Seminars and Colloquia by Series

Blowup for model equations of fluid mechanics

Series
PDE Seminar
Time
Tuesday, August 30, 2016 - 15:05 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Vu HoangRice University
The incompressible three-dimensional Euler equations are a basic model of fluid mechanics. Although these equations are more than 200 years old, many fundamental questions remain unanswered, most notably if smooth solutions can form singularities in finite time. In this talk, I discuss recent progress towards proving a finite time blowup for the Euler equations, inspired numerical work by T. Hou and G. Luo and analytical results by A. Kiselev and V. Sverak. My main focus lies on various model equations of fluid mechanics that isolate and capture possible mechanisms for singularity formation. An important theme is to achieve finite-time blowup in a controlled manner using the hyperbolic flow scenario in one and two space dimensions. This talk is based on joint work with B. Orcan-Ekmecki, M. Radosz, and H. Yang.

Lagrangian solutions for the Semi-Geostrophic Shallow Water system in physical space

Series
PDE Seminar
Time
Friday, April 29, 2016 - 14:05 for 1 hour (actually 50 minutes)
Location
Skiles 005
Speaker
Adrian TudorascuWest Virginia University
SGSW is a third level specialization of Navier-Stokes (via Boussinesq, then Semi-Geostrophic), and it accurately describes large-scale, rotation-dominated atmospheric flow under the extra-assumption that the horizontal velocity of the fluid is independent of the vertical coordinate. The Cullen-Purser stability condition establishes a connection between SGSW and Optimal Transport by imposing semi-convexity on the pressure; this has led to results of existence of solutions in dual space (i.e., where the problem is transformed under a non-smooth change of variables). In this talk I will present recent results on existence and weak stability of solutions in physical space (i.e., in the original variables) for general initial data, the very first of their kind. This is based on joint work with M. Feldman (UW-Madison).

Global well-posedness for the Cubic Dirac equation in the critical space

Series
PDE Seminar
Time
Wednesday, April 27, 2016 - 14:05 for 1 hour (actually 50 minutes)
Location
Skiles 270
Speaker
Ioan BejenaruUniversity of California, San Diego
We establish global well-posedness and scattering for the cubic Dirac equation for small data in the critical space. The theory we develop is the Klein-Gordon counterpart of the Wave Maps / Schroedinger Maps theory. This is joint work with Sebastian Herr.

Euler sprays and Wasserstein geometry of the space of shapes

Series
PDE Seminar
Time
Tuesday, April 19, 2016 - 15:05 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Dejan SlepcevCarnegie Mellon University
We will discuss a distance between shapes defined by minimizing the integral of kinetic energy along transport paths constrained to measures with characteristic-function densities. The formal geodesic equations for this shape distance are Euler equations for incompressible, inviscid flow of fluid with zero pressure and surface tension on the free boundary. We will discuss the instability that the minimization problem develops and the resulting connections to optimal transportation. The talk is based on joint work with Jian-Guo Liu (Duke) and Bob Pego (CMU).

Recent progress on geometric wave equations

Series
PDE Seminar
Time
Wednesday, April 6, 2016 - 14:05 for 1 hour (actually 50 minutes)
Location
Skiles 270
Speaker
Sung-Jin OhUniversity of California, Berkeley
The subject of this talk is wave equations that arise from geometric considerations. Prime examples include the wave map equation and the Yang-Mills equation on the Minkowski space. On one hand, these are fundamental field theories arising in physics; on the other hand, they may be thought of as the hyperbolic analogues of the harmonic map and the elliptic Yang-Mills equations, which are interesting geometric PDEs on their own. I will discuss the recent progress on the problem of global regularity and asymptotic behavior of solutions to these PDEs.

A deterministic optimal design problem for the heat equation

Series
PDE Seminar
Time
Wednesday, March 30, 2016 - 14:05 for 1 hour (actually 50 minutes)
Location
Skiles 270
Speaker
Alden WatersCNRS Ecole Normale Superieure
In everyday language, this talk addresses the question about the optimal shape and location of a thermometer of a given volume to reconstruct the temperature distribution in an entire room. For random initial conditions, this problem was considered by Privat, Trelat and Zuazua (ARMA, 2015), and we remove both the randomness and geometric assumptions in their article. Analytically, we obtain quantitative estimates for the wellposedness of an inverse problem, in which one determines the solution in the whole domain from its restriction to a subset of given volume. Using wave packet decompositions from microlocal analysis, we conclude that there exists a unique optimal such subset, that it is semi-analytic and can be approximated by solving a sequence of finite-dimensional optimization problems. This talk will also address future applications to inverse problems.

Turbulence, shmurbulence: how fat is it?

Series
PDE Seminar
Time
Wednesday, March 16, 2016 - 14:05 for 1 hour (actually 50 minutes)
Location
Skiles 270
Speaker
Predrag CvitanovicSchool of Physics, Georgia Tech
PDEs (such as Navier-Stokes) are in principle infinite-dimensional dynamical systems. However, recent studies support conjecture that the turbulent solutions of spatially extended dissipative systems evolve within an `inertial' manifold spanned by a finite number of 'entangled' modes, dynamically isolated from the residual set of isolated, transient degrees of freedom. We provide numerical evidence that this finite-dimensional manifold on which the long-time dynamics of a chaotic dissipative dynamical system lives can be constructed solely from the knowledge of a set of unstable periodic orbits. In particular, we determine the dimension of the inertial manifold for Kuramoto-Sivashinsky system, and find it to be equal to the `'physical dimension' computed previously via the hyperbolicity properties of covariant Lyapunov vectors. (with Xiong Ding, H. Chate, E. Siminos and K. A. Takeuchi)

Self-organized dynamics: aggregation and flocking

Series
PDE Seminar
Time
Friday, March 4, 2016 - 16:05 for 1 hour (actually 50 minutes)
Location
Skiles 005
Speaker
Changhui TanRice University
Self-organized behaviors are very common in nature and human societies: flock of birds, school of fishes, colony of bacteria, and even group of people's opinions. There are many successful mathematical models which capture the large scale phenomenon under simple interaction rules in small scale. In this talk, I will present several models on self-organized dynamics, in different scales: from agent-based models, through kinetic descriptions, to various types of hydrodynamic systems. I will discuss some recent results on these systems including existence of solutions, large time behaviors, connections between different scales, and numerical implementations.

HJB equations for stochastic control problems with delay in the control: regularity and feedback controls

Series
PDE Seminar
Time
Tuesday, February 23, 2016 - 15:05 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Fausto GozziLUISS University, Rome, Italy
Stochastic optimal control problems governed by delay equations with delay in the control are usually more difficult to study than the ones when the delay appears only in the state. This is particularly true when we look at the associated Hamilton-Jacobi-Bellman (HJB) equation. Indeed, even in the simplified setting (introduced first by Vinter and Kwong for the deterministic case) the HJB equation is an infinite dimensional second order semi-linear PDE that does not satisfy the so-called structure condition which substantially means that "the noise enters the system with the control". The absence of such condition, together with the lack of smoothing properties which is a common feature of problems with delay, prevents the use of known techniques (based on Backward Stochastic Differential Equations or on the smoothing properties of the linear part) to prove the existence of regular solutions to this HJB equation and thus no results in this direction have been proved till now. In this talk we will discuss results about existence of regular solutions of this kind of HJB equations and their use in solving the corresponding control problem by finding optimal feedback controls, also in the more difficult case of pointwise delay. This is a joint work with Federica Masiero.

On long -time behavior of solutions of 2d Euler equations

Series
PDE Seminar
Time
Tuesday, February 16, 2016 - 18:05 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Vladimir SverakUniversity of Minneapolis, Minnesota
Long-time behavior of "generic" 2d Euler solutions is expected to be governed by conserved quantities and simple variational principles related to them. Proving or disproving this from the dynamics is a notoriously difficult problem which remains unsolved. The variational problems which arise from these conjectures are interesting by themselves and we will present some results concerning these problems.

Pages