Seminars and Colloquia by Series

Monday, November 30, 2009 - 11:00 , Location: Skiles 269 , Maria Lopez , Consejo Superior de Investigaciones Cientificas Madrid, Spain , Organizer: Yingfei Yi
We introduce a change of coordinates allowing to capture in a fixed reference frame the profile of travelling wave solutions for nonlinear parabolic equations. For nonlinearities of bistable type the asymptotic travelling wave profile becomes an equilibrium state for the augmented reaction-diffusion equation. In the new equation, the profile of the asymptotic travelling front and its propagation speed emerge simultaneously as time evolves. Several numerical experiments illustrate the effciency of the method.
Monday, November 16, 2009 - 11:00 , Location: Skiles 269 , Wei-Min Wang , Universite Paris-Sud, France , Organizer: Yingfei Yi
We present a new theory on Hamiltonian PDE. The linear theory solves an old spectral problem on boundedness of L infinity norm of the eigenfunctions of the Schroedinger operator on the 2-torus. The nonlinear theory develops Fourier geometry, eliminates the convexity condition on the (infinite dimension) Hamiltonian and is natural for PDE.
Monday, November 9, 2009 - 11:00 , Location: Skiles 269 , Dongwei Huang , Tianjin Polytechnic University, China and School of Mathematics, Georgia Tech , Organizer: Yingfei Yi
Many dynamical systems may be subject to stochastic excitations, so to find an efficient method to analyze the stochastic system is very important. As for the complexity of the stochastic systems, there are not any omnipotent methods. What I would like to present here is a brief introduction to quasi-non-integrable Hamiltonian systems and stochastic averaging method for analyzing certain stochastic dynamical systems. At the end, I will give some examples of the method.
Monday, November 2, 2009 - 11:00 , Location: Skiles 269 , Wen Huang , USTC, China and SoM, Georgia Tech , Organizer: Yingfei Yi
Stable sets and unstable sets of a dynamical system with positive entropy are investigated. It is shown that in any invertible system with positive entropy, there is a measure-theoretically ?rather big? set such that for any point from the set, the intersection of the closure of the stable set and the closure of the unstable set of the point has positive entropy. Moreover, for several kinds of specific systems, the lower bound of Hausdorff dimension of these sets is estimated. Particularly the lower bound of the Hausdorff dimension of such sets appearing in a positive entropy diffeomorphism on a smooth Riemannian manifold is given in terms of the metric entropy and of Lyapunov exponent.
Monday, October 19, 2009 - 11:00 , Location: Skiles 269 , Redouane Qesmi , York University, Canada and SoM, Georgia Tech , Organizer: Yingfei Yi
Despite advances in treatment of chronic hepatitis B virus (HBV) infection, liver transplantation remains the only hope for many patients with end-stage liver disease due to HBV. A complication with liver transplantation, however, is that the new liver is eventually reinfected in chronic HBV patients by infection in other compartments of the body. We have formulated a model to describe the dynamics of HBV after liver transplant, considering the liver and the blood of areas of infection. Analyzing the model, we observe that the system shows either a transcritical or a backward bifurcation. Explicit conditions on the model parameters are given for the backward bifurcation to be present, to be reduced, or disappear. Consequently, we investigate possible factors that are responsible for HBV/HCV infection and assess control strategies to reduce HBV/HCV reinfection and improve graft survival after liver transplantation.
Monday, September 28, 2009 - 11:00 , Location: Skiles 269 , Federico Bonetto , School of Mathematics, Georgia Tech , Organizer: Yingfei Yi

This talk continues from last week's colloquium.

Fourier's Law assert that the heat flow through a point in a solid is proportional to the temperature gradient at that point. Fourier himself thought that this law could not be derived from the mechanical properties of the elementary constituents (atoms and electrons, in modern language) of the solid. On the contrary, we now believe that such a derivation is possible and necessary. At the core of this change of opinion is the introduction of probability in the description. We now see the microscopic state of a system as a probability measure on phase space so that evolution becomes a stochastic process. Macroscopic properties are then obtained through averages. I will introduce some of the models used in this research and discuss their relevance for the physical problem and the mathematical results one can obtain.
Monday, September 21, 2009 - 11:00 , Location: Skiles 269 , Federico Bonetto , School of Mathematics, Georgia Tech , Organizer: Yingfei Yi
Fourier's Law assert that the heat flow through a point in a solid is proportional to the temperature gradient at that point. Fourier himself thought that this law could not be derived from the mechanical properties of the elementary constituents (atoms and electrons, in modern language) of the solid. On the contrary, we now believe that such a derivation is possible and necessary. At the core of this change of opinion is the introduction of probability in the description. We now see the microscopic state of a system as a probability measure on phase space so that evolution becomes a stochastic process. Macroscopic properties are then obtained through averages. I will introduce some of the models used in this research and discuss their relevance for the physical problem and the mathematical results one can obtain.
Monday, September 14, 2009 - 11:00 , Location: Skiles 269 , Jose M. Arrieta , Universidad Complutense de Madrid , Organizer: Yingfei Yi
We study the behavior of the asymptotic dynamics of a dissipative reaction-diffusion equation in a dumbbell domain, which, roughly speaking, consists of two fixed domains joined by a thin channel. We analyze the behavior of the stationary solutions (solutions of the elliptic problem), their local unstable manifold and the attractor of the equation as the width of the connecting channel goes to zero.
Monday, August 24, 2009 - 16:30 , Location: Skiles 255 , Qian Wang , School of Mathematics, Georgia Tech , Organizer: Yingfei Yi
The Bendixson conditions for general nonlinear differential equations in Banach spaces are developed in terms of stability of associated compound differential equations. The generalized Bendixson criterion states that, if some measure of 2-dimensional surface area tends to zero with time, then there are no closed curves that are left invariant by the dynamics. In particular, there are no nontrivial periodic orbits, homoclinic loops or heteroclinic loops. Concrete conditions that preclude the existence of periodic solutions for a parabolic PDE will be given. This is joint work with Professor James S. Muldowney at University of Alberta.
Monday, April 20, 2009 - 16:30 , Location: Skiles 255 , Jianshe Yu , Guangzhou University , Organizer: Haomin Zhou
In the talk I will discuss the periodicity of solutions to the classical forced pendulum equation y" + A sin y = f(t) where A= g/l is the ratio of the gravity constant and the pendulum length, and f(t) is an external periodic force with a minimal period T. The major concern is to characterize conditions on A and f under which the equation admits periodic solutions with a prescribed minimal period pT, where p>1 is an integer. I will show how the new approach, based on the critical point theory and an original decomposition technique, leads to the existence of such solutions without requiring p to be a prime as imposed in most previous approaches. In addition, I will present the first non-existence result of such solutions which indicates that long pendulum has a natural resistance to oscillate periodically.

Pages