal bad if there is no bad section $e_1, e_2, \ldots, e_{j-1}, e'_j, e'_{j+1}, \ldots$ with e'_i higher in T_{k_i} . LEMMA There is a minimal bad section. **LEMMA** Let e_1, e_2, \ldots be a minimal bad section, and let e'_i, e''_i be the daughters of e_i . Then $\{\uparrow e'_1, \uparrow e'_2, \ldots\}$ and $\{\uparrow e_1'', \uparrow e_2'', \ldots\}$ are wqo.

Let T_1, T_2, \ldots be fixed. A section is e_1, e_2, \ldots such that $e_i \in E(T_{k_i})$, where $k_1 < k_2 < \cdots$. A section is bad if $\uparrow e_1, \uparrow e_2, \ldots$ violates def of wqo. A section is minimal bad if there is no bad section $e_1, e_2, \ldots, e_{j-1}, e'_j, e'_{j+1}, \ldots$ with e'_i higher in T_{k_i} . LEMMA There is a minimal bad section. **LEMMA** Let e_1, e_2, \ldots be a minimal bad section, and let e'_i, e''_i be the daughters of e_i . Then $\{\uparrow e'_1, \uparrow e'_2, \ldots\}$ and $\{\uparrow e_1'', \uparrow e_2'', \ldots\}$ are wqo.

PROOF WMA there is a bad section $e'_{i_1}, e'_{i_2}, \ldots$

Let T_1, T_2, \ldots be fixed. A section is e_1, e_2, \ldots such that $e_i \in E(T_{k_i})$, where $k_1 < k_2 < \cdots$. A section is bad if $\uparrow e_1, \uparrow e_2, \ldots$ violates def of wqo. A section is minimal bad if there is no bad section $e_1, e_2, \ldots, e_{j-1}, e'_j, e'_{j+1}, \ldots$ with e'_i higher in T_{k_i} . LEMMA There is a minimal bad section. **LEMMA** Let e_1, e_2, \ldots be a minimal bad section, and let e'_i, e''_i be the daughters of e_i . Then $\{\uparrow e'_1, \uparrow e'_2, \ldots\}$ and

 $\{\uparrow e_1'',\uparrow e_2'',\ldots\}$ are wqo.

PROOF WMA there is a bad section $e'_{i_1}, e'_{i_2}, \ldots$ Then $e_1, e_2, \ldots, e_{i_1-1}, e'_{i_1}, e'_{i_2} \ldots$ contradicts minimality.

Let T_1, T_2, \ldots be fixed. A section is e_1, e_2, \ldots such that $e_i \in E(T_{k_i})$, where $k_1 < k_2 < \cdots$. A section is bad if $\uparrow e_1, \uparrow e_2, \ldots$ violates def of wqo. A section is minimal bad if there is no bad section $e_1, e_2, \ldots, e_{j-1}, e'_j, e'_{j+1}, \ldots$ with e'_i higher in T_{k_i} . LEMMA There is a minimal bad section. **LEMMA** Let e_1, e_2, \ldots be a minimal bad section, and let e'_i, e''_i be the daughters of e_i . Then $\{\uparrow e'_1, \uparrow e'_2, \ldots\}$ and $\{\uparrow e_1'', \uparrow e_2'', \ldots\}$ are wqo.

Let T_1, T_2, \ldots be fixed. A section is e_1, e_2, \ldots such that $e_i \in E(T_{k_i})$, where $k_1 < k_2 < \cdots$. A section is bad if $\uparrow e_1, \uparrow e_2, \ldots$ violates def of wqo. A section is minimal bad if there is no bad section $e_1, e_2, \ldots, e_{j-1}, e'_j, e'_{j+1}, \ldots$ with e'_i higher in T_{k_i} . LEMMA There is a minimal bad section. **LEMMA** Let e_1, e_2, \ldots be a minimal bad section, and let e'_i, e''_i be the daughters of e_i . Then $\{\uparrow e'_1, \uparrow e'_2, \ldots\}$ and $\{\uparrow e_1'', \uparrow e_2'', \ldots\}$ are wqo.

PROOF OF KRUSKAL'S THM By the product theorem there exist i < j such that $\uparrow e'_i \leq_t \uparrow e'_j$, and $\uparrow e''_i \leq_t \uparrow e''_j$.

Let T_1, T_2, \ldots be fixed. A section is e_1, e_2, \ldots such that $e_i \in E(T_{k_i})$, where $k_1 < k_2 < \cdots$. A section is bad if $\uparrow e_1, \uparrow e_2, \ldots$ violates def of wqo. A section is minimal bad if there is no bad section $e_1, e_2, \ldots, e_{j-1}, e'_j, e'_{j+1}, \ldots$ with e'_j higher in T_{k_j} . LEMMA There is a minimal bad section. LEMMA Let e_1, e_2, \ldots be a minimal bad section, and let e'_i, e''_i be the daughters of e_i . Then $\{\uparrow e'_1, \uparrow e'_2, \ldots\}$ and

 $\{\uparrow e_1'', \uparrow e_2'', \ldots\}$ are wqo.

PROOF OF KRUSKAL'S THM By the product theorem there exist i < j such that $\uparrow e'_i \leq_t \uparrow e'_j$, and $\uparrow e''_i \leq_t \uparrow e''_j$. But then $\uparrow e_i \leq_t \uparrow e_j$ contrary to badness.

Let k be fixed, let $\kappa : E(T) \rightarrow \{0, 1, \dots, k-1\}.$

Let k be fixed, let $\kappa : E(T) \to \{0, 1, \dots, k-1\}$. Define $(T_1, \kappa_1) \leq_t (T_2, \kappa_2)$ if $\exists f : V(T_1) \to V(T_2)$ such that (1) $f(t_1 \wedge t_2) = f(t_1) \wedge f(t_2)$, and

Let k be fixed, let $\kappa : E(T) \to \{0, 1, \dots, k-1\}$. Define $(T_1, \kappa_1) \leq_t (T_2, \kappa_2)$ if $\exists f : V(T_1) \to V(T_2)$ such that (1) $f(t_1 \wedge t_2) = f(t_1) \wedge f(t_2)$, and if an edge e is mapped onto a path P, then (2) $\kappa_1(e) \leq \kappa_2(e')$ for every $e' \in E(P)$, and

Let k be fixed, let $\kappa : E(T) \to \{0, 1, \dots, k-1\}$. Define $(T_1, \kappa_1) \leq_t (T_2, \kappa_2)$ if $\exists f : V(T_1) \to V(T_2)$ such that (1) $f(t_1 \wedge t_2) = f(t_1) \wedge f(t_2)$, and if an edge e is mapped onto a path P, then (2) $\kappa_1(e) \leq \kappa_2(e')$ for every $e' \in E(P)$, and (3) equality holds for the first and last edge of P.

Let k be fixed, let $\kappa : E(T) \to \{0, 1, \dots, k-1\}$. Define $(T_1, \kappa_1) \leq_t (T_2, \kappa_2)$ if $\exists f : V(T_1) \to V(T_2)$ such that (1) $f(t_1 \wedge t_2) = f(t_1) \wedge f(t_2)$, and if an edge e is mapped onto a path P, then (2) $\kappa_1(e) \leq \kappa_2(e')$ for every $e' \in E(P)$, and (3) equality holds for the first and last edge of P.

THM Friedman, Robertson, Seymour For every k the above is a wqo.

Let k be fixed, let $\kappa : E(T) \to \{0, 1, \dots, k-1\}$. Define $(T_1, \kappa_1) \leq_t (T_2, \kappa_2)$ if $\exists f : V(T_1) \to V(T_2)$ such that (1) $f(t_1 \wedge t_2) = f(t_1) \wedge f(t_2)$, and if an edge e is mapped onto a path P, then (2) $\kappa_1(e) \leq \kappa_2(e')$ for every $e' \in E(P)$, and (3) equality holds for the first and last edge of P.

THM Friedman, Robertson, Seymour For every k the above is a wqo.

PROOF Same as above; minimality somewhat trickier.

(1) $f(t_1 \wedge t_2) = f(t_1) \wedge f(t_2)$, and if an edge *e* is mapped onto a path *P*, then (2) $\kappa_1(e) \leq \kappa_2(e')$ for every $e' \in E(P)$, and (3) equality holds for the first and last edge of *P*.

THM Friedman, Robertson, Seymour For every k the above is a wqo.

(1) $f(t_1 \wedge t_2) = f(t_1) \wedge f(t_2)$, and if an edge *e* is mapped onto a path *P*, then (2) $\kappa_1(e) \leq \kappa_2(e')$ for every $e' \in E(P)$, and (3) equality holds for the first and last edge of *P*.

THM Friedman, Robertson, Seymour For every k the above is a wqo.

COR For every k, graphs of branch-width < k are wqo by \leq_m .

(1) $f(t_1 \wedge t_2) = f(t_1) \wedge f(t_2)$, and if an edge *e* is mapped onto a path *P*, then (2) $\kappa_1(e) \leq \kappa_2(e')$ for every $e' \in E(P)$, and (3) equality holds for the first and last edge of *P*.

THM Friedman, Robertson, Seymour For every k the above is a wqo.

COR For every k, graphs of branch-width < k are wqo by \leq_m .

COR There is no bad sequence G_1, G_2, \ldots with G_1 planar.

(1) $f(t_1 \wedge t_2) = f(t_1) \wedge f(t_2)$, and if an edge *e* is mapped onto a path *P*, then (2) $\kappa_1(e) \leq \kappa_2(e')$ for every $e' \in E(P)$, and (3) equality holds for the first and last edge of *P*.

THM Friedman, Robertson, Seymour For every k the above is a wqo.

COR For every k, graphs of branch-width < k are wqo by \leq_m .

COR There is no bad sequence G_1, G_2, \ldots with G_1 planar.

COR Planar graphs are wqo by \leq_m .

Let $k = \infty$, let $\kappa : E(T) \rightarrow \{0, 1, \ldots\}$.

Let $k = \infty$, let $\kappa : E(T) \to \{0, 1, \ldots\}$. Define $(T_1, \kappa_1) \leq_t (T_2, \kappa_2)$ if $\exists f : V(T_1) \to V(T_2)$ such that (1) $f(t_1 \wedge t_2) = f(t_1) \wedge f(t_2)$, and

Let $k = \infty$, let $\kappa : E(T) \to \{0, 1, \ldots\}$. Define $(T_1, \kappa_1) \leq_t (T_2, \kappa_2)$ if $\exists f : V(T_1) \to V(T_2)$ such that (1) $f(t_1 \wedge t_2) = f(t_1) \wedge f(t_2)$, and if an edge e is mapped onto a path P, then (2) $\kappa_1(e) \leq \kappa_2(e')$ for every $e' \in E(P)$

Let $k = \infty$, let $\kappa : E(T) \to \{0, 1, \ldots\}$. Define $(T_1, \kappa_1) \leq_t (T_2, \kappa_2)$ if $\exists f : V(T_1) \to V(T_2)$ such that (1) $f(t_1 \wedge t_2) = f(t_1) \wedge f(t_2)$, and if an edge e is mapped onto a path P, then (2) $\kappa_1(e) \leq \kappa_2(e')$ for every $e' \in E(P)$, and (3) equality holds for the first and last edge of P.

Let $k = \infty$, let $\kappa : E(T) \to \{0, 1, \ldots\}$. Define $(T_1, \kappa_1) \leq_t (T_2, \kappa_2)$ if $\exists f : V(T_1) \to V(T_2)$ such that (1) $f(t_1 \wedge t_2) = f(t_1) \wedge f(t_2)$, and if an edge e is mapped onto a path P, then (2) $\kappa_1(e) \leq \kappa_2(e')$ for every $e' \in E(P)$, and (3) equality holds for the first and last edge of P.

THM Kříž The above is a wqo.

THM Nash-Williams Infinite trees are wqo by \leq_t .

THM Nash-Williams Infinite trees are wqo by \leq_t . THEOREM (RT) Infinite graphs are not wqo by \leq_m .

THM Nash-Williams Infinite trees are wqo by \leq_t . THEOREM (RT) Infinite graphs are not wqo by \leq_m . CONJECTURE Countable graphs are.

THM Nash-Williams Infinite trees are wqo by \leq_t . THEOREM (RT) Infinite graphs are not wqo by \leq_m . CONJECTURE Countable graphs are. THEOREM (RT) Known when G_1 is finite and planar.

THM Nash-Williams Infinite trees are wqo by \leq_t . THEOREM (RT) Infinite graphs are not wqo by \leq_m . CONJECTURE Countable graphs are. THEOREM (RT) Known when G_1 is finite and planar. FACT Not known even when every component is finite.

MINIATURIZATIONS

THM $\forall c \exists k = k(c) \ \forall T_1, T_2, \dots, T_k \text{ with } |T_i| \leq c+i$ there exist i < j with $T_i \leq_t T_j$.

MINIATURIZATIONS

THM $\forall c \exists k = k(c) \ \forall T_1, T_2, \dots, T_k \text{ with } |T_i| \leq c+i$ there exist i < j with $T_i \leq_t T_j$.

THM Friedman Above unprovable in Peano arithmetic.