Seminars and Colloquia by Series

Monday, November 13, 2017 - 15:00 , Location: Skiles 006 , Renee Bell , Massachusetts Institute of Technology , rhbell@math.mit.edu , Organizer: Padmavathi Srinivasan
Given a Galois cover of curves X to Y with Galois group G which is totally ramified at a point x and unramified elsewhere, restriction to the punctured formal neighborhood of x induces a Galois extension of Laurent series rings k((u))/k((t)). If we fix a base curve Y , we can ask when a Galois extension of Laurent series rings comes from a global cover of Y in this way. Harbater proved that over a separably closed field, this local-to-global principle holds for any base curve if G is a p-group, and gave a condition for the uniqueness of such an extension. Using a generalization of Artin-Schreier theory to non-abelian p-groups, we characterize the curves Y for which this lifting property holds and when it is unique, but over a more general ground field.
Monday, November 13, 2017 - 13:55 , Location: Skiles 006 , Thang Le , Georgia Tech , letu@math.gatech.edu , Organizer: Thang Le
We discuss the growth of homonoly in finite coverings, and show that the growth of  the torsion part of the first homology of finite coverings of 3-manifolds is bounded from above by the hyperbolic volume of the manifold. The proof is based on the theory of L^2 torsion.
Friday, November 10, 2017 - 16:00 , Location: Skiles 001 , Shane Scott , Georgia Tech , Organizer: Sudipta Kolay
Join us for a discussion of making professional mathematics diagrams and illustrations with free vector graphics editing software Inkscape. We'll discuss and tinker with Bezier curves, TexTex, and vectorization of scanned images.
Friday, November 10, 2017 - 15:00 , Location: Skiles 006 , Prof. Fumin Zhang , GT ECE , Organizer: Sung Ha Kang
There is an increasing trend for robots to serve as networked mobile sensing platforms that are able to collect data and interact with humans in various types of environment in unprecedented ways.  The need for undisturbed operation posts higher goals for autonomy. This talk reviews recent developments in autonomous collective foraging in a complex environment that explicitly integrates insights from biology with models and provable strategies from control theory and robotics. The methods are rigorously developed and tightly integrated with experimental effort with promising results achieved.
Friday, November 10, 2017 - 14:00 , Location: Skiles 154 , Rafael de la Llave , GT Math , Organizer: Jiaqi Yang
We consider Hamiltonian systems with  normally hyperbolic manifold with a homoclinic connection. The systems are of the form H_0(I, phi, x,y) = h(I) + P(x,y) ,where P is a one dimensional system with a homoclinic intersection. The above Hamiltonian is a standard normal form for near integrable Hamiltonians close to a resonance.  We consider perturbations that are time dependent and may be not Hamiltonian. We derive explicit formulas for the first order effects on the stable/unstable manifolds. In particular, we give sufficient conditions for the existence of homoclinic intersections to the normally hyperbolic manifold. Previous treatments in the literature specify the types of the unperturbed orbits considered (periodic or quasiperiodic) and are restricted to periodic or quasi-periodic perturbations. We do not need to distinguish on the perturbed orbits and we allow rather general dependence on the time (periodic, quasiperiodic or random). The effects are expressed by very fast converging improper integrals. This is joint work with M. Gidea. https://arxiv.org/abs/1710.01849
Friday, November 10, 2017 - 13:55 , Location: Skiles 006 , John Etnyre , Georgia Tech , Organizer: John Etnyre
  In this series of talks I will introduce branched coverings of manifolds and sketch proofs of most the known results in low dimensions (such as every 3 manifold is a 3-fold branched cover over a knot in the 3-sphere and the existence of universal knots). This week we continue discussing branched covers of 3-manifolds and prove universal links exist. 
Thursday, November 9, 2017 - 15:05 , Location: Skiles 006 , Elliot Paquette , The Ohio State University , paquette.30@osu.edu , Organizer: Lutz Warnke
We study an online algorithm for making a well—equidistributed random set of points in an interval, in the spirit of "power of choice" methods. Suppose finitely many distinct points are placed on an interval in any arbitrary configuration. This configuration of points subdivides the circle into a finite number of intervals. At each time step, two points are sampled uniformly from the interval. Each of these points lands within some pair of intervals formed by the previous configuration. Add the point that falls in the larger interval to the existing configuration of points, discard the other, and then repeat this process. We then study this point configuration in the sense of its largest interval, and discuss other "power of choice" type modifications. Joint work with Pascal Maillard.
Thursday, November 9, 2017 - 15:00 , Location: Skiles 006 , Elliot Paquette , The Ohio State University , paquette.30@osu.edu , Organizer: Lutz Warnke
We study an online algorithm for making a well—equidistributed random set of points in an interval, in the spirit of "power of choice" methods. Suppose finitely many distinct points are placed on an interval in any arbitrary configuration. This configuration of points subdivides the circle into a finite number of intervals. At each time step, two points are sampled uniformly from the interval. Each of these points lands within some pair of intervals formed by the previous configuration. Add the point that falls in the larger interval to the existing configuration of points, discard the other, and then repeat this process. We then study this point configuration in the sense of its largest interval, and discuss other "power of choice" type modifications. Joint work with Pascal Maillard.
Thursday, November 9, 2017 - 13:30 , Location: Skiles 005 , Shijie Xie , Math, GT , Organizer: Robin Thomas
Let G be a graph containing 5 different vertices a0, a1, a2, b1 and b2. We say that (G, a0, a1, a2, b1, b2) is feasible if G contains disjoint connected subgraphs G1, G2, such that {a0, a1, a2}⊆V(G1) and {b1, b2}⊆V(G2). In this talk, we will prove the existence of 5-edge configurations in (G, a0, a1, a2, b1, b2). Joint work with Changong Li, Robin Thomas, and Xingxing Yu.
Wednesday, November 8, 2017 - 13:55 , Location: Skiles 005 , Francisco Villarroya , UGA , paco.villarroya@uga.edu , Organizer: Michael Lacey
In this talk I will introduce a Tb Theorem that characterizes all Calderón-Zygmund operators that extend compactly on L^p(R^n) by means of testing functions as general as possible. In the classical theory for boundedness, the testing functions satisfy a non-degeneracy property called accretivity, which essentially implies the existence of a positive lower bound for the absolute value of the averages of the testing functions over all dyadic cubes. However, in the setting of compact operators, due to their better properties, the hypothesis of accretivity can be relaxed to a large extend. As a by-product, the results also describe those Calderón-Zygmund operators whose boundedness can be checked with non-accretive testing functions.

Pages