Seminars and Colloquia by Series

Asymptotic Homotopical Complexity of a Sequence of 2D Dispersing Billiards

Series
CDSNS Colloquium
Time
Monday, November 25, 2019 - 11:15 for 1 hour (actually 50 minutes)
Location
Skyles 005
Speaker
Nandor SimanyiUniversity of Alabama at Birgminham

We are studying the asymptotic homotopical complexity of a sequence of billiard flows on the 2D unit torus T^2 with n
circular obstacles. We get asymptotic lower and upper bounds for the radial sizes of the homotopical rotation sets and,
accordingly, asymptotic lower and upper bounds for the sequence of topological entropies. The obtained bounds are rather
close to each other, so this way we are pretty well capturing the asymptotic homotopical complexity of such systems.

Note that the sequence of topological entropies grows at the order of log(n), whereas, in sharp contrast, the order of magnitude of the sequence of metric entropies is only log(n)/n.


Also, we prove the convexity of the admissible rotation set AR, and the fact that the rotation vectors obtained from
periodic admissible trajectories form a dense subset in AR.

 

Ergodic properties of low complexity symbolic systems

Series
CDSNS Colloquium
Time
Monday, November 18, 2019 - 11:15 for 1 hour (actually 50 minutes)
Location
Skyles 005
Speaker
van.cyr@bucknell.eduBucknell University

The topological entropy of a subshift is the exponential growth rate of the number of words of different lengths in its language. For subshifts of entropy zero, finer growth invariants constrain their dynamical properties. In this talk we will survey how the complexity of a subshift affects properties of the ergodic measures it carries. In particular, we will see some recent results (joint with B. Kra) relating the word complexity of a subshift to its set of ergodic measures as well as some applications.

Renormalization for the almost Mathieu operator and related skew products.

Series
CDSNS Colloquium
Time
Friday, November 1, 2019 - 11:15 for 1 hour (actually 50 minutes)
Location
Skiles 005
Speaker
Hans KochUniv. of Texas, Austin

Considering SL(2,R) skew-product maps over circle rotations,
we prove that a renormalization transformation
associated with the golden mean alpha
has a nontrivial periodic orbit of length 3.
We also present some numerical results,
including evidence that this period 3 describes
scaling properties of the Hofstadter butterfly
near the top of the spectrum at alpha,
and scaling properties of the generalized eigenfunction
for this energy.

Effective bounds for the measure of rotations

Series
CDSNS Colloquium
Time
Monday, October 28, 2019 - 11:15 for 1 hour (actually 50 minutes)
Location
Skiles 05
Speaker
Alex HaroUniv. de Barcelona

A fundamental question in Dynamical Systems is to identify regions of
phase/parameter space satisfying a given property (stability,
linearization, etc).  In this talk, given a family of analytic circle
diffeomorphisms depending on a parameter, we obtain effective (almost
optimal) lower bounds of the Lebesgue measure of the set of parameters
for which that diffeomorphism is conjugate to a rigid rotation.
We estimate this measure using an a-posteriori KAM
scheme that relies on quantitative conditions that
are checkable using computer-assistance. We carefully describe
how the hypotheses in our theorems are reduced to a finite number of
computations, and apply our methodology to the case of the
Arnold family, in the far-from-integrable regime.

This is joint work with Jordi Lluis Figueras and Alejandro Luque.

 

Mixing and Explosions for the Generalized Recurrent Set

Series
CDSNS Colloquium
Time
Monday, October 21, 2019 - 15:00 for 1 hour (actually 50 minutes)
Location
Skyles 006
Speaker
Jim WisemanAgnes Scott

We consider the strong chain recurrent set and the generalized recurrent set for continuous maps of compact metric spaces.  Recent work by Fathi and Pageault has shown a connection between the two sets, and has led to new results on them.  We discuss a structure theorem for transitive/mixing maps, and classify maps that permit explosions in the size of the recurrent sets.

New mechanisms of instability in Hamiltonian systems

Series
CDSNS Colloquium
Time
Monday, October 21, 2019 - 11:15 for 1 hour (actually 50 minutes)
Location
Skiles 06
Speaker
Tere M. SearaUniv. Politec. de Catalunya

In this talk we present some recent results which allow to prove
instability in near integrable Hamiltonian systems. We will show how
these mechanisms are suitable to apply to concrete systems but also are
useful to obtain Arnold diffusion in a large set  of Hamiltonian systems.

On the breakdown of small amplitude breathers for the reversible Klein-Gordon equation

Series
CDSNS Colloquium
Time
Friday, October 18, 2019 - 11:05 for 1 hour (actually 50 minutes)
Location
Skiles 06
Speaker
Marcel GuardiaUniv. Politec. de Catalunya

Breathers are periodic in time spatially localized solutions of evolutionary PDEs. They are known to exist for the sine-Gordon equation but are believed to be rare in other Klein-Gordon equations. Exchanging the roles of time and position, breathers can be interpreted as homoclinic solutions to a steady solution. In this talk, I will explain how to obtain an asymptotic formula for the distance between the stable and unstable manifold of the steady solution when the steady solution has weakly hyperbolic one dimensional stable and unstable manifolds. Their distance is exponentially small with respect to the amplitude of the breather and therefore classical perturbative techniques cannot be applied. This is a joint work with O. Gomide, T. Seara and C. Zeng.

Effect of non-conservative perturbations on homoclinic and heteroclinic orbits

Series
CDSNS Colloquium
Time
Wednesday, October 16, 2019 - 11:15 for 1 hour (actually 50 minutes)
Location
Skiles 05
Speaker
Marian GideaYeshiva University
he motivation of this work comes from astrodynamics. Consider a spacecraft traveling  between the Earth and the Moon. Assume that the spacecraft follows a zero-cost orbit  by coasting along the hyperbolic invariant manifolds associated to periodic orbits near the equilibrium points, at some fixed energy level. We want to make a maneuver -- impulsive or low thrust --  in order  to jump to the hyperbolic invariant manifold  corresponding to a different energy level. Mathematically, turning on the thrusters amounts to a adding a small, non-conservative, time-dependent perturbation to the original system. Given such an explicit perturbation, we would like to  estimate its effect on the orbit of the spacecraft.
 
We study this question in the context of two simple models: the pendulum-rotator system, and the planar circular restricted three-body problem. Homoclinic/heteroclinic excursions can be described via the scattering map, which gives the future asymptotics of an orbit as a function of the past asymptotics. We add a time-dependent, non-conservative perturbation, and provide explicit formulas, in terms of convergent integrals, for the perturbed scattering map.

Finite element approximation of invariant manifolds by the parameterization method

Series
CDSNS Colloquium
Time
Monday, September 30, 2019 - 11:15 for 1 hour (actually 50 minutes)
Location
Skiles 005
Speaker
Jorge GonzalezFlorida Atlantic University

We consider the problem of computing unstable manifolds for equilibrium solutions of parabolic PDEs posed on irregular spatial domains. This new approach is based on the parameterization method, a general functional analytic framework for studying invariant manifolds of dynamical systems. The method leads to an infinitesimal invariance equation describing the unstable manifold. A recursive scheme leads to linear homological equations for the jets of the manifold which are solved using the finite element method. One feature of the method is that we recover the dynamics on the manifold in addition to its embedding.  We implement the method for some example problems with polynomial and non-polynomial nonlinearities posed on various non-convex two dimensional domains. We provide numerical support for the accuracy of the computed manifolds using the natural notion of a-posteriori error admitted by the parameterization method. This is joint work with J.D. Mireles-James and Necibe Tuncer. 

Construction of unstable quasi-periodic solutions for a system of coupled NLS equations.

Series
CDSNS Colloquium
Time
Wednesday, September 4, 2019 - 11:15 for 1 hour (actually 50 minutes)
Location
Skiles 005
Speaker
Victor Vilaça Da RochaGeorgia Tech

The systems of coupled NLS equations occur in some physical problems, in particular in nonlinear optics (coupling between two optical waveguides, pulses or polarized components...).

From the mathematical point of view, the coupling effects can lead to truly nonlinear behaviors, such as the beating effect (solutions with Fourier modes exchanging energy) of Grébert, Paturel and Thomann (2013). In this talk, I will use the coupling between two NLS equations on the 1D torus to construct a family of linearly unstable tori, and therefore unstable quasi-periodic solutions.

The idea is to take profit of the Hamiltonian structure of the system via the construction of a Birkhoff normal form and the application of a KAM theorem. In particular, we will see of this surprising behavior (this is the first example of unstable tori for a 1D PDE) is strongly related to the existence of beating solutions.

This is a work in collaboration with Benoît Grébert (Université de Nantes).

Pages