Seminars and Colloquia by Series

Wednesday, March 28, 2018 - 13:55 , Location: Skiles 005 , Laura Cladek , UCLA , , Organizer: Michael Lacey
We prove new quantitative additive energy estimates for a large class of porous measures which include, for example, all Hausdorff measures of Ahlfors-David subsets of the real line of dimension strictly between 0 and 1. We are able to obtain improved quantitative results over existing additive energy bounds for Ahlfors-David sets by avoiding the use of inverse theorems in additive combinatorics and instead opting for a more direct approach which involves the use of concentration of measure inequalities. We discuss some connections with Bourgain's sum-product theorem.
Wednesday, March 28, 2018 - 12:10 , Location: Skiles 006 , Wenjing Liao , Georgia Tech , , Organizer:
Many data sets in image analysis and signal processing are in a high-dimensional space but exhibit a low-dimensional structure. We are interested in building efficient representations of these data for the purpose of compression and inference. In the setting where a data set in $R^D$ consists of samples from a probability measure concentrated on or near an unknown $d$-dimensional manifold with $d$ much smaller than $D$, we consider two sets of problems: low-dimensional geometric approximations to the manifold and regression of a function on the manifold. In the first case, we construct multiscale low-dimensional empirical approximations to the manifold and give finite-sample performance guarantees. In the second case, we exploit these empirical geometric approximations of the manifold and construct multiscale approximations to the function. We prove finite-sample guarantees showing that we attain the same learning rates as if the function was defined on a Euclidean domain of dimension $d$. In both cases our approximations can adapt to the regularity of the manifold or the function even when this varies at different scales or locations.
Tuesday, March 27, 2018 - 14:00 , Location: Skiles 005 , Dario Mena , Georgia Institute of Technology , Organizer: Dario Mena Arias
The first part, consists on a result in the area of commutators.  The classic result by Coifman, Rochber and Weiss, stablishes a relation between a BMO function, and the commutator of such a function with the Hilbert transform. The result obtained for this thesis, is in the two parameters setting (with obvious generalizations to more than two parameters) in the case where the BMO function is matrix valued. The second part of the thesis corresponds to domination of operators by using a special class called sparse operators.  These operators are positive and highly localized, and therefore, allows for a very efficient way of proving weighted and unweighted estimates.   Three main results in this area will be presented: The first one, is a sparse version of the celebrated $T1$ theorem of David and Journé: under some conditions on the action of a Calderón-Zygmund operator $T$ over the indicator function of a cube, we have sparse control..  The second result, is an application of the sparse techniques to dominate a discrete oscillatory version of the Hilbert transform with a quadratic phase, for which the notion of sparse operator has to be extended to functions on the integers.  The last resuilt, proves that the Bochner-Riesz multipliers satisfy a range of sparse bounds, we work with the ’single scale’ version of the Bochner-Riesz Conjecture directly, and use the ‘optimal’ unweighted estimates to derive the sparse bounds.
Monday, March 26, 2018 - 14:30 , Location: Room 304 , Bob Gompf and Sergei Gukov , UT Austin and Cal Tech , Organizer: Caitlin Leverson
For oriented manifolds of dimension at least 4 that are simply connected at infinity, it is known that end summing (the noncompact analogue of boundary summing) is a uniquely defined operation. Calcut and Haggerty showed that more complicated fundamental group behavior at infinity can lead to nonuniqueness. We will examine how and when uniqueness fails. There are examples in various categories (homotopy, TOP, PL and DIFF) of nonuniqueness that cannot be detected in a weaker category. In contrast, we will present a group-theoretic condition that guarantees uniqueness. As an application, the monoid of smooth manifolds homeomorphic to R^4 acts on the set of smoothings of any noncompact 4-manifold. (This work is joint with Jack Calcut.)
Monday, March 26, 2018 - 13:55 , Location: Skiles 005 , Mark Iwen , Michigan State University , , Organizer: Wenjing Liao
We propose a general phase retrieval approach that uses correlation-based measurements with compactly supported measurement masks. The algorithm admits deterministic measurement constructions together with a robust, fast recovery algorithm that consists of solving a system of linear equations in a lifted space, followed by finding an eigenvector (e.g., via an inverse power iteration). Theoretical reconstruction error guarantees are presented. Numerical experiments demonstrate robustness and computational efficiency that outperforms competing approaches on large problems. Finally, we show that this approach also trivially extends to phase retrieval problems based on windowed Fourier measurements.
Monday, March 19, 2018 - 13:55 , Location: Skiles 006 , None , None , Organizer: Dan Margalit
Friday, March 16, 2018 - 15:05 , Location: Skiles 271 , Longmei Shu , GT Math , Organizer: Jiaqi Yang
Isospectral reductions decrease the dimension of the adjacency matrix while keeping all the eigenvalues. This is achieved by using rational functions in the entries of the reduced matrix. I will show how it's done through an example. I will also discuss about the eigenvectors and generalized eigenvectors before and after reductions.
Friday, March 16, 2018 - 15:00 , Location: Skiles 202 , Forrest T. Kieffer , School of Mathematics, Georgia Tech , Organizer: Michael Loss
Consider a relativistic electron interacting with a nucleus of nuclear charge Z and coupled to its self-generated electromagnetic field. The resulting system of equations describing the time evolution of this electron and its corresponding vector potential are known as the Maxwell-Dirac-Coulomb (MDC) equations. We study the time local well-posedness of the MDC equations, and, under reasonable restrictions on the nuclear charge Z, we prove the existence of a unique local in time solution to these equations. 
Friday, March 16, 2018 - 15:00 , Location: Skiles 006 , Mark Skandera , Lehigh University , Organizer: Greg Blekherman
The (type A) Hecke algebra H_n(q) is an n!-dimensional q-analog of the symmetric group.  A related trace space of certain functions on H_n(q) has dimension equal to the number of integer partitions of n. If we could evaluate all functions belonging to some basis of the trace space on all elements of some basis of H_n(q), then by linearity we could evaluate em all traces on all elements of H_n(q).  Unfortunately there is no simple published formula which accomplishes this. We will consider a basis of H_n(q) which is related to structures called wiring diagrams, and a combinatorial rule for evaluating one trace basis on all elements of this wiring diagram basis. This result, the first of its kind, is joint work with Justin Lambright and Ryan Kaliszewski. 
Friday, March 16, 2018 - 14:00 , Location: Skiles 006 , Jen Hom , Georgia Tech , Organizer: Jennifer Hom
In this series of talks, we will study the relationship between the Alexander module and the bordered Floer homology of the Seifert surface complement. In particular, we will show that bordered Floer categorifies Donaldson's TQFT description of the Alexander module.