WELL-QUASI-ORDERING

Robin Thomas

School of Mathematics
Georgia Institute of Technology www.math.gatech.edu/~thomas

GRAPH MINOR THEOREM

THM Robertson, Seymour Every infinite set of finite graphs contains two graphs such that one is a minor of another.

GRAPH MINOR THEOREM

THM Robertson, Seymour Every infinite set of finite graphs contains two graphs such that one is a minor of another.

Finite graphs are well-quasi-ordered by \leq_{m}.

A quasi-order is (Q, \leq), where \leq is reflexive and transitive.

NOTE Let $x \equiv y$ mean $x \leq y$ and $y \leq x$. Then Q / \equiv is a partial order. Define $x<y$ to mean $x \leq y$ and $y \not \leq x$.

A quasi-order is (Q, \leq), where \leq is reflexive and transitive.

NOTE Let $x \equiv y$ mean $x \leq y$ and $y \leq x$. Then Q / \equiv is a partial order. Define $x<y$ to mean $x \leq y$ and $y \not z x$.
(Q, \leq) is well-quasi-ordered (wqo) if for every infinite sequence q_{1}, q_{2}, \ldots there exist $i<j$ with $q_{i} \leq q_{j}$.

NOTE Equivalent to

- no infinite antichain, and
- no infinite descending sequence $q_{1}>q_{2}>\cdots$

LEMMA If (Q, \leq) is wqo, then for every infinite sequence q_{1}, q_{2}, \ldots there exist $i_{1}<i_{2}<\cdots$ with $q_{i_{1}} \leq q_{i_{2}} \leq \cdots$.

LEMMA If (Q, \leq) is wqo, then for every infinite sequence q_{1}, q_{2}, \ldots there exist $i_{1}<i_{2}<\cdots$ with $q_{i_{1}} \leq q_{i_{2}} \leq \cdots$.

PROOF Say i is terminal if $q_{i} \leq q_{j}$ for no $j>i$. There are only finitely many terminal indices. Let i_{1} be larger than all terminal indices. $\exists i_{2}>i_{1}$ with $q_{i_{1}} \leq q_{i_{2}} \exists i_{3}$ with $q_{i_{2}} \leq q_{i_{3}}$, etc.

LEMMA If $\left(Q_{1}, \leq_{1}\right)$ and $\left(Q_{2}, \leq_{2}\right)$ are wqo, then $\left(Q_{1} \times Q_{2}, \leq\right)$ is wqo. Here $\left(q_{1}, q_{2}\right) \leq\left(q_{1}^{\prime}, q_{2}^{\prime}\right)$ if $q_{1} \leq_{1} q_{1}^{\prime}$ and $q_{2} \leq_{2} q_{2}^{\prime}$.

LEMMA If $\left(Q_{1}, \leq_{1}\right)$ and $\left(Q_{2}, \leq_{2}\right)$ are wqo, then $\left(Q_{1} \times Q_{2}, \leq\right)$ is wqo. Here $\left(q_{1}, q_{2}\right) \leq\left(q_{1}^{\prime}, q_{2}^{\prime}\right)$ if $q_{1} \leq_{1} q_{1}^{\prime}$ and $q_{2} \leq_{2} q_{2}^{\prime}$.

PROOF Let $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right), \ldots$ be given. Find $i_{1}<i_{2}<\cdots$ with $x_{i_{1}} \leq_{1} x_{i_{2}} \leq_{1} \cdots$ Find $r<s$ with $y_{i_{r}} \leq 2 y_{i_{s}}$. Then

$$
\left(x_{i_{r}}, y_{i_{r}}\right) \leq\left(x_{i_{s}}, y_{i_{s}}\right)
$$

THEOREM (Higman) If Q is wqo, then $Q^{<w}$ is wqo. $Q^{<w}=$ finite sequences of elements of Q, quasi-ordered by monotone domination:

$$
\left(x_{1}, x_{2}, \ldots, x_{k}\right) \leq\left(y_{1}, y_{2}, \ldots, y_{\ell}\right)
$$

if there is a strictly increasing mapping
$f:\{1,2, \ldots, k\} \rightarrow\{1,2, \ldots, \ell\}$ such that $x_{i} \leq y_{f(i)}$.
EXAMPLE $(1,5,7,3) \leq(2,3,4,6,7,1,3)$

PROOF An infinite sequence s_{1}, s_{2}, \ldots of elements of $Q^{\leq w}$ is bad if it violates the definition of wqo. We want to choose a minimal bad sequence. Let $s_{1} \in Q^{<w}$ be shortest such that s_{1} starts a bad sequence.
Let $s_{2} \in Q^{<w}$ be shortest such that s_{1}, s_{2} starts a bad sequence.
Let $s_{3} \in Q^{<w}$ be shortest such that s_{1}, s_{2}, s_{3} starts a bad sequence.
etc.
Let $s_{i}=q_{i}+s_{i}^{\prime}$

CLAIM $\left\{s_{1}^{\prime}, s_{2}^{\prime}, \ldots\right\}$ is wqo
PROOF OF CLAIM Let $s_{i_{1}}^{\prime}, s_{i_{2}}^{\prime}, \ldots$ be a bad sequence.
WMA $i_{1}<i_{2}<\cdots$ Then

$$
s_{1}, s_{2}, \ldots, s_{i_{1}-1}, s_{i_{1}}^{\prime}, s_{i_{2}}^{\prime}, \ldots
$$

is a bad sequence, contrary to the choice of $s_{i_{1}}$.
By the product theorem $Q \times\left\{s_{1}^{\prime}, s_{2}^{\prime}, \ldots,\right\}$ is wqo. So $\exists i<j q_{i} \leq q_{j}$ and $s_{i}^{\prime} \leq s_{j}^{\prime}$. But then $s_{i} \leq s_{j}$, as required.

TOPOLOGICAL CONTAINMENT ON ROOTED TREES

$T_{1} \leq_{t} T_{2}$ if \exists a 1-1 mapping $f: V\left(T_{1}\right) \rightarrow V\left(T_{2}\right)$ such that $f\left(t_{1} \wedge t_{2}\right)=f\left(t_{1}\right) \wedge f\left(t_{2}\right)$.

TOPOLOGICAL CONTAINMENT ON ROOTED TREES

 $T_{1} \leq_{t} T_{2}$ if \exists a 1-1 mapping $f: V\left(T_{1}\right) \rightarrow V\left(T_{2}\right)$ such that $f\left(t_{1} \wedge t_{2}\right)=f\left(t_{1}\right) \wedge f\left(t_{2}\right)$.THEOREM (Kruskal) Rooted
finite trees are wqo by topological containment.

TOPOLOGICAL CONTAINMENT ON ROOTED TREES

 $T_{1} \leq_{t} T_{2}$ if \exists a 1-1 mapping $f: V\left(T_{1}\right) \rightarrow V\left(T_{2}\right)$ such that $f\left(t_{1} \wedge t_{2}\right)=f\left(t_{1}\right) \wedge f\left(t_{2}\right)$.THEOREM (Kruskal) Rooted ternary finite trees are wqo by topological containment.

TOPOLOGICAL CONTAINMENT ON ROOTED TREES

 $T_{1} \leq_{t} T_{2}$ if \exists a 1-1 mapping $f: V\left(T_{1}\right) \rightarrow V\left(T_{2}\right)$ such that $f\left(t_{1} \wedge t_{2}\right)=f\left(t_{1}\right) \wedge f\left(t_{2}\right)$.THEOREM (Kruskal) Rooted ternary finite trees are wqo by topological containment.

Let T_{1}, T_{2}, \ldots be fixed. A section is e_{1}, e_{2}, \ldots such that $e_{i} \in E\left(T_{k_{i}}\right)$, where $k_{1}<k_{2}<\cdots$.

TOPOLOGICAL CONTAINMENT ON ROOTED TREES

$T_{1} \leq_{t} T_{2}$ if \exists a 1-1 mapping $f: V\left(T_{1}\right) \rightarrow V\left(T_{2}\right)$ such that $f\left(t_{1} \wedge t_{2}\right)=f\left(t_{1}\right) \wedge f\left(t_{2}\right)$.

THEOREM (Kruskal) Rooted ternary finite trees are wqo by topological containment.

Let T_{1}, T_{2}, \ldots be fixed. A section is e_{1}, e_{2}, \ldots such that $e_{i} \in E\left(T_{k_{i}}\right)$, where $k_{1}<k_{2}<\cdots$. A section is bad if $\uparrow e_{1}, \uparrow e_{2}, \ldots$ violates def of wqo.

TOPOLOGICAL CONTAINMENT ON ROOTED TREES

$T_{1} \leq_{t} T_{2}$ if \exists a 1-1 mapping $f: V\left(T_{1}\right) \rightarrow V\left(T_{2}\right)$ such that $f\left(t_{1} \wedge t_{2}\right)=f\left(t_{1}\right) \wedge f\left(t_{2}\right)$.

THEOREM (Kruskal) Rooted ternary finite trees are wqo by topological containment.

Let T_{1}, T_{2}, \ldots be fixed. A section is e_{1}, e_{2}, \ldots such that $e_{i} \in E\left(T_{k_{i}}\right)$, where $k_{1}<k_{2}<\cdots$. A section is bad if $\uparrow e_{1}, \uparrow e_{2}, \ldots$ violates def of wqo. A section is minimal bad if there is no bad section $e_{1}, e_{2}, \ldots, e_{j-1}, e_{j}^{\prime}, e_{j+1}^{\prime}, \ldots$ with e_{j}^{\prime} higher in $T_{k_{j}}$.

TOPOLOGICAL CONTAINMENT ON ROOTED TREES

$T_{1} \leq_{t} T_{2}$ if \exists a 1-1 mapping $f: V\left(T_{1}\right) \rightarrow V\left(T_{2}\right)$ such that $f\left(t_{1} \wedge t_{2}\right)=f\left(t_{1}\right) \wedge f\left(t_{2}\right)$.

THEOREM (Kruskal) Rooted ternary finite trees are wqo by topological containment.

Let T_{1}, T_{2}, \ldots be fixed. A section is e_{1}, e_{2}, \ldots such that $e_{i} \in E\left(T_{k_{i}}\right)$, where $k_{1}<k_{2}<\cdots$. A section is bad if $\uparrow e_{1}, \uparrow e_{2}, \ldots$ violates def of wqo. A section is minimal bad if there is no bad section $e_{1}, e_{2}, \ldots, e_{j-1}, e_{j}^{\prime}, e_{j+1}^{\prime}, \ldots$ with e_{j}^{\prime} higher in $T_{k_{j}}$.
LEMMA There is a minimal bad section.

Let T_{1}, T_{2}, \ldots be fixed. A section is e_{1}, e_{2}, \ldots such that $e_{i} \in E\left(T_{k_{i}}\right)$, where $k_{1}<k_{2}<\cdots$. A section is bad if $\uparrow e_{1}, \uparrow e_{2}, \ldots$ violates def of wqo. A section is minimal bad if there is no bad section $e_{1}, e_{2}, \ldots, e_{j-1}, e_{j}^{\prime}, e_{j+1}^{\prime}, \ldots$ with e_{j}^{\prime} higher in $T_{k_{j}}$.
LEMMA There is a minimal bad section.

Let T_{1}, T_{2}, \ldots be fixed. A section is e_{1}, e_{2}, \ldots such that $e_{i} \in E\left(T_{k_{i}}\right)$, where $k_{1}<k_{2}<\cdots$. A section is bad if $\uparrow e_{1}, \uparrow e_{2}, \ldots$ violates def of wqo. A section is minimal bad if there is no bad section $e_{1}, e_{2}, \ldots, e_{j-1}, e_{j}^{\prime}, e_{j+1}^{\prime}, \ldots$ with e_{j}^{\prime} higher in $T_{k_{j}}$.
LEMMA There is a minimal bad section.
PROOF Choose e_{1} as high as possible such that it starts a section.

Let T_{1}, T_{2}, \ldots be fixed. A section is e_{1}, e_{2}, \ldots such that $e_{i} \in E\left(T_{k_{i}}\right)$, where $k_{1}<k_{2}<\cdots$. A section is bad if $\uparrow e_{1}, \uparrow e_{2}, \ldots$ violates def of wqo. A section is minimal bad if there is no bad section $e_{1}, e_{2}, \ldots, e_{j-1}, e_{j}^{\prime}, e_{j+1}^{\prime}, \ldots$ with e_{j}^{\prime} higher in $T_{k_{j}}$.
LEMMA There is a minimal bad section.
PROOF Choose e_{1} as high as possible such that it starts a section. Choose e_{2} as high as possible such that e_{1}, e_{2} start a section. Etc.

Let T_{1}, T_{2}, \ldots be fixed. A section is e_{1}, e_{2}, \ldots such that $e_{i} \in E\left(T_{k_{i}}\right)$, where $k_{1}<k_{2}<\cdots$. A section is bad if $\uparrow e_{1}, \uparrow e_{2}, \ldots$ violates def of wqo. A section is minimal bad if there is no bad section $e_{1}, e_{2}, \ldots, e_{j-1}, e_{j}^{\prime}, e_{j+1}^{\prime}, \ldots$ with e_{j}^{\prime} higher in $T_{k_{j}}$.
LEMMA There is a minimal bad section.

Let T_{1}, T_{2}, \ldots be fixed. A section is e_{1}, e_{2}, \ldots such that $e_{i} \in E\left(T_{k_{i}}\right)$, where $k_{1}<k_{2}<\cdots$. A section is bad if $\uparrow e_{1}, \uparrow e_{2}, \ldots$ violates def of wqo. A section is minimal bad if there is no bad section $e_{1}, e_{2}, \ldots, e_{j-1}, e_{j}^{\prime}, e_{j+1}^{\prime}, \ldots$ with e_{j}^{\prime} higher in $T_{k_{j}}$.
LEMMA There is a minimal bad section.
LEMMA Let e_{1}, e_{2}, \ldots be a minimal bad section, and let $e_{i}^{\prime}, e_{i}^{\prime \prime}$ be the daughters of e_{i}. Then $\left\{\uparrow e_{1}^{\prime}, \uparrow e_{2}^{\prime}, \ldots\right\}$ and $\left\{\uparrow e_{1}^{\prime \prime}, \uparrow e_{2}^{\prime \prime}, \ldots\right\}$ are wqo.

Let T_{1}, T_{2}, \ldots be fixed. A section is e_{1}, e_{2}, \ldots such that $e_{i} \in E\left(T_{k_{i}}\right)$, where $k_{1}<k_{2}<\cdots$. A section is bad if $\uparrow e_{1}, \uparrow e_{2}, \ldots$ violates def of wqo. A section is minimal bad if there is no bad section $e_{1}, e_{2}, \ldots, e_{j-1}, e_{j}^{\prime}, e_{j+1}^{\prime}, \ldots$ with e_{j}^{\prime} higher in $T_{k_{j}}$.
LEMMA There is a minimal bad section.
LEMMA Let e_{1}, e_{2}, \ldots be a minimal bad section, and let $e_{i}^{\prime}, e_{i}^{\prime \prime}$ be the daughters of e_{i}. Then $\left\{\uparrow e_{1}^{\prime}, \uparrow e_{2}^{\prime}, \ldots\right\}$ and $\left\{\uparrow e_{1}^{\prime \prime}, \uparrow e_{2}^{\prime \prime}, \ldots\right\}$ are wqo.

PROOF WMA there is a bad section $e_{i_{1}}^{\prime}, e_{i_{2}}^{\prime}, \ldots$

Let T_{1}, T_{2}, \ldots be fixed. A section is e_{1}, e_{2}, \ldots such that $e_{i} \in E\left(T_{k_{i}}\right)$, where $k_{1}<k_{2}<\cdots$. A section is bad if $\uparrow e_{1}, \uparrow e_{2}, \ldots$ violates def of wqo. A section is minimal bad if there is no bad section $e_{1}, e_{2}, \ldots, e_{j-1}, e_{j}^{\prime}, e_{j+1}^{\prime}, \ldots$ with e_{j}^{\prime} higher in $T_{k_{j}}$.
LEMMA There is a minimal bad section.
LEMMA Let e_{1}, e_{2}, \ldots be a minimal bad section, and let $e_{i}^{\prime}, e_{i}^{\prime \prime}$ be the daughters of e_{i}. Then $\left\{\uparrow e_{1}^{\prime}, \uparrow e_{2}^{\prime}, \ldots\right\}$ and $\left\{\uparrow e_{1}^{\prime \prime}, \uparrow e_{2}^{\prime \prime}, \ldots\right\}$ are wqo.

PROOF WMA there is a bad section $e_{i_{1}}^{\prime}, e_{i_{2}}^{\prime}, \ldots$. Then $e_{1}, e_{2}, \ldots, e_{i_{1}-1}, e_{i_{1}}^{\prime}, e_{i_{2}}^{\prime} \ldots$ contradicts minimality.

Let T_{1}, T_{2}, \ldots be fixed. A section is e_{1}, e_{2}, \ldots such that $e_{i} \in E\left(T_{k_{i}}\right)$, where $k_{1}<k_{2}<\cdots$. A section is bad if $\uparrow e_{1}, \uparrow e_{2}, \ldots$ violates def of wqo. A section is minimal bad if there is no bad section $e_{1}, e_{2}, \ldots, e_{j-1}, e_{j}^{\prime}, e_{j+1}^{\prime}, \ldots$ with e_{j}^{\prime} higher in $T_{k_{j}}$.
LEMMA There is a minimal bad section.
LEMMA Let e_{1}, e_{2}, \ldots be a minimal bad section, and let $e_{i}^{\prime}, e_{i}^{\prime \prime}$ be the daughters of e_{i}. Then $\left\{\uparrow e_{1}^{\prime}, \uparrow e_{2}^{\prime}, \ldots\right\}$ and $\left\{\uparrow e_{1}^{\prime \prime}, \uparrow e_{2}^{\prime \prime}, \ldots\right\}$ are wqo.

Let T_{1}, T_{2}, \ldots be fixed. A section is e_{1}, e_{2}, \ldots such that $e_{i} \in E\left(T_{k_{i}}\right)$, where $k_{1}<k_{2}<\cdots$. A section is bad if $\uparrow e_{1}, \uparrow e_{2}, \ldots$ violates def of wqo. A section is minimal bad if there is no bad section $e_{1}, e_{2}, \ldots, e_{j-1}, e_{j}^{\prime}, e_{j+1}^{\prime}, \ldots$ with e_{j}^{\prime} higher in $T_{k_{j}}$.
LEMMA There is a minimal bad section.
LEMMA Let e_{1}, e_{2}, \ldots be a minimal bad section, and let $e_{i}^{\prime}, e_{i}^{\prime \prime}$ be the daughters of e_{i}. Then $\left\{\uparrow e_{1}^{\prime}, \uparrow e_{2}^{\prime}, \ldots\right\}$ and $\left\{\uparrow e_{1}^{\prime \prime}, \uparrow e_{2}^{\prime \prime}, \ldots\right\}$ are wqo.

PROOF OF KRUSKAL'S THM By the product theorem there exist $i<j$ such that $\uparrow e_{i}^{\prime} \leq_{t} \uparrow e_{j}^{\prime}$, and $\uparrow e_{i}^{\prime \prime} \leq_{t} \uparrow e_{j}^{\prime \prime}$.

Let T_{1}, T_{2}, \ldots be fixed. A section is e_{1}, e_{2}, \ldots such that $e_{i} \in E\left(T_{k_{i}}\right)$, where $k_{1}<k_{2}<\cdots$. A section is bad if $\uparrow e_{1}, \uparrow e_{2}, \ldots$ violates def of wqo. A section is minimal bad if there is no bad section $e_{1}, e_{2}, \ldots, e_{j-1}, e_{j}^{\prime}, e_{j+1}^{\prime}, \ldots$ with e_{j}^{\prime} higher in $T_{k_{j}}$.
LEMMA There is a minimal bad section.
LEMMA Let e_{1}, e_{2}, \ldots be a minimal bad section, and let $e_{i}^{\prime}, e_{i}^{\prime \prime}$ be the daughters of e_{i}. Then $\left\{\uparrow e_{1}^{\prime}, \uparrow e_{2}^{\prime}, \ldots\right\}$ and $\left\{\uparrow e_{1}^{\prime \prime}, \uparrow e_{2}^{\prime \prime}, \ldots\right\}$ are wqo.

PROOF OF KRUSKAL'S THM By the product theorem there exist $i<j$ such that $\uparrow e_{i}^{\prime} \leq_{t} \uparrow e_{j}^{\prime}$, and $\uparrow e_{i}^{\prime \prime} \leq_{t} \uparrow e_{j}^{\prime \prime}$. But then $\uparrow e_{i} \leq_{t} \uparrow e_{j}$ contrary to badness.

GAP CONDITION

Let k be fixed, let $\kappa: E(T) \rightarrow\{0,1, \ldots, k-1\}$.

GAP CONDITION

Let k be fixed, let $\kappa: E(T) \rightarrow\{0,1, \ldots, k-1\}$. Define $\left(T_{1}, \kappa_{1}\right) \leq_{t}\left(T_{2}, \kappa_{2}\right)$ if $\exists f: V\left(T_{1}\right) \rightarrow V\left(T_{2}\right)$ such that (1) $f\left(t_{1} \wedge t_{2}\right)=f\left(t_{1}\right) \wedge f\left(t_{2}\right)$, and

GAP CONDITION

Let k be fixed, let $\kappa: E(T) \rightarrow\{0,1, \ldots, k-1\}$. Define $\left(T_{1}, \kappa_{1}\right) \leq_{t}\left(T_{2}, \kappa_{2}\right)$ if $\exists f: V\left(T_{1}\right) \rightarrow V\left(T_{2}\right)$ such that (1) $f\left(t_{1} \wedge t_{2}\right)=f\left(t_{1}\right) \wedge f\left(t_{2}\right)$, and
if an edge e is mapped onto a path P, then
(2) $\kappa_{1}(e) \leq \kappa_{2}\left(e^{\prime}\right)$ for every $e^{\prime} \in E(P)$, and

GAP CONDITION

Let k be fixed, let $\kappa: E(T) \rightarrow\{0,1, \ldots, k-1\}$. Define $\left(T_{1}, \kappa_{1}\right) \leq_{t}\left(T_{2}, \kappa_{2}\right)$ if $\exists f: V\left(T_{1}\right) \rightarrow V\left(T_{2}\right)$ such that (1) $f\left(t_{1} \wedge t_{2}\right)=f\left(t_{1}\right) \wedge f\left(t_{2}\right)$, and if an edge e is mapped onto a path P, then
(2) $\kappa_{1}(e) \leq \kappa_{2}\left(e^{\prime}\right)$ for every $e^{\prime} \in E(P)$, and
(3) equality holds for the first and last edge of P.

GAP CONDITION

Let k be fixed, let $\kappa: E(T) \rightarrow\{0,1, \ldots, k-1\}$. Define $\left(T_{1}, \kappa_{1}\right) \leq_{t}\left(T_{2}, \kappa_{2}\right)$ if $\exists f: V\left(T_{1}\right) \rightarrow V\left(T_{2}\right)$ such that (1) $f\left(t_{1} \wedge t_{2}\right)=f\left(t_{1}\right) \wedge f\left(t_{2}\right)$, and if an edge e is mapped onto a path P, then (2) $\kappa_{1}(e) \leq \kappa_{2}\left(e^{\prime}\right)$ for every $e^{\prime} \in E(P)$, and (3) equality holds for the first and last edge of P.

THM Friedman, Robertson, Seymour For every k the above is a wqo.

GAP CONDITION

Let k be fixed, let $\kappa: E(T) \rightarrow\{0,1, \ldots, k-1\}$. Define $\left(T_{1}, \kappa_{1}\right) \leq_{t}\left(T_{2}, \kappa_{2}\right)$ if $\exists f: V\left(T_{1}\right) \rightarrow V\left(T_{2}\right)$ such that (1) $f\left(t_{1} \wedge t_{2}\right)=f\left(t_{1}\right) \wedge f\left(t_{2}\right)$, and if an edge e is mapped onto a path P, then
(2) $\kappa_{1}(e) \leq \kappa_{2}\left(e^{\prime}\right)$ for every $e^{\prime} \in E(P)$, and (3) equality holds for the first and last edge of P.

THM Friedman, Robertson, Seymour For every k the above is a wqo.

PROOF Same as above; minimality somewhat trickier.
(1) $f\left(t_{1} \wedge t_{2}\right)=f\left(t_{1}\right) \wedge f\left(t_{2}\right)$, and
if an edge e is mapped onto a path P, then (2) $\kappa_{1}(e) \leq \kappa_{2}\left(e^{\prime}\right)$ for every $e^{\prime} \in E(P)$, and (3) equality holds for the first and last edge of P.

THM Friedman, Robertson, Seymour For every k the above is a wqo.
(1) $f\left(t_{1} \wedge t_{2}\right)=f\left(t_{1}\right) \wedge f\left(t_{2}\right)$, and
if an edge e is mapped onto a path P, then (2) $\kappa_{1}(e) \leq \kappa_{2}\left(e^{\prime}\right)$ for every $e^{\prime} \in E(P)$, and (3) equality holds for the first and last edge of P.

THM Friedman, Robertson, Seymour For every k the above is a wqo.

COR For every k, graphs of branch-width $<k$ are wqo by \leq_{m}.
(1) $f\left(t_{1} \wedge t_{2}\right)=f\left(t_{1}\right) \wedge f\left(t_{2}\right)$, and
if an edge e is mapped onto a path P, then (2) $\kappa_{1}(e) \leq \kappa_{2}\left(e^{\prime}\right)$ for every $e^{\prime} \in E(P)$, and (3) equality holds for the first and last edge of P.

THM Friedman, Robertson, Seymour For every k the above is a wqo.

COR For every k, graphs of branch-width $<k$ are wqo by \leq_{m}.

COR There is no bad sequence G_{1}, G_{2}, \ldots with G_{1} planar.
(1) $f\left(t_{1} \wedge t_{2}\right)=f\left(t_{1}\right) \wedge f\left(t_{2}\right)$, and
if an edge e is mapped onto a path P, then
(2) $\kappa_{1}(e) \leq \kappa_{2}\left(e^{\prime}\right)$ for every $e^{\prime} \in E(P)$, and (3) equality holds for the first and last edge of P.

THM Friedman, Robertson, Seymour For every k the above is a wqo.

COR For every k, graphs of branch-width $<k$ are wqo by \leq_{m}.

COR There is no bad sequence G_{1}, G_{2}, \ldots with G_{1} planar.

COR Planar graphs are wqo by \leq_{m}.

INFINITE GAP CONDITION

Let $k=\infty$, let $\kappa: E(T) \rightarrow\{0,1, \ldots\}$.

INFINITE GAP CONDITION

Let $k=\infty$, let $\kappa: E(T) \rightarrow\{0,1, \ldots\}$. Define
$\left(T_{1}, \kappa_{1}\right) \leq_{t}\left(T_{2}, \kappa_{2}\right)$ if $\exists f: V\left(T_{1}\right) \rightarrow V\left(T_{2}\right)$ such that (1) $f\left(t_{1} \wedge t_{2}\right)=f\left(t_{1}\right) \wedge f\left(t_{2}\right)$, and

INFINITE GAP CONDITION

Let $k=\infty$, let $\kappa: E(T) \rightarrow\{0,1, \ldots\}$. Define
$\left(T_{1}, \kappa_{1}\right) \leq_{t}\left(T_{2}, \kappa_{2}\right)$ if $\exists f: V\left(T_{1}\right) \rightarrow V\left(T_{2}\right)$ such that (1) $f\left(t_{1} \wedge t_{2}\right)=f\left(t_{1}\right) \wedge f\left(t_{2}\right)$, and
if an edge e is mapped onto a path P, then
(2) $\kappa_{1}(e) \leq \kappa_{2}\left(e^{\prime}\right)$ for every $e^{\prime} \in E(P)$

INFINITE GAP CONDITION

Let $k=\infty$, let $\kappa: E(T) \rightarrow\{0,1, \ldots\}$. Define
$\left(T_{1}, \kappa_{1}\right) \leq_{t}\left(T_{2}, \kappa_{2}\right)$ if $\exists f: V\left(T_{1}\right) \rightarrow V\left(T_{2}\right)$ such that (1) $f\left(t_{1} \wedge t_{2}\right)=f\left(t_{1}\right) \wedge f\left(t_{2}\right)$, and
if an edge e is mapped onto a path P, then
(2) $\kappa_{1}(e) \leq \kappa_{2}\left(e^{\prime}\right)$ for every $e^{\prime} \in E(P)$

INFINITE GAP CONDITION

Let $k=\infty$, let $\kappa: E(T) \rightarrow\{0,1, \ldots\}$. Define
$\left(T_{1}, \kappa_{1}\right) \leq_{t}\left(T_{2}, \kappa_{2}\right)$ if $\exists f: V\left(T_{1}\right) \rightarrow V\left(T_{2}\right)$ such that (1) $f\left(t_{1} \wedge t_{2}\right)=f\left(t_{1}\right) \wedge f\left(t_{2}\right)$, and
if an edge e is mapped onto a path P, then
(2) $\kappa_{1}(e) \leq \kappa_{2}\left(e^{\prime}\right)$ for every $e^{\prime} \in E(P)$
(3) equality holds for the first and last edge of P.

THM Kříz The above is a wqo.

INFINITE GRAPHS

THM Nash-Williams Infinite trees are wqo by \leq_{t}.

INFINITE GRAPHS

THM Nash-Williams Infinite trees are wqo by \leq_{t}.
THEOREM (RT) Infinite graphs are not wqo by \leq_{m}.

INFINITE GRAPHS

THM Nash-Williams Infinite trees are wqo by \leq_{t}.
THEOREM (RT) Infinite graphs are not wqo by \leq_{m}.
CONJECTURE Countable graphs are.

INFINITE GRAPHS

THM Nash-Williams Infinite trees are wqo by \leq_{t}.
THEOREM (RT) Infinite graphs are not wqo by \leq_{m}.
CONJECTURE Countable graphs are.
THEOREM (RT) Known when G_{1} is finite and planar.

INFINITE GRAPHS

THM Nash-Williams Infinite trees are wqo by \leq_{t}.
THEOREM (RT) Infinite graphs are not wqo by \leq_{m}.
CONJECTURE Countable graphs are.
THEOREM (RT) Known when G_{1} is finite and planar.
FACT Not known even when every component is finite.

MINIATURIZATIONS

THM $\forall c \exists k=k(c) \forall T_{1}, T_{2}, \ldots, T_{k}$ with $\left|T_{i}\right| \leq c+i$ there exist $i<j$ with $T_{i} \leq_{t} T_{j}$.

MINIATURIZATIONS

THM $\forall c \exists k=k(c) \forall T_{1}, T_{2}, \ldots, T_{k}$ with $\left|T_{i}\right| \leq c+i$ there exist $i<j$ with $T_{i} \leq_{t} T_{j}$.

THM Friedman Above unprovable in Peano arithmetic.

