Seminars and Colloquia by Series

1-d parabolic Anderson model with rough spatial noise

Series
Stochastics Seminar
Time
Thursday, March 7, 2019 - 15:05 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Samy TindelPurdue University
In this talk I will first recall some general facts about the parabolic Anderson model (PAM), which can be briefly described as a simple heat equation in a random environment. The key phenomenon which has to be observed in this context is called localization. I will review some ways to express this phenomenon, and then single out the so called eigenvectors localization for the Anderson operator. This particular instance of localization motivates our study of large time asymptotics for the stochastic heat equation. In the second part of the talk I will describe the Gaussian environment we consider, which is rougher than white noise, then I will give an account on the asymptotic exponents we obtain as time goes to infinity. If time allows it, I will also give some elements of proof.

On the reconstruction error of PCA

Series
Stochastics Seminar
Time
Tuesday, March 5, 2019 - 15:05 for 1 hour (actually 50 minutes)
Location
Skiles 168
Speaker
Martin WahlHumboldt University, Berlin.

We identify principal component analysis (PCA) as an empirical risk minimization problem with respect to the reconstruction error and prove non-asymptotic upper bounds for the corresponding excess risk. These bounds unify and improve existing upper bounds from the literature. In particular, they give oracle inequalities under mild eigenvalue conditions. We also discuss how our results can be transferred to the subspace distance and, for instance, how our approach leads to a sharp $\sin \Theta$ theorem for empirical covariance operators. The proof is based on a novel contraction property, contrasting previous spectral perturbation approaches. This talk is based on joint works with Markus Reiß and Moritz Jirak.

Joint distribution of Busemann functions for the corner growth model

Series
Stochastics Seminar
Time
Thursday, February 28, 2019 - 15:05 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Wai Tong (Louis) FanIndiana University, Bloomington
We present the joint distribution of the Busemann functions, in all directions of growth, of the exactly solvable corner growth model (CGM). This gives a natural coupling of all stationary CGMs and leads to new results about geodesics. Properties of this joint distribution are accessed by identifying it as the unique invariant distribution of a multiclass last passage percolation model. This is joint work with Timo Seppäläinen.

Wiener-Hopf Factorization for Markov Processes

Series
Stochastics Seminar
Time
Tuesday, February 26, 2019 - 15:05 for 1 hour (actually 50 minutes)
Location
Skiles 168
Speaker
R. GongIllinois Institute of Technology

Wiener-Hopf factorization (WHf) encompasses several important results in probability and stochastic processes, as well as in operator theory. The importance of the WHf stems not only from its theoretical appeal, manifested, in part, through probabilistic interpretation of analytical results, but also from its practical applications in a wide range of fields, such as fluctuation theory, insurance and finance. The various existing forms of the WHf for Markov chains, strong Markov processes, Levy processes, and Markov additive process, have been obtained only in the time-homogeneous case. However, there are abundant real life dynamical systems that are modeled in terms of time-inhomogenous processes, and yet the corresponding Wiener-Hopf factorization theory is not available for this important class of models. In this talk, I will first provide a survey on the development of Wiener-Hopf factorization for time-homogeneous Markov chains, Levy processes, and Markov additive processes. Then, I will discuss our recent work on WHf for time-inhomogensous Markov chains. To the best of our knowledge, this study is the first attempt to investigate the WHf for time-inhomogeneous Markov processes.

Stationary coalescing walks on the lattice

Series
Stochastics Seminar
Time
Thursday, February 21, 2019 - 15:05 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Arjun KrishnanUniversity of Rochester
Consider a measurable dense family of semi-infinite nearest-neighbor paths on the integer lattice in d dimensions. If the measure on the paths is translation invariant, we completely classify their collective behavior in d=2 under mild assumptions. We use our theory to classify the behavior of families of semi-infinite geodesics in first- and last-passage percolation that come from Busemann functions. For d>=2, we describe the behavior of bi-infinite trajectories, and show that they carry an invariant measure. We also construct several examples displaying unexpected behavior. One of these examples lets us answer a question of C. Hoffman's from 2016. (joint work with Jon Chaika)

A tight net with respect to a random matrix norm and applications to estimating singular values

Series
Stochastics Seminar
Time
Thursday, February 14, 2019 - 15:05 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
G. LivshytsSOM, GaTech
In this talk we construct a net around the unit sphere with strong properties. We show that with exponentially high probability, the value of |Ax| on the sphere can be approximated well using this net, where A is a random matrix with independent columns. We apply it to study the smallest singular value of random matrices under very mild assumptions, and obtain sharp small ball behavior. As a partial case, we estimate (essentially optimally) the smallest singular value for matrices of arbitrary aspect ratio with i.i.d. mean zero variance one entries. Further, in the square case we show an estimate that holds only under simply the assumptions of independent entries with bounded concentration functions, and with appropriately bounded expected Hilbert-Schmidt norm. A key aspect of our results is the absence of structural requirements such as mean zero and equal variance of the entries.

Homogenization of a class of one-dimensional nonconvex viscous Hamilton-Jacobi equations with random potential

Series
Stochastics Seminar
Time
Thursday, February 7, 2019 - 15:05 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Atilla YilmazTemple University
I will present joint work with Elena Kosygina and Ofer Zeitouni in which we prove the homogenization of a class of one-dimensional viscous Hamilton-Jacobi equations with random Hamiltonians that are nonconvex in the gradient variable. Due to the special form of the Hamiltonians, the solutions of these PDEs with linear initial conditions have representations involving exponential expectations of controlled Brownian motion in a random potential. The effective Hamiltonian is the asymptotic rate of growth of these exponential expectations as time goes to infinity and is explicit in terms of the tilted free energy of (uncontrolled) Brownian motion in a random potential. The proof involves large deviations, construction of correctors which lead to exponential martingales, and identification of asymptotically optimal policies.

Estimation of smooth functionals of high-dimensional covariance

Series
Stochastics Seminar
Time
Thursday, January 31, 2019 - 15:05 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
V. KoltchinskiiSOM, GaTech

We discuss a problem of asymptotically efficient (that is, asymptotically normal with minimax optimal limit variance) estimation of functionals of the form $\langle f(\Sigma), B\rangle$ of unknown covariance $\Sigma$ based on i.i.d.mean zero Gaussian observations $X_1,\dots, X_n\in {\mathbb R}^d$ with covariance $$\Sigma$. Under the assumptions that the dimension $d\leq n^{\alpha}$ for some $\alpha\in (0,1)$ and $f:{\mathbb R}\mapsto {\mathbb R}$ is of smoothness $s>\frac{1}{1-\alpha},$ we show how to construct an asymptotically efficient estimator of such functionals (the smoothness threshold $\frac{1}{1-\alpha}$ is known to be optimal for a simpler problem of estimation of smooth functionals of unknown mean of normal distribution).

The proof of this result relies on a variety of probabilistic and analytic tools including Gaussian concentration, bounds on the remainders of Taylor expansions of operator functions and bounds on finite differences of smooth functions along certain Markov chains in the spaces of positively semi-definite matrices.

Lower bounds for fluctuations in first-passage percolation

Series
Stochastics Seminar
Time
Thursday, January 24, 2019 - 15:05 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
M. DamronSOM, GaTech
In first-passage percolation (FPP), one assigns i.i.d. weights to the edges of the cubic lattice Z^d and analyzes the induced weighted graph metric. If T(x,y) is the distance between vertices x and y, then a primary question in the model is: what is the order of the fluctuations of T(0,x)? It is expected that the variance of T(0,x) grows like the norm of x to a power strictly less than 1, but the best lower bounds available are (only in two dimensions) of order \log |x|. This result was found in the '90s and there has not been any improvement since. In this talk, we discuss the problem of getting stronger fluctuation bounds: to show that T(0,x) is with high probability not contained in an interval of size o(\log |x|)^{1/2}, and similar statements for FPP in thin cylinders. Such a statement has been proved for special edge-weight distributions by Pemantle-Peres ('95) and Chatterjee ('17). In work with J. Hanson, C. Houdré, and C. Xu, we extend these bounds to general edge-weight distributions. I will explain some of the methods we use, including an old and elementary "small ball" probability result for functions on the hypercube.

Stein's Method for Infinitely Divisible Laws With Finite First Moment

Series
Stochastics Seminar
Time
Thursday, January 17, 2019 - 15:05 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Benjamin ArrasUniversity of Lille
Stein's method is a powerful technique to quantify proximity between probability measures, which has been mainly developed in the Gaussian and the Poisson settings. It is based on a covariance representation which completely characterizes the target probability measure. In this talk, I will present some recent unifying results regarding Stein's method for infinitely divisible laws with finite first moment. In particular, I will present new quantitative results regarding Compound Poisson approximation of infinitely divisible laws, approximation of self-decomposable distributions by sums of independent summands and stability results for self-decomposable laws which satisfy a second moment assumption together with an appropriate Poincaré inequality. This is based on joint works with Christian Houdré.

Pages