Seminars and Colloquia by Series

Polygonal billiards, translations flows, and deforming geometries

Series
CDSNS Colloquium
Time
Monday, November 25, 2013 - 16:00 for 1 hour (actually 50 minutes)
Location
Skiles 05
Speaker
Rodrigo TrevinoCornell Univ./Tel Aviv Univ.
The three objects in the title come together in the study of ergodic properties of geodesic flows on flat surfaces. I will go over how these three things are intimately related, state some classical results about the unique ergodicity of translation flows and present new results which generalize much of the classical theory and also apply to non-compact (infinite genus) surfaces.

Two ways of degenerating the Jacobian are the same

Series
Algebra Seminar
Time
Monday, November 25, 2013 - 15:00 for 1 hour (actually 50 minutes)
Location
Skiles 005
Speaker
Jesse KassUniversity of South Carolina
The Jacobian variety of a smooth complex curve is a complex torus that admits two different algebraic descriptions. The Jacobian can be described as the Picard variety, which is the moduli space of line bundles, or it can be described as the Albanese variey, which is the universal abelian variety that contains the curve. I will talk about how to extend a family of Jacobians varieties by adding degenerate fibers. Corresponding to the two different descriptions of the Jacobian are two different extensions of the Jacobian: the Neron model and the relative moduli space of stable sheaves. I will explain what these two extensions are and then prove that they are equivalent. This equivalence has surprising consequences for both the Neron model and the moduli space of stable sheaves.

Vassiliev Invariants of Virtual Legendrian Knots

Series
Geometry Topology Seminar
Time
Monday, November 25, 2013 - 14:00 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Patricia CahnUniversity of Pennsylvania
We introduce a theory of virtual Legendrian knots. A virtual Legendrian knot is a cooriented wavefront on an oriented surface up to Legendrian isotopy of its lift to the unit cotangent bundle and stabilization and destablization of the surface away from the wavefront. We show that the groups of Vassiliev invariants of virtual Legendrian knots and of virtual framed knots are isomorphic. In particular, Vassiliev invariants cannot be used to distinguish virtual Legendrian knots that are isotopic as virtual framed knots and have equal virtual Maslov numbers. This is joint work with Asa Levi.

Smoothed analysis on connected graphs

Series
Combinatorics Seminar
Time
Friday, November 22, 2013 - 15:00 for 1 hour (actually 50 minutes)
Location
Skiles 005
Speaker
Daniel ReichmanWeizmann Institute
The main paradigm of smoothed analysis on graphs suggests that for any large graph G in a certain class of graphs, perturbing slightly the edges of G at random (usually adding few random edges to G) typically results in a graph having much nicer properties. In this talk we discuss smoothed analysis on trees, or equivalently on connected graphs. A connected graph G on n vertices can be a very bad expander, can have very large diameter, very high mixing time, and possibly has no long paths. The situation changes dramatically when \eps n random edges are added on top of G, the so obtained graph G* has with high probability the following properties: - its edge expansion is at least c/log n; - its diameter is O(log n); - its vertex expansion is at least c/log n; - it has a linearly long path; - its mixing time is O(log^2n) All of the above estimates are asymptotically tight. Joint work with Michael Krivelevich (Tel Aviv) and Wojciech Samotij (Tel Aviv/Cambridge).

The Kawamuro Cone and the Jones Conjecture

Series
Geometry Topology Seminar
Time
Friday, November 22, 2013 - 14:05 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Bill MenascoU at Buffalo
We show that after stabilizations of opposite parity and braid isotopy, any twobraids in the same topological link type cobound embedded annuli. We use this to prove thegeneralized Jones conjecture relating the braid index and algebraic length of closed braidswithin a link type, following a reformulation of the problem by Kawamuro. This is joint workwith Doug Lafountain.

Oracle Complexity of Convex Optimization: Distributional and non-Euclidean Lower Bounds

Series
ACO Student Seminar
Time
Friday, November 22, 2013 - 13:05 for 1 hour (actually 50 minutes)
Location
Skiles 005
Speaker
Cristóbal GuzmánISyE, Georgia Tech
First-order (a.k.a. subgradient) methods in convex optimization are a popular choice when facing extremely large-scale problems, where medium accuracy solutions suffice. The limits of performance of first-order methods can be partially understood under the lens of black box oracle complexity. In this talk I will present some of the limitations of worst-case black box oracle complexity, and I will show two recent extensions of the theory: First, we extend the notion of oracle compexity to the distributional setting, where complexity is measured as the worst average running time of (deterministic) algorithms against a distribution of instances. In this model, the distribution of instances is part of the input to the algorithm, and thus algorithms can potentially exploit this to accelerate their running time. However, we will show that for nonsmooth convex optimization distributional lower bounds coincide to worst-case complexity up to a constant factor, and thus all notions of complexity collapse; we can further extend these lower bounds to prove high running time with high probability (this is joint work with Sebastian Pokutta and Gabor Braun). Second, we extend the worst-case lower bounds for smooth convex optimization to non-Euclidean settings. Our construction mimics the classical proof for the nonsmooth case (based on piecewise-linear functions), but with a local smoothening of the instances. We establish a general lower bound for a wide class of finite dimensional Banach spaces, and then apply the results to \ell^p spaces, for p\in[2,\infty]. A further reduction will allow us to extend the lower bounds to p\in[1,2). As consequences, we prove the near-optimality of the Frank-Wolfe algorithm for the box and the spectral norm ball; and we prove near-optimality of function classes that contain the standard convex relaxation for the sparse recovery problem (this is joint work with Arkadi Nemirovski).

Gaussian free field, random measure and KPZ on R^4

Series
Stochastics Seminar
Time
Thursday, November 21, 2013 - 15:05 for 1 hour (actually 50 minutes)
Location
Skiles 005
Speaker
Linan ChenMcGill University
A highlight in the study of quantum physics was the work of Knizhnik, Polyakov and Zamolodchikov (1988), in which they proposed a relation (KPZ relation) between the scaling dimension of a statistical physics model in Euclidean geometry and its counterpart in the random geometry. More recently, Duplantier and Sheffield (2011) used the 2-dim Gaussian free field to construct the Liouville quantum gravity measure on a planar domain, and gave the first mathematically rigorous formulation and proof of the KPZ relation in that setting. Inspired by the work of Duplantier and Sheffield, we apply a similar approach to extend their results and techniques to higher even dimensions R^(2n) for n>=2. This talk mainly focuses on the case of R^4. I will briefly introduce the notion of Gaussian free field (GFF). In our work we adopt a specific 4-dim GFF to construct a random Borel measure on R^4 which formally has the density (with respect to the Lebesgue measure) being the exponential of an instance of the GFF. Further we establish a 4-dim KPZ relation corresponding to this random measure. This work is joint with Dmitry Jakobson (McGill University).

Tales of Our Forefathers

Series
School of Mathematics Colloquium
Time
Thursday, November 21, 2013 - 11:00 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Barry SimonCalifornia Institute of Technology
This is not a mathematics talk but it is a talk for mathematicians. Too often, we think of historical mathematicians as only names assigned to theorems. With vignettes and anecdotes, I'll convince you they were also human beings and that, as the Chinese say, "May you live in interesting times" really is a curse.

The Cluster Value Problem for Banach Spaces

Series
Analysis Seminar
Time
Wednesday, November 20, 2013 - 15:00 for 1 hour (actually 50 minutes)
Location
Skiles 005
Speaker
Sofia Ortega CastilloTexas A&M University
I will introduce the cluster value problem, and its relation to the Corona problem, in the setting of Banach algebras of analytic functions on unit balls. Then I will present a reduction of the cluster value problem in separable Banach spaces, for the algebras $A_u$ and $H^{\infty}$, to those spaces that are $\ell_1$ sums of a sequence of finite dimensional spaces. This is joint work with William B. Johnson.

Pages