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Introduction

These are some notes for a graduate course in complex analysis given at
Georgia Tech in the Spring semester 2018. The primary text for the course
is that of Ahlfors Complex Analysis third edition (McGraw-Hill 1979).

Much of the following consists of solutions and notes on the exercises.
Ahlfors sections and subsections each chapter essentially independently. Thus,
one finds § 1.1 and § 1.2 in both chapter 1 and chapter 2. When distinctions
between different section numbers with respect to the chapter seem neces-
sary, I will use roman numerals. Thus, in these notes chapter 2 is denoted by
chapter II, and section 1.2 of chapter 2 is denoted by § 1.2 (in the understood
context of chapter II) or by § II 1.2 if necessary.

We may also refer to a set of exercise solutions for the first three chapters
of Ahlfors published electronically Dustin Smith and a similar collection of
solutions for chapters 4-7 by Matt Rosenzweig.

Main theorems/topics of complex analysis

Here are what I consider the main theorems and topics for this course. I will
list theorems in bold face and give references in parentheses.

• complex arithmetic (chapter I)

• differentiability/Cauchy-Riemann equations (chapter II)

• harmonic functions, Schwarz reflection (chapter IV § 6)

• elementary functions (chapter II § 3)

1. complex powers/roots

2. complex exponential/logarithm
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4

3. complex trigonometric functions

4. Riemann surfaces

• conformal mapping (chapter III and chapter VI)

1. Riemann mapping theorem (chapter VI § 1)

2. stereographic projection (chapter I § 2.4)

3. Riemann sphere (chapter I § 2.4)

4. LFTs (linear fractional transformations) (chapter II § 1.4 and
chapter III § 3)

• Cauchy integral formula/complex integration (chapter IV)

• Laurent series (chapter V) and residue calculus (chapter IV § 5)

It will be noted that there are only two main theorems and a lot of “main”
topics.

Here are what I consider some additional topics:

• entire functions (chapter V § 3)

• product expansions and the Riemann zeta function (chapter V § 2 and
§ 4)

• elliptic functions (chapter VII)
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Chapter 1

Chapter I

1.1 Lecture 1: The complex number field

In the first part of the lecture I will cover § 1.1 and § 1.3. Then I will come
back to § 1.2 on complex square roots.

The complex numbers are the smallest field containing R and a root of
the polynomial equation

x2 + 1 = 0.

The root is denoted by i, and the complex numbers are denoted by C.

What does it mean to be a field?

F is a field if (F is a set and) there are operations (addition and multipli-
cation) on F satisfying the following:

1. Addition and multiplication are associative and commutative:

(a + b) + c = a + (b+ c); a + b = b+ a; (ab)c = a(bc); ab = ba.

2. Multiplication is distributive with respect to addition:

a(b+ c) = ab+ ac.

3. There are additive and multiplicative identities, 0 and 1:

a+ 0 = a; a · 1 = a.
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8 CHAPTER 1. CHAPTER I

4. every element has an additive inverse and every nonzero element has a
multiplicative inverse:

a+ (−a) = 0; bb−1 = 1, b 6= 0.

5. There are no zero divisors:

ab = 0 implies a = 0 or b = 0.

1.1.1 The real numbers R as a field

The real numbers R have two (or three) important additional properties:

(R1) The real numbers are ordered:

Given a, b ∈ R, then exactly one of the following holds:

a < b, a = b, or a > b.

(R2) The real numbers contain least upper bounds:

If S is a nonempty subset of R and there is some b ∈ R such that x ≤ b
for every x ∈ S, i.e., b is an upper bound for S, then there is some
b0 ∈ R such that

(a) x ≤ b0 for every x ∈ X, i.e., b0 is an upper bound for S, and

(b) If x ≤ c for every x ∈ S, then b0 ≤ c, i.e., b0 is the least upper
bound.

There is also a way to measure distance between real numbers (a metric)
given by the absolute value of the difference:

d(a, b) = |b− a|.

It can be shown that the least upper bound property (R2) implies the
following:

Every sequence x1, x2, x3, . . . of real numbers satisfying the following
condition:

Cauchy’s Condition For any ǫ > 0, there is some N > 0
such that

j, k > N =⇒ d(xj , xk) < ǫ.
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must also converge, i.e., there is some limit L (a real number in this
case) such that for any ǫ > 0, there is some N > 0 with

j > N =⇒ d(xj , L) < ǫ.

In short, every Cauchy sequence converges.

1.1.2 Comparison of C to R

C = {a+ bi : a, b ∈ R}
is a field:

addition: (a+ bi) + (c+ di) = (a + c) + (b+ d)i

multiplication: (a+ bi)(c + di) = (ac− bd) + (ad+ bc)i.

See Nexercise 2.

R = {a+ 0i : a ∈ R} and iR = {0 + bi : b ∈ R}.

See Nexercise 1.
The complex numbers are not ordered. (The least upper bound property

does not make sense in C.)
However, C is a metric space:

d(a+ bi, c + di) =
√

(a− c)2 + (b− d)2. (1.1)

See Nexercise 3.
We’ll often write a single letter to represent an element of C. For example,

it is typical to write z = x + iy, w = a + ib, and/or a = α + iβ. If we write
w = a+ ib, then it usually means a and b are real, but sometimes it doesn’t,
so we have to keep track.

Finally, C is complete in the sense that every Cauchy sequence converges
in C. Notice that this is a property C has in common with R. See Nexercise 4.

Nexercises

Nexercise 1 Show that

Q =

{

p

q
: p, q ∈ N, q 6= 0

}

is a field, but iR is not.
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Nexercise 2 Verify the field axioms for C.

Nexercise 3 Show d : C×C → R by the formula given in (1.1) satisfies the
metric axioms:

(symmetric) d(z, w) = d(w, z)

(positive definite) d(z, w) ≥ 0 with equality if and only if z = w.

(triangle inequality) d(z, w) ≤ d(z, ζ) + d(ζ, w).

Nexercise 4 Assume every Cauchy sequence of real numbers converges in
R, i.e., assume R is complete, and show C is complete.

1.1.3 §1.1 exercises

Exercise 1

(1 + 2i)3 = (−3 + 4i)(1 + 2i) = −11 − 2i.

5

−3 + 4i
=

−3 − 4i

5
.

(

2 + i

3 − 2i

)2

=

(

4 + 7i

13

)2

=
−33 + 56i

169
.

Let’s check by doing this a different way:

(

2 + i

3 − 2i

)2

=
3 + 4i

5 − 12i
=

−33 + 56i

169
.

Finally, we consdier
(1 + i)n + (1 − i)n.

There are various ways to simplify this expression (and even to express it).
Let’s start by considering (1 + i)n and (1 − i)n separately.

(1 + i)1 = 1 + i; (1 + i)2 = 2i; (1 + i)3 = 2(−1 + i); (1 + i)4 = −4.

Notice, first of all, that the fourth power is interesting; it is purely real. And
after the fourth power, there is a recursion: (1 + i)5 = −4(1 + i);

(1 + i)4+j = −4(1 + i)j .
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Figure 1.1: Here are the first five powers of 1 + i. One can make a similar
picture for the powers of 1− i. This picture suggests the use of trigonometric
functions/Euclidean polor coordinates to represent the powers. One can also
see the sums of the powers using Euclidean vector addition.

This means there is a kind of cylcle of length 4, and after the fourth power,
one picks up another factor of −4. That is, every n may be written as
n = 4j + k for some unique nonnegative j and k = 0, 1, 2, or 3, and we have

(1 + i)n =















(−4)j if k = 0
(−4)j(1 + i) if k = 1
(−4)j(2i) if k = 2
(−4)j [2(−1 + i)] if k = 3.

As we have checked the base case above, this assertion follows easily from
induction on j.

Plotting the first couple cycles geometrically and thinking in terms of
polar coordinates, it becomes evident that the expression for (1+ i)n may be
expressed by the single formula

(1 + i)n =
√

2n
[

cos
nπ

4
+ i sin

nπ

4

]

.

Similar considerations apply to (1 − i)n:

(1 − i)1 = 1 − i; (1 − i)2 = −2i; (1 − i)3 = 2(−1 − i); (1 − i)4 = −4;

(1 − i)4+j = −4(1 − i)j .
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(1 − i)4j+k =















(−4)j if k = 0
(−4)j(1 − i) if k = 1
(−4)j(−2i) if k = 2
(−4)j[2(−1 − i)] if k = 3.

(1 − i)n =
√

2n
[

cos
nπ

4
− i sin

nπ

4

]

.

Combining the appropriate expressions above, we get

(1 + i)4j+k + (1 − i)4j+k =















2(−4)j = (−1)j22j+1 if k = 0
2(−4)j = (−1)j22j+1 if k = 1
0 if k = 2
(−4)j+1 if k = 3.

or

(1 + i)n + (1 − i)n = 2
√

2n cos
nπ

4
.

Exercise 2

z = x+ iy.

z4 = (x2 − y2 + 2xyi)2

= (x2 − y2)2 − 4x2y2 + 4xy(x2 + y2)i

= x4 − 6x2y2 + y4 + 4xy(x2 + y2)i.

1

z
=

x− iy

x2 + y2
.

z − 1

z + 1
=

(x− 1 + i)(x+ 1 − i)

(x+ 1)2 + 1
=

x2 + 2i

x2 + 2x+ 2
.

1

z2
=
x2 − y2 − 2xyi

(x2 + y2)2
.

Exercise 3
(

−1 ± i
√

3

2

)3

=
(−2 ∓ 2i

√
3)(−1 ± i

√
3)

8
= 1.
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In our expressions, the signs are coordinated.

(

±1 ± i
√

3

2

)6

= (∓1)6





(

−1 − i
√

3

2

)3




2

= 1.

With the other choice of sign:

(

±1 ∓ i
√

3

2

)6

= (∓1)6





(

−1 + i
√

3

2

)3




2

= 1.

1.1.4 Lecture 1 (continued) complex square roots

In § 1.2 Ahlfors talks about complex square roots. It seems, more or less,
that he wishes the student to consider the topic from the point of view
of algebraic and arithmetic manipulations without the benefit of geometric
interpretation, which he introduces in § I 2.1. I will talk about some of the
geometric material at the very beginning of § I 2.1, so this part of the lecture
can also be considered a start at that section on complex geometry.

Let us start by looking for a complex number (i.e., all complex numbers)
x+ iy such that √

i = x+ iy.

If this condition is to hold, then we should have

x2 − y2 = 0 and 2xy = 1.

Squaring and adding these equations, we get

x4 − 2x2y2 + y4 + 4x2y2 = (x2 + y2)2 = 1.

Sinces x2 + y2 is real and positive, this means

x2 + y2 = 1.

Looking at the first equation x2 − y2 = 0 above, we get

x = ±1/
√

2.
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- 1.0 - 0.5 0.5 1.0 1.5

- 1.0

- 0.5

0.5

1.0

Figure 1.2: The complex plane.

The equation for the imaginary parts 2xy = 1 then gives

y =
1

2x
= ±

√
2

2
.

Thus, we get two square roots of i:

√
i = ±

(

1√
2

+ i
1√
2

)

= ± 1√
2
(1 + i).

This approach works in general to find the square root of a complex number;
see the exercises.

1.1.5 Geometry of the complex square root

Each complex number corresponds to a point in the (complex) plane; the
complex plane is isomorphic to R2:

a+ bi ∼ (a, b).

The absolute value of a complex number (covered again in the next section
§ I 1.4) is the distance from a+ bi to the origin:

|a+ bi| =
√
a2 + b2.



1.1. LECTURE 1: THE COMPLEX NUMBER FIELD 15

This is also called the magnitude or modulus of the complex number. The
argument is the angle the vector (a, b) makes with the positive real axis:

arg(a+ bi) =







tan−1(b/a), a > 0
sign(b)π/2, a = 0 (and b 6= 0)
π + tan−1(b/a), a < 0.

The argument is not really rigorously defined here as pointed out by Ahlfors.
In any case, the argument is only defined up to an additive multiple of 2π.

As will be seen in the exercises, it seems Ahlfors intends for the student
to struggle with the algebraic manipulations without the geometry. Some of
the exercises, however, seem exceedingly difficult without the rudimentary
identification of C with the plane given above.

Let us apply the geometric interpretation to the complex square root.
If we reconsider

√
i geometrically, we see

√
i has the two values indicated

in Figure 1.3. Each has unit length (or mudulus) and one has argument π/4.

- 1.0 - 0.5 0.5 1.0

- 1.0

- 0.5

0.5

1.0

- 1.0 - 0.5 0.5 1.0

- 1.0

- 0.5

0.5

1.0

Figure 1.3: the square roots of i and −i

We consider this one the principal square root. The other square root has
argument π/4 + π = 5π/4.

A similar discussion applies to
√
−i or to the square root of any complex

number. Notice the argument of (at least one of) the square roots of a
complex number z is half the argument of the number z. This observation is
justified more fully in § I 2.1. See also Nexercise 6 below.

We will not repeat Ahlfors’ derivation of the square root formula here,1

1See the solution to Exercise 4 of this section below.
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but let us briefly consider his conclusions from it with respect to the geometric
interpretation:

• The square root of any complex number always exists and has (up
to) two opposite values. (Apart from z = 0, there are exactly two
opposite values.) Taking the complex number with modulus

√

|z| and
argument arg(z)/2, we obtain a complex number |z|[cos(arg(z)/2) +
i sin(arg(z)/2)] whose square is z. We will return to this observation
again in § I 2.1. The “opposite” value of this square root will have
argument arg(z)/2 + π. Thus, when the “opposite” value is squared,
the argument will be arg(z) + 2π giving again z.

• The two “opposite” square roots of z ∈ C are the same only when
z = 0.

• Setting z = 0 aside, only positive numbers have real square roots:√
a+ 0i = ±√

a when a > 0.

• Setting z = 0 aside, only negative numbers have purely imaginary
square roots:

√
a + 0i = ±

√
−a when a < 0.

What we have said above about the prinipal square root is something
of a contradiction to Ahlfors’ assertion at the end of the section that it is
not “correct” to distinguish between the two complex square roots. In fact,
the argument provides a natural way to do so. There is always exactly one
square root of a nonzero complex number with argument in a certain range,
for example between −π/2 and π/2 (or equal to π/2). We can call this one
the principal square root. The interval we have suggested is, more or
less, standard though occasionally the principal square root it taken with
argument in [0, π).

Nexercise 5 Show the complex metric given in (1.1) is also given by

d(z, w) = |z − w|.

Nexercise 6 Show the argument of one of the square roots of z ∈ C is
arg(z)/2, and the other square root has argument arg(z)/2 + π.
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1.1.6 §1.2 exercises

Exercise 1
√
i = ±(1 + i)/

√
2 (calculated above).√

−i:
x2 − y2 = 0 and 2xy = −1.

x2 + y2 = 1 so x = ± 1√
2
.

y = ∓
√

2/2.
√
−i = ±

(

1√
2
− i√

2

)

.

√
1 + i:

x2 − y2 = 1 and 2xy = 1.

x2 + y2 =
√

2 so x = ±

√

1 +
√

2

2
= ±

√

2(1 +
√

2)

2
.

y = ±

√

2(
√

2 − 1)

2
.

√
1 + i = ±





√

2(1 +
√

2)

2
+ i

√

2(
√

2 − 1)

2



 .

√

(1 − i
√

3)/2:

x2 − y2 =
1

2
and 2xy = −

√
3

2
.

x2 + y2 = 1 so x = ±
√

3

2
.

y = ∓1

2
.

√

1 −
√

3

2
= ±

(√
3

2
− i

2

)

.
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Exercise 2

If z = 4
√
−1, then z2 =

√
−1 = ±i. There are two roots of −i and two roots

of i as calculated in Exercise 1 above. Any of these (and only these) give
fourth roots of −1:

4
√
−1 = ±(1 + i)/

√
2, ±(1 − i)/

√
2.

Exercise 3

If z = 4
√
i, then z2 =

√
i = ±(1 + i)/

√
2. From the point of view of the

argument, the principal square root of (1 + i)/
√

2 = cos(π/4) + i sin(π/4) is
cos(π/8) + i sin(π/8), and all the other roots may be found geometrically:

4
√
i = ±[cos(π/8) + i sin(π/8)], ±[− sin(π/8) + i cos(π/8)]

with ±[− sin(π/8)+ i cos(π/8)] being the two square roots of −(1+ i)/
√

2 =
cos(5π/4) + i sin(5π/4). From the arithmetical point of view, it would be
nice to have some values for sin(π/8) and cos(π/8). Thus, let us consider
cos(π/8) + i sin(π/8) = x+ iy. Then

x2 − y2 =
1√
2

= 2xy,

whence x2 + y2 = 1 (which is already obvious geometrically). It follows that

2x2 = 1 +
1√
2

=
2 +

√
2

2
and x = ±

√

2 +
√

2

2
,

and we take the positive squre root here to get the principal root x + iy.
That is,

cos(π/8) =

√

2 +
√

2

2
and sin(π/8) = y =

√
2

4x
=

√

2 −
√

2

2

owing to the fact that x = 1/
√

2(2 −
√

2). In view of this calculation, our

roots become

4
√
i = ±

[√

2 +
√

2

2
+ i

√

2 −
√

2

2

]

, ±
[

−
√

2 −
√

2

2
+ i

√

2 +
√

2

2

]

.
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For the fourth roots of −i, we can simply add π/4 (i.e., multiply by
√
i)

to the argument of the roots we just found:

4
√
−i = ±[sin(π/8) + i cos(π/8)], ±[− cos(π/8) + i sin(π/8)]

= ±
[√

2 −
√

2

2
+ i

√

2 +
√

2

2

]

, ±
[

−
√

2 +
√

2

2
+ i

√

2 −
√

2

2

]

.

Figure 1.4: the fourth roots of i and −i

Exercise 4

The quadratic formula, derived from completing the square, is also valid over
C. In fact, if we write ζ = α+iβ and η = γ+iδ, and z satisfies z2+ζz+η = 0,
then

(z − ζ/2)2 = ζ2/4 − η,

and

z = ζ/2 ±
√

ζ2/4 − η =
ζ ±

√

ζ2 − 4η

2
. (1.2)

In this formula, ±
√

ζ2 − 4η represents the two square roots of the complex
number ζ2 − 4η. In order to proceed further, we need the formula Ahlfors
derives for square roots of complex numbers. Let us give a slight veriation
of that here:
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The complex square root (computation)
√

α + iβ = x+ iy.

x2 − y2 = α and 2xy = β. (1.3)

x2 + y2 =
√

α2 + β2, so x = ±

√

α +
√

α2 + β2

2
. (1.4)

Because 2xy = β, we know

y =
β

2x
= ±

√
2

2

β
√

α +
√

α2 + β2

(1.5)

unless, of course, x = 0. The value of x can only vanish if β = 0 and α < 0.
In this case, y = ±

√
−α and

√
α + 0i = ±i

√
−α.

Let us assume x 6= 0 and come back to the exceptional case α + iβ < 0
later. We have then

√

α + iβ = ±





√

α +
√

α2 + β2

2
+ i

√
2

2

β
√

α +
√

α2 + β2



 . (1.6)

If β = 0 and α ≥ 0, then this formula simplifies to

√
α + 0i =

√
α.

If β 6= 0, then
√

±α +
√

α2 + β2 > 0, so from (1.5)

y = ± β
√

β2

√

−α +
√

α2 + β2

2
,

and (1.6) becomes

√

α + iβ = ±





√

α +
√

α2 + β2

2
+ i

β

|β|

√

−α +
√

α2 + β2

2



 .

This is Ahlfors’ formula.
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Notice we can write β/|β| = sign(β) with

sign(β) =

{

β/|β| if β 6= 0
0 if β = 0.

In this way, the singularity when β = 0 and α > 0 is effectively removed and
the cases with β 6= 0 and α + βi > 0 may be unified:

√

α + iβ = ±





√

α+
√

α2 + β2

2
+ i sign(β)

√

−α +
√

α2 + β2

2



 . (1.7)

In the special case α + βi > 0, this formula simplifies immediately to the
correct expression

√
α + 0i = ±

√
α when α > 0.

As pointed out by Ahlfors, this case is worth remembering separately. We
recall also the exceptional case α + 0i < 0 which was set aside above. The
formula (1.7) does not give the correct expression in this case, and we state
it separately: √

α+ 0i = ±i
√
−α when α < 0.

Let us now apply these formulas to the square root appearing in the
quadratic formula.

Exercise 4 (continued)

In our discussion above, we were led to consider the square root

√

ζ2 − 4η

where ζ = α + iβ and η = γ + iδ. The complex number inside the square
root is

α2 − β2 − 4γ + (2αβ − 4δ)i.

If αβ − 2δ 6= 0 or αβ = 2δ and α2 − β2 − 4γ ≥ 0, we can apply (1.7) to (1.2)
and obtain an expression for the roots of the quadratic equation. Before we
make that substitution, we note for reference

(α2 − β2 − 4γ)2 + (2αβ − 4δ)2 = (α2 + β2)2 − 8γ(α2 − β2) + 16αβδ + 16δ2.
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Here is the complex quadratic formula for z satisfying

z2 + (α + iβ)z + γ + iδ = 0

in terms of real and imaginary parts when αβ 6= 2δ:

z =
α+ iβ ±

√

ζ2 − 4η

2

=
1

2



α + iβ ±

√

α2 − β2 − 4γ +
√

(α2 − β2 − 4γ)2 + (2αβ − 4δ)2

2

±i sign(αβ − 2δ)

√

β2 − α2 + 4γ +
√

(α2 − β2 − 4γ)2 + (2αβ − 4δ)2

2





=
1

2



α±

√

α2 − β2 − 4γ +
√

(α2 − β2 − 4γ)2 + (2αβ − 4δ)2

2





+
i

2



β ± sign(αβ − 2δ)

√

β2 − α2 + 4γ +
√

(α2 − β2 − 4γ)2 + (2αβ − 4δ)2

2



 .

When αβ = 2δ and α2 − β2 ≥ 4γ, the formula simplifies to

z =
1

2

(

α±
√

α2 − β2 − 4γ + iβ
)

.

Lastly, we have the exceptional case αβ = 2δ and α2 −β2 < 4γ. In this case,

z =
1

2

[

α + i
(

β ±
√

β2 − α2 + 4γ
)]

.

As can be seen clearly from this exercise, the quadratic formula (1.2) in
the complex case, looks superficially the same as the formula for the real
case, but when the complex quadratic formula is expressed in terms of real
and imaginary parts, it is rather more complicated.

1.1.7 Lecture 2: Conjugation and inequalities

This lecture covers § I 1.4,5.
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When z = a+ bi with a, b ∈ R, we write

a = Re(z) (the ”real part” of z)

b = Im(z) (the ”imaginary part” of z).

The real and imaginary parts of z are both real numbers. We have then

z̄ = Re(z) + i Im(z),

and we also write
z̄ = Re(z) − i Im(z).

z̄ is called the conjugate of z.

Figure 1.5: complex conjugate

Useful facts about complex conjugation:

z ∈ R if and only if z̄ = z.

z + z̄ = 2 Re(z)

z − z̄ = 2i Im(z) ∈ iR.

¯̄z = z (Conjugation is an involution of C.)

z + w = z̄ + w̄ (Conjugation is ”linear.”)

(a + bi)(c+ di) = ac− bd− (ad+ bc)i = (a− bi)(c− di) X
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This is really useful; conjugation is multiplicative:

zw = z̄w̄ for z, w ∈ C.

As a result of these observations, conjugation “propogates” through all kinds
of algebraic expressions:

P (z) = anz
n + an−1z

n−1 + · · · + a1z + a0

P (z) = ānz̄
n + ān−1z̄

n−1 + · · · + ā1z̄ + ā0.

Proposition 1 If z is a root of the polynomial equation

P (z) =
n
∑

j=0

ajz
j = 0

and a0, . . . , an ∈ R, i.e., the coefficients are real, then z̄ is also a root.
(

z2 + w

z + w2

)

=
z̄2 + w̄

z̄ + w̄2
.

We already talked about the modulus:

|z| =
√

Re(z)2 + Im(z)2 =
√
zz̄

(

(a+ bi)(a− bi) = a2 + b2 + 0i
)

.

Important consequence:

|zw| =
√
zwz̄w̄ = |z||w|.

Similarly,
∣

∣

∣

z

w

∣

∣

∣
=

√

z

w

z̄

w̄
=

|z|
|w| , w 6= 0.

|z + w|2 = (z + w)(z̄ + w̄)

= |z|2 + zw̄ + wz̄ + |w|2

= |z|2 + 2 Re(zw̄) + |w|2.
Therefore, |z + w| 6= |z| + |w|, but

|z + w| =
√

|z|2 + 2 Re(zw̄) + |w|2

≤
√

|z|2 + 2|zw̄| + |w|2
= |z| + |w| since |w̄| = |w|.

This is the proof of the triangle inequality for the modulus (norm) on C. We
will repeat and extend this discussion below.
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Some other useful inequalities

−|z| ≤ Re(z) ≤ |z| =
√

Re(z)2 + Im(z)2

−|z| ≤ Im(z) ≤ |z|.
∣

∣

∣

∣

∣

n
∑

j=1

zj

∣

∣

∣

∣

∣

≤
∣

∣

∣

∣

∣

n−1
∑

j=1

zj

∣

∣

∣

∣

∣

+ |zn| ≤ · · · ≤
n
∑

j=1

|zj |.

|z − w| ≥ |z| − |w| (Why?) (1.8)

Answer: |z − w| + |w| ≥ |z − w + w|.
|z − w| = |w − z| ≥ |w| − |z|. (1.9)

Maybe the right sides of the inequalities in (1.8) and (1.9) are negative, but...

|z − w| ≥ | |z| − |w| | .
Nexercise 7 Show |z + w| ≥ | |z| − |w| |.

Equality in the triangle inequality

The triangle inequality is one of the metric axioms for C as described in
Nexercise 3. One sees from Nexercise 5 that the complex absolute value (or
modulus) gives a more primitive form of the metric. That is, the inequality

|z − w| ≤ |z − ζ | + |ζ − w|
for z, w, ζ ∈ C follows from

|z + w| ≤ |z| + |w|, (1.10)

and this latter inequality is also called the triangle inequality. It is one of the
abstract axioms which defines what it means to be a normed space. In fact,
C is also a normed space with norm given by the absolute value. Also, every
normed vector space is a metric space with a distance between two elements
defined to be the norm of the difference of those two elements. In any case,
we can derive the triangle inequality for the modulus as follows:

|z + w|2 = |z|2 + 2 Re(zw̄) + |w|2

≤ |z|2 + 2|zw̄| + |w|2
= |z|2 + 2|z||w|+ |w|2
= (|z| + |w|)2.
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Looking at the derivation, we see equality holds if and only if

Re(zw̄) = |zw̄| =
√

[Re(zw̄)]2 + [Im(zw̄)]2.

That is, if and only if Im(zw̄) = 0 and zw̄ ≥ 0. In fact, only the latter
condition characterizes equality:

Equality holds in the triangle inequality |z+w| ≤ |z|+ |w| if and
only if zw̄ ≥ 0.

The Cauchy-Schwarz inequality

We’ve mentioned that C is a metric space with distance

d(z, w) = |z − w|.

The distance comes from the modulus which (we’ve mentioned) is a norm
on C

|z| =
√

Re(z)2 + Im(z)2.

The concepts of distance (or metric) and norm are familiar from

Rn = {x = (x1, . . . , xn) : x1, . . . , xn ∈ R}

where

|x| =

√

√

√

√

n
∑

j=1

x2
j and d(x,y) =

√

√

√

√

n
∑

j=1

(xj − yj)2.

It will be recalled that there is also a dot product on Rn:

x · y =

n
∑

j=1

xjyj.

Obviously, the norm can be derived from the dot product:

|x| =
√

x · x.

The dot product is a special case of an inner product. There are abstract
axioms defining each of these structures (metric, norm, inner product) on a
vector space. Also, once you have an inner product

(v,w) 7→ 〈v,w〉,
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then you always get a norm

‖v‖ =
√

〈v,v〉
and a metric/distance

d(v,w) = ‖v − w‖.
Finally, when you have an inner product, you always get a fundamental
inequality relating the inner product and the norm called the Cauchy-Schwarz
inequality:

|〈v,v〉| ≤ ‖v‖‖w‖. (1.11)

The (absolute value of the) inner product is less than (or equal to) the product
of the norms.

The discussion above applies to the vector space

Cn = {(z1, . . . , zn) : z1, . . . , zn ∈ C}
which is the proto-typical complex vector space. So far, we have intro-
duced the norm (modulus) and distance for C1. Due to the structural
form/arithmetic of complex numbers, the inner product on Cn and espe-
cially the Cauchy-Schwarz inequality are important directly in C. The inner
product on Cn is

〈(z1, . . . , zn), (w1, . . . , wn)〉 =

n
∑

j=1

zjw̄j. (1.12)

Let’s prove the Cauchy-Schwarz inequality in Cn:

0 ≤
n
∑

j=1

|zj + λwj| (1.13)

=

(

n
∑

j=1

|wj|2
)

|λ|2 + 2 Re

[

λ
n
∑

j=1

wj z̄j

]

+
n
∑

j=1

|zj|2

≤
(

n
∑

j=1

|wj|2
)

|λ|2 + 2

∣

∣

∣

∣

∣

n
∑

j=1

wj z̄j

∣

∣

∣

∣

∣

|λ| +
n
∑

j=1

|zj |2.

The last expression is quadratic in |λ| with a minimum occuring when the
argument of the quatratic polynomial is

−

∣

∣

∣

∑n
j=1wj z̄j

∣

∣

∣

∑n
j=1 |wj|2
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assuming
∑n

j=1 |wj|2 > 0. Of course, |λ| can not be expected to take this
value. If we estimate in the opposite direction, however, we find

(

n
∑

j=1

|wj|2
)

|λ|2 + 2 Re

[

λ

n
∑

j=1

wj z̄j

]

+

n
∑

j=1

|zj|2

≥
(

n
∑

j=1

|wj|2
)

|λ|2 − 2

∣

∣

∣

∣

∣

n
∑

j=1

wj z̄j

∣

∣

∣

∣

∣

|λ| +
n
∑

j=1

|zj|2. (1.14)

Thus, optimizing the inequality (1.13) by choosing

|λ| =

∣

∣

∣

∑n
j=1wj z̄j

∣

∣

∣

∑n
j=1 |wj|2

and λ = −
∑n

j=1 zjw̄j
∑n

j=1 |wj|2

we obtain equality in (1.14) and

0 ≤

∣

∣

∣

∑n
j=1wj z̄j

∣

∣

∣

2

∑n
j=1 |wj|2

− 2

∣

∣

∣

∑n
j=1wj z̄j

∣

∣

∣

2

∑n
j=1 |wj|2

+

n
∑

j=1

|zj|2.

This immediately simplifies to (1.11):
∣

∣

∣

∣

∣

n
∑

j=1

zjw̄j

∣

∣

∣

∣

∣

≤

√

√

√

√

n
∑

j=1

|zj|2
√

√

√

√

n
∑

j=1

|wj|2.

This completes the proof of the Cauchy-Schwarz inequality for C. Replacing
wj with w̄j, we obtain what Ahlfors calls the Cauchy inequality:

∣

∣

∣

∣

∣

n
∑

j=1

zjwj

∣

∣

∣

∣

∣

2

≤
(

n
∑

j=1

|zj |2
)(

n
∑

j=1

|wj|2
)

.

Nexercise 8 What do the triangle inequality for the norm and the metric
on Cn say about complex numbers?

1.1.8 §1.4 exercises

Exercise 3

We are asked to show that when |z| = 1 or |w| = 1, then
∣

∣

∣

∣

w − z

1 − w̄z

∣

∣

∣

∣

= 1.
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We are also asked to find an exceptional case when |z| = |w| = 1. The basic
assertion is easy since

∣

∣

∣

∣

w − z

1 − w̄z

∣

∣

∣

∣

=
w − z

1 − w̄z
· w − z

1 − w̄z
=

w − z

1 − w̄z
· w̄ − z̄

1 − z̄w
=

|w|2 − zw̄ − wz̄ + |z|2
1 − zw̄ − wz̄ + |z|2|w|2 .

This fraction evidently reduces to unity if |z| = 1 or |w| = 1.
Presumably, the exceptional case would be when the denominator in the

original expression 1 − w̄z vanishes. The condition 1 − w̄z = 0 is the same
as w − |w|2z = 0 or

z =
w

|w|2 . (1.15)

Notice the original exceptional condition can never hold when w = 0. In
the situation where |w| = 1, this becomes z = w which indeed implies |z| =
|w| = 1. We conclude then that the exceptional case when |z| = |w| = 1 is
the case z = w for which the original assertion doesn’t make sense.

It is interesting to consider the collection of all pairs (z, w) ∈ C2 for which
the condition (1.15) holds. A first observation is that if |w| = r > 0, then
|z| = 1/r. This gives a kind of product structure to the singular set

Σ = {(z, w) : w 6= 0 and z = w/|w|2}.

In fact, if w = r(cos θ + i sin θ) is in the circle of radius r > 0 centered at 0,
then z = (cos θ + i sin θ)/r is the corresponding point in the circle of radius
1/r. This means Σ is a (two-dimensional) surface of some sort in C2 which
is (geo)metrically isomorphic to R4. This surface, in fact, is parameterized
by

X(r, θ) = ((cos θ+i sin θ)/r, r(cos θ+i sin θ)) ∼ (cos θ/r, sin θ/r, r cos θ, r sin θ)

where (r, θ) ∈ (0,∞) × R and the parameterization is 2π-periodic in θ.
A further observation is that Σ projects simply onto the three-dimensional

sphere

{(z, w) ∈ C2 : |z|2 + |w|2 = 1} ∼ {(x, y, z, w) ∈ R4 : x2 + y2 + z2 + w2 = 1}

with the projection given by

ρ ◦X =
1

√

r2 + 1/r2
(cos θ/r, sin θ/r, r cos θ, r sin θ).
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To see this, note that r cos θ = r̃ cos θ̃ and r sin θ = r̃ sin θ̃ implies first that
r2 = r̃2 and, hence, that r = r̃. Then the angles θ and θ̃ must agree up to
an additive multiple of 2π as well.

Finally, the three-sphere projects stereographically onto R3 by

σ : (x, y, z, w) 7→ (x, y, z)

1 − w

with the exception of the north pole (0, 0, 0, 1). Since the non-vanishing of the
fourth coordinate in ρ◦X implies the non-vanishing of the second coordinate,
we know the north pole corresponds to no point in Σ. We conclude that the
image of σ ◦ ρ ◦X represents a nonsingular embedded surface in R3, and we
may be able to get some reasonable idea of what the surface Σ looks like in
C2 by plotting this double projection.

In fact, the double projection is a very interesting surface. The portion
indicated in Figure 1.6 appears to be a double twisted strip. The r = 0

Figure 1.6: the projection of an annular piece of Σ corresponding to 0 ≤ r < 1

boundary is nonsingular with the double projection of the circle r = 0 coin-
ciding with the unit circle in the x, y-plane. In particular, one can conclude
that Σ is orientable.

Exercise 4

Here we consider the equation az + bz̄ + c = 0 for z ∈ C and are asked to
determine conditions under which there is a unique solution (and to find that
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solution).
Writing a = a1+a2i, b = b1 +b2i, c = c1+c2i, and z = x+ iy the equation

becomes

(a1 + a2i)(x+ iy) + (b1 + b2i)(x− iy) + c1 + c2i = 0.

This is equivalent to the two real linear equations

{

(a1 + b1)x− (a2 − b2)y = −c1
(a2 + b2)x+ (a1 − b1)y = −c2.

Such a solution has a unique solution precisely when the coefficient matrix
has nonzero determiant. That is,

a2
1 − b21 + a2

2 − b22 6= 0 or |a| 6= |b|.

When this condition holds, the solution is given by Cramer’s rule:

x =
c1(a1 − b1) + c2(a2 − b2)

|b|2 − |a|2 , y =
c2(a1 + b1) + c1(a2 + b2)

|b|2 − |a|2 .

Thus, we can write

z =
c1(a1 − b1) + c2(a2 − b2) + [c2(a1 + b1) + c1(a2 + b2)]i

|b|2 − |a|2 .

This is a somewhat unsatisfying solution due to all the subscripts. These
could be removed by writing c1 = Re(c) etc., but that wouldn’t be much
better, and we can do better.

c1(a1 − b1) + c2(a2 − b2) + [c2(a1 + b1) + c1(a2 + b2)]i

= Re[(a− b)c̄] + i Im[(ā + b̄)c]

=
1

2

[

(a− b)c̄+ (ā− b̄)c+ (ā+ b̄)c− (a + b)c̄
]

= āc− bc̄.

In fact, it is easily checked that

z =
āc− bc̄

|b|2 − |a|2 (1.16)
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represents the same solution we found above and, of course, solves the equa-
tion. This brings up another question. Is there a cleaner way to treat/solve
the equation from the beginning without the use of subscripts? I’m not ex-
actly sure there is. With hindsight from our answer, however, we can do the
following.

Let us assume a solution of the form z = αc + βc̄. (It is not clear why
such an assumption is justified.) The equation may then be written as

aαc+ aβc̄+ bᾱc̄+ bβ̄c+ c = 0.

That is,
(aα + bβ̄ + 1)c+ (bᾱ + aβ)c̄ = 0.

Making another (apparently unjustified) assumption that the coefficients of
c and c̄ should vanish, we obtain the system

{

aα + bβ̄ = −1
b̄α + āβ̄ = 0.

This is a system of two linear equations with complex coefficients and, pre-
sumably, a solution (α, β̄) ∈ C2. Notice the determinant of the coefficient
matrix is |a|2 − |b|2. In fact, Cramer’s rule applies here as well; see Ahlfors’
discussion in § 1.1, and we find

α =
ā

|b|2 − |a|2 and β = − b

|b|2 − |a|2

in agreement with the solution (1.16). 2

Is there a straightforward way to treat the original equation with no
unjustified assumptions?

Okay, I’ve got it. Incidentally, there’s a short discussion of Cramer’s rule
in the 2 × 2 complex case below.
A better solution for exercise 1.4.4:

Let’s start with the assumption that a and b are both nonzero. Then we
have for any z with az + bz̄ + c = 0 that

z̄ = −az + c

b
.

Taking the conjugate of the original equation, we have āz̄ + b̄z + c̄ = 0, and
this implies

z̄ = − b̄z + c̄

ā
.
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Equating the two expressions for z̄ we obtain

|b|2z + bc̄ = |a|2z + āc.

That is,

(|b|2 − |a|2|)z = āc− bc̄.

Clearly, we get a unique solution given by (1.16) as long as |b| 6= |a|. Now all
we need to do is check that this same condition is necessary and sufficient and
leads to the same solution when one of a or b is zero. For example, if b = 0,
then the condition to have a unique solution is a 6= 0, which is equivalent to
|a| 6= |b| in this case. Furthermore, if b = 0 6= a, then z = −c/a which is
exactly the same as (1.16) when b = 0. The situation when a = 0 is very
similar. 2

Cramer’s Rule: If a11a22 − a12a21 6= 0, then

{

a11z + a12w = c1
a21z + a22w = c2

has the unique solution

z =
c1a22 − c2a12

a11a22 − a12a21

and w =
a11c2 − a21c1
a11a22 − a12a21

.

Proof: It is easily checked that the values of z and w provide a solution.
Uniqueness either follows from substitution and checking various cases or
from a dimension argument (the set of solutions is a complex affine vector
space). 2

Exercise 5: Lagrange’s Identity

∣

∣

∣

∣

∣

n
∑

i

ziwi

∣

∣

∣

∣

∣

2

=

(

n
∑

i

|zi|2
)(

n
∑

i

|wi|2
)

−
∑

1≤i<j≤n

|ziw̄j − zjw̄i|2.

Perhaps the easiest way to see this is by induction. The base case n = 1 is
okay, however, the last sum in the identity is vacuous in this case, so we will
verify the cases n = 1 and n = 2. Then we will carry out the inductive step
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for n ≥ 3. For n = 1, we write z = z1 = x+ iy and w = w1 = ξ + iη. Then

|zw|2 = |(x+ iy)(ξ + iη)|2

= (xξ − yη)2 + (xη + yξ)2

= x2ξ2 + y2η2 + x2η2 + y2ξ2

= (x2 + y2)(ξ2 + η2)

= |z|2|w|2.

For n = 2,

|z1w1 + z2w2|2 = (z1w1 + z2w2)(z̄1w̄1 + z̄2w̄2)

= |z1|2|w1|2 + |z2|2|w2|2 + z1w1z̄2w̄2 + z2w2z̄1w̄1

= (|z1|2 + |w1|2)(|z2|2 + |w2|2) − |z1w̄2 − z2w̄1|2

as

|z1w̄2 − z2w̄1|2 = (z1w̄2 − z2w̄1)(z̄1w2 − z̄2w1)

= |z1|2|w2|2 − z1w̄2z̄2w1 − z2w̄1z̄1w2 + |z2|2|w1|2.

Finally, for n ≥ 3 we proceed by induction:

∣

∣

∣

∣

∣

n
∑

i=1

ziwi

∣

∣

∣

∣

∣

2

=

∣

∣

∣

∣

∣

n−1
∑

i=1

ziwi + znwn

∣

∣

∣

∣

∣

2

=

(

n−1
∑

i=1

ziwi + znwn

)(

n−1
∑

i=1

z̄iw̄i + z̄nw̄n

)

=

(

n−1
∑

i=1

|zi|2
)(

n−1
∑

i=1

|wi|2
)

−
∑

1≤i<j≤n−1

|ziw̄j − zjw̄i|2

+ znwn

n−1
∑

i=1

z̄iw̄i + z̄nw̄n

n−1
∑

i=1

ziwi + |zn|2|w2
n|

=

(

n−1
∑

i=1

|zi|2 + |zn|2
)(

n−1
∑

i=1

|wi|2 + |wn|2
)

−
(

∑

1≤i<j≤n−1

|ziw̄j − zjw̄i|2 +

n−1
∑

i=1

|ziw̄n − znw̄i|2
)
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since

n−1
∑

i=1

|ziw̄n − znw̄i|2 =
n−1
∑

i=1

(

|wn|2|zi|2 − w̄nz̄nziwi − znwnz̄iw̄i + |zn|2|wi|2
)

.

Notice Lagrange’s identity gives the Cauchy-Schwarz inequality as pointed
out by Ahlfors in §1.5. This kind of inequality asserts generally that “the
dot product is less than the product of the norms,” or more precisely, the
absolute value of the inner product is less than or equal to the product of
the norms. In this case, we are working in the space Cn where n-tuples of
complex numbers z = (z1, . . . , zn) and w = (w1, . . . , wn) have inner product

〈z,w〉 =

n
∑

i

ziw̄i

and norm

‖z‖ =

(

n
∑

i

|zi|2
)1/2

.

Also, the case of equality in the Cauchy-Schwarz inequality holds when the
residual term

∑

1≤i<j≤n

|ziw̄j − zjw̄i|2

vanishes. This means ziw̄j − zjw̄i = 0 for 1 ≤ i < j ≤ n. Depending
on one’s interpretation of the phrase “is proportional to,” Ahlfors’ assertion
concerning the case of inequality is not quite correct. One case of equality
is when w = 0 ∈ Cn. In this case, there need not be a constant λ for which
z = λw̄. Of course, it would be true in this case that there is some λ for
which w = λz, namely, λ = 0.

Alternatively, there is some wi0 6= 0. In this latter case, we have

ziw̄i0 = zi0w̄i and zi0w̄j = zjw̄i0 for all 1 ≤ i < i0 < j ≤ n.

If there is any zi 6= 0 with i < i0 or zj 6= 0 with j > i0, then it follows
that wi 6= 0, wj 6= 0, and the associated quotients zi/w̄i and zj/w̄j have the
common value

zi

w̄i

=
zj

w̄j

= λ =
zi0

w̄i0

.

Furthermore, in this case z = λw̄ as Ahlfors asserts.
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1.1.9 §1.5 exercises

Exercise 1
∣

∣

∣

∣

a− b

1 − āb

∣

∣

∣

∣

< 1 if |a|, |b| < 1.

The square of the left side is

|a|2 − āb− ab̄+ |b|2
1 − āb− ab̄+ |ab|2 .

Since |ab|2 = |a|2|b|2, the assertion will clearly follow if we can show

|a|2 + |b|2 < 1 + |a|2|b|2.

Our derivation of this fact relies on the simple fact that the sum |a|+ |b| and
the product |a||b| satisfy

|a|+|b| = max{|a|, |b|}+min{|a|, |b|} and |a||b| = max{|a|, |b|}min{|a|, |b|}.

|a|2 + |b|2 ≤ max{|a|, |b|}(|a|+ |b|)
= max{|a|, |b|} (max{|a|, |b|} + min{|a|, |b|})
= (max{|a|, |b|})2 + max{|a|, |b|}min{|a|, |b|}
< 1 + |a||b|.

1.1.10 Exercise 3

If |zj| ≤ 1 and λj > 0 for j = 1, 2, . . . , n and λ1 + λ2 + · · ·+ λn = 1, then by
the triangle inequality

∣

∣

∣

∑

λjzj

∣

∣

∣
≤
∑

|λjzj | =
∑

λj |zj| ≤
∑

λj = 1.

Exercise 4

I will restate this exercise for somewhat subtle pedagogical reasons:
Show there are complex numbers z satisfying

|z − a| + |z + a| = 2|c|



1.1. LECTURE 1: THE COMPLEX NUMBER FIELD 37

if and only if |a| ≤ |c|. If this condition is satisfied, find the smallest and
largest values of |z|.

By the triangle inequality one always has

|z − a| + |z + a| ≥ max{2|a|, 2|z|}. (1.17)

Taking 2|a| on the right, we see that if (any) z ∈ C satisfies the equation, we
must have 2|c| ≥ 2|a|. Thus, the condition |a| ≤ |c| is necessary for solutions
to exist.

Taking 2|z| on the right in (1.17), we obtain an upper bound

|z| ≤ |c| (1.18)

for any solutions. We still have not shown the existence of any solutions.
Let us look for solutions of the form z = λa with λ ∈ R. The equation

then becomes
(|λ− 1| + |λ+ 1|)|a| = 2|c|. (1.19)

If |λ| ≤ 1, then the scalar λ vanishes from the equation, and we get the
condition |a| = |c|. Thus, if |a| = |c|, then any z = λa with −1 ≤ λ ≤ 1 is
a solution of the equation. On the other hand, by (1.17) with 2|a| = 2|c| on
the right, we see that every solution z of the equation implies an equality in
the triangle inequality. This means

(a− z)(ā + z̄) = |a|2 + az̄ − āz − |z|2 ≥ 0.

Since az̄− āz is purely imaginary, this means az̄− āz = 0 and |z| ≤ |a| = |c|.
From the first condition, āz must also be real. Thus, we can write āz = µ ∈ R

so that either a = 0 or z = µa/|a|2 = λa where λ = µ/|a|2.
Let us consider these two cases separately. If a = c = 0, then the equation

clearly has exactly one solution z = 0. There are not “complex numbers”
z satisfying the equation as Ahlfors asserts, but only one complex number
satisfying the equation.

If |a| = |c| > 0, then z must have the form z = λa, and we know the
solution set is precisely

{λa : −1 ≤ λ ≤ 1}.
In each of these cases, the question of minimum and maximum modulus

is also clear. If a = c = 0, then the single solution z = 0 gives both the
minimum and maximum modulus of |z| = 0.
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If |a| = |c| > 0, then the minimum modulus is again attained by a
solution z = 0 with |z| = 0. The maximum modulus is |c| and is attained
by the two points in the solution set corresponding to λ = −1 and λ = 1,
namely z = ±a.

Returning to (1.19), we have also the case |λ| > 1. In this case, we find

2|λ||a| = 2|c|.

The cases a = c = 0 and |a| = |c| > 0 have already been settled, so we may
assume |a| < |c|. Again, we have some cases:

If |a| = 0, we cannot find any solution of the form z = λa, but the
equation simplifies to |z| = |c| with |c| > 0. Evidently, the solution set is

{z = x+ iy ∈ C : x2 + y2 = |c|2}

is nonempty (for example z = ±|c| and z = ±|c|i are solutions) and is in one-
to-one correspondence with a circle. The minimum and maximum modulus
values are the same with |z| = |c| and are attained at each solution.

The last case is 0 < |a| < |c|. We have then

|λ| =
|c|
|a| > 1.

It follows that there are solutions z = ±|c|a/|a| with modulus |z| = |c|. In
view of the uppper bound (1.18), these solutions yield the maximum value
of the modulus.

We have shown:

There are “complex numbers” z ∈ C with

|z − a| + |z + a| = 2|c|

if and only if |a| ≤ |c|. There are at least two such complex
numbers unless |a| = |c| = 0. In this case there is only one,
namely z = 0, and we should say there is “a complex number”
etc.. Furthermore, we have noted

|z| ≤ |c|

for all solutions, and in all cases we have found solutions with
|z| = |c|, that is, we have found solutions with the largest possible
modulus.
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It would seem that we have completed most of the exercise. It remains to
find the complex numbers z satisfying |z−a|+ |z+a| = 2|c| with the smallest
modulus. In fact, we have settled the question of minimum modulus as well
in all cases except under the assumption 0 < |a| < |c|.

In this last case, it is algebraically less obvious where to look for additional
solutions and those of minimum modulus in particular. It would be helpful,
perhaps, to have an inequality of the form |z| ≥ b giving a bound from below
on the modulus of solutions in this case, if there is such an estimate. Squaring
the equation, we find

|z|2 + |a|2 + |z2 − a2| = 2|c|2.

Thus, solutions must satisfy

|z2 − a2| = 2|c|2 − |a|2 − |z|2.

Squaring again, we have

|a|4 − (a2z̄2 + ā2z2) = 4|c|4 − 4|c|2|a|2 + |a|4 − 2(2|c|2 − |a|2)|z|2.

That is,
2(2|c|2 − |a|2)|z|2 = 4|c|4 − 4|c|2|a|2 + a2z̄2 + ā2z2.

Note a2z̄2 + ā2z2 = 2 Re(a2z̄2) ≥ −2|a|2|z|2. Therefore,

4|c|2|z|2 ≥ 4|c|4 − 4|c|2|a|2,

or
|z|2 ≥ |c|2 − |a|2.

Thus, we have an estimate of the desired form

|z| ≥
√

|c|2 − |a|2. (1.20)

Still it is perhaps not so obvious where to find complex numbers z for which
the lower bound |z| =

√

|c|2 − |a|2 is attained. It turns out that z = λia
with λ ∈ R is the correct choice:

|λia− a| + |λia+ a| = (|λi− 1| + |λi+ 1|)|a| = 2
√

1 + λ2|a|.

Setting this expression equal to 2|c| yields two values

λ = ±
√

|c|2 − |a|2
|a|
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and two complex numbers

z = ±i
√

|c|2 − |a|2
|a| a,

which are solutions and yield the minimum (possible) modulus. This com-
pletes the exercise from the algebraic/analytic point of view suggested by
Ahlfors.

There were, in some sense, two rather tricky points arising in the solution,
both in connection to the minimum modulus. These, for me, were the form
of the minimum modulus inequality (1.20) and the form of the minimum
modulus “numbers” z = λia. I must confess that, in each case, I was guided
by geometry, visualizing the solutions as “points” in the complex plane rather
than as “numbers” in the abstract algebraic space C. It seems worthwhile to
describe the geometry and carry out the associated computations a bit more
fully. If a is a nonzero point in the complex plane, then the equation

|z − a| + |z + a| = 2|c|

prescribes the locus of points z the sum of whose distances to the points a and
−a is a constant 2|c|. This is, of course, the definition of an ellipse with focal
points at ±a and major semi-axis of length |c|. The conditions |a| > |c| and
|c| = 0 correspond to degenerate cases in which there are no solutions and one
solution respectively, as we have verified analytically above. If 0 < |a| = |c|
one has the degenerate case of a straight line segment connecting −a to a; the
special case |a| = 0 < |c| gives a circle. These cases were also easy to handle.
The remaining case 0 < |a| < |c| gives a nondegenerate ellipse. In analytic
geometry, one usually treats ellipses in standard position with equation

x2

a2
+
y2

b2
= 1, (1.21)

where the larger of a and b (assumed positive) is the length of the major (i.e.,
longer) semi-axis. In this case, our ellipse (in the appropriate coordinates)
should correspond to

x2

|c|2 +
y2

b2
= 1,

with b satisfying b2 = |c|2 − |a|2 where |a| is half the distance between the
focal points. Sometimes rotations of an ellipse, as we have here, are con-
sidered, but the computations are somewhat complicated and the resulting
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Figure 1.7: ellipse with focal points at ±a ∈ C

equation involves products xy whose relation to the standard form is also
correspondingly complicated. It is easy to check, however, in the standard
form (1.21) that a parameterization giving all points on the ellipse is given
by

x = a cos θ and y = b sin θ

which is quite simple. Notice this gives not only the points of minimum and
maximum modulus, but all points on the ellipse. In our case, we should have
points corresponding to

x = |c| cos θ and y = b sin θ.

Let us see if we can translate the corresponding geometry into complex an-
alytic terminology and verify that this is the case. The general point on the
ellipse should be

z = |c| cos θ
a

|a| + b sin θ
ia

|a| where b =
√

|c|2 − |a|2. (1.22)
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Plugging this point into the equation we get

|z − a| + |z + a| = ||c| cos θ − |a| + ib sin θ| + ||c| cos θ + |a| + ib sin θ|

=
√

|a|2 − 2|a||c| cos θ + |c|2 − |a|2 sin2 θ

+
√

|a|2 + 2|a||c| cos θ + |c|2 − |a|2 sin2 θ

=
√

|a|2 cos2 θ − 2|a||c| cos θ + |c|2

+
√

|a|2 cos2 θ + 2|a||c| cos θ + |c|2
= | |a| cos θ − |c| | + | |a| cos θ + |c| |
= 2|c|.

Conversely, it is not difficult to see that any point z in the plane can be
expressed in the form

z = α
a

|a| + β i
a

|a| =
a

|a|(α + iβ) (1.23)

with α, β ∈ R. This is essentially equivalent to the vectors (a1, a2) and
(−a2, a1) constitute a basis for vectors in R2. Thus, if the arbitrary point of
the form (1.23) satisfies the equation |z − a| + |z + a| = 2|c|, then we have

2|c| = |α + iβ − |a|| + |α+ iβ + |a||
=
√

(α− |a|)2 + β2 +
√

(α + |a|)2 + β2.

Squaring both sides, we find

α2 + β2 + |a|2 +
√

(α2 + β2 + |a|2)2 − 4|a|2α2 = 2|c|2.
Isolating the remaining square root, and squaring again, we find

(α2 + β2 + |a|2)2 − 4|a|2α2 = [2|c|2 − (α2 + β2 + |a|2)]2.
Therefore,

(|c|2 − |a|2)α2 + |c|2β2 = |c|2(|c|2 − |a|2),
or

(

α

|c|

)2

+

(

β
√

|c|2 − |a|2

)2

= 1.

This means there is some angle θ for which

α

|c| = cos θ and
β

b
= sin θ.

Thus, z has the form (1.22), and such points represent the entire locus.



1.2. LECTURE 3 GOMETRIC INTERPRETATION 43

1.2 Lecture 3 Gometric interpretation

This lecture covers § 2 of Chapter 1.

We start in § 2.1 by filling in some details of the geometry of complex
numbers. § 2.2 extends our observations about squares and square roots to
arbitrary integral powers and roots. § 2.3 is about expressing concepts of
plane analytic geometry and linear algebra in the language of the complex
plane. Finally, § 2.4 introduces stereographic projection and the Riemann
sphere.

1.2.1 Geometry of basic complex arithmetic

Complex addition may be interpreted in terms of the usual geometry of vector
addition involving parallelograms in R2.

Figure 1.8: addition and subtraction

|z + w| ≤ |z| + |w|.

In complex notation, it is very easy to see that the “sum of the squares of the
lengths of the diagonals of a parallelogram is equal to the sum of the squares
of the lengths of the sides:”

|v − w|2 + |v + w|2 = 2|v|2 + 2|w|2.
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The introduction of the geometric modulus and argument leads to the
following important calculation:

z = |z|(cos θ + i sin θ), θ = arg(z)
z = |w|(cosφ+ i sinφ), φ = arg(w).

zw = |z||w|[cos θ cosφ− sin θ sin φ+ i(cos θ sinφ+ cosφ sin θ)

= |z||w|[cos(θ + φ) + i sin(θ + φ)].

|zw| = |z||w| and arg(zw) = arg(z) + arg(w).

In particular,

|z2| = |z|2 and arg(z2) = 2 arg(z).

This justifies our previous discussion of the principal square root. The ge-
ometric interpretation concerning “adding arguments” in regard to multi-
plication is fairly clear. Ahlfors also gives a nice geometric interpretation
of the modulus relation in terms of similar triangles. If one considers the
triangle determined by 0, 1 and z and constructs a similar triangle with w
corresponding to 1 as indicated in Figure 1.9, then the side corresponding to
z in the new triangle is the product. The ratios of side lengths then read

Figure 1.9: complex multiplication and similar triangles

|w|
1

=
L

|z| or L = |z||w|.
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I cannot say I have ever used this “similar triangles” construction for com-
plex multiplication, but (of course) the more you know, the more you know.
There’s also a version for division as indicated in Figure 1.10:

Figure 1.10: complex division and similar triangles

For
w

z
:

L

1
=

|w|
|z| ; for

z

w
:

L

1
=

|z|
|w| .

1.2.2 §2.1 exercises

Exercise 1

If w is a complex number, the reflection of z across the line Re(z) = Im(z)
is iw̄. A nice way to see this is by first rotating clockwise by π/4 so that the
line of reflection coincides with the real axis. Then reflection corresponds to
conjugation:

w 7→ e−iπ/4w 7→ eiπ/4w̄.

Then just rotate back:

eiπ/4w̄ 7→ eiπ/4eiπ/4w̄ = eiπ/2w̄ = iw̄.

One can also just figure out what happens to the coordinates. The reflection
of w across the line Re(z) = − Im(z) is −iw̄.
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Figure 1.11: symmetric points

Exercise 2

We are to show that for any three complex numbers z1, z2, and z3 the con-
ditions

|z1 − z2| = |z2 − z3| = |z3 − z1| (1.24)

and
z2
1 + z2

2 + z2
3 = z1z2 + z2z3 + z3z1 (1.25)

are equivalent. The first condition is interpreted to mean the three points
z1, z2, and z3 are the vertices of an equilateral triangle in the complex plane
C.

Let’s start with a simple special case and see if we can establish the
equivalence. Namely, if

z3 = 0, z2 = a ≥ 0, and z1 = z is arbitrary,

then conditions (1.24) and (1.25) become

|z − a| = a = |z| (1.26)

and
z2 + a2 = az (1.27)

respectively. If z2 − az + a2 = 0, then by the quadratic formula

z =
a±

√
a2 − 4a2

2
=

(

1

2
± i

√
3

2

)

a.
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Therefore,

|z − a| =

∣

∣

∣

∣

∣

1

2
± i

√
3

2
− 1

∣

∣

∣

∣

∣

a = a = |z|.

Conversely, if (1.26) holds, then since a ≥ 0, we know

|z|2 − z̄a− za + a2 = a2 = |z|2.

This means

|z|2 − a(z + z̄) = 0 and a2 − a(z + z̄) = 0.

If a = 0, then |z| = 0 and we certainly get (1.27). If a > 0, then the second
equation gives

z + z̄ = 2 Re(z) = a.

The first equation then says |z|2 = a2 or

(Im z)2 = a2 − a2

4
=

3a2

4
.

This means

z =
a

2
± i

√
3

2
a,

and we already know these values both satisfy (1.27).
We have established the equivalence in the special case; see Figure 1.12.

Figure 1.12: In the special case where one point is the origin and another lies
along the positive real axis, there are precisely two choices for the remaining point
z; the condition (1.25) becomes in this speical case a quadratic equation of which
these two points are the roots.
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Now, say z3 = 0 (still) but z2 and z1 are arbitrary. Then the two condi-
tions read

|z1 − z2| = |z2| = |z3| (1.28)

and
z2
1 + z2

2 = z1z2. (1.29)

If (1.28) holds, then a = z2z̄2 ≥ 0 and z = z1z̄2 satisfy

|z − a| = |z1z̄2 − z2z̄2| = |z1 − z2||z2|
= |z2z̄2| = a

= |z3z̄2| = |z|.

This means (1.26) holds for a = z2z̄2 and z = z1z̄2. That is,

z2
1 z̄

2
2 + z2

2 z̄
2
2 = z1z2z̄

2
2 . (1.30)

If z2 = 0, then z1 = z2 = 0, and (1.29) clearly holds. If z2 6= 0, then (1.30)
implies

z2
1 + z2

2 = z1z2

which is (1.29).
Conversely, if (1.29) holds, then we can multiply the relation (1.29) by z̄2

2

to conclude
z2 + a2 = az

where a = z2z̄2 and z = z1z̄2. Since we know (1.29) is equivalent to (1.28),
we know

|z − a| = a = |z| or |z1z̄2 − z2z̄2| = z2z̄2 = |z1z̄2|.

Again, if z2 = 0, we can go back to (1.29) directly and see z1 = z2 = 0, so
(1.28) holds. Otherwise, we get

|z1 − z2| = |z2| = |z1|

which is (1.28).
We have established the equivalence if one of the points is 0 ∈ C.
Finally, let’s consider the general case: If (1.24) holds, then

z̃1 = z1 − z3 and z̃2 = z2 − z3 (1.31)
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satisfy

|z̃1 − z̃2| = |z1 − z2| = |z2 − z3| = |z3 − z1|
= |z̃2| = |z̃1|.

Since (1.28) and (1.29) are equivalent, we know

z̃2
1 + z̃2

2 = z̃1z̃2. (1.32)

Substituting from (1.31) this means

(z1 − z3)
2 + (z2 − z3)

2 = (z1 − z3)(z2 − z3)

or
z2
1 − 2z1z3 + z2

3 + z2
2 − 2z2z3 + z2

3 = z1z2 − z1z3 − z2z3 + z2
3

or
z2
1 + z2

2 + z2
3 = z1z2 + z1z3 + z2z3

which is (1.25).
We are almost done, and it looks like we will be successful. If (1.25) holds,

we can reverse the last calculation to conclude

(z1 − z3)
2 + (z2 − z3)

2 = (z1 − z3)(z2 − z3).

This means, z̃1 = z1 − z3 and z̃2 = z2 − z3 satisfy (1.32) which looks suspi-
ciously like (1.29)—which is equivalent to (1.28). Precisely, we can conclude

|z̃1 − z̃2| = |z̃2| = |z̃1|,

and
|z1 − z2| = |z2 − z3| = |z3 − z1|

which, of course, is (1.24). 2

Exercise 3

If z and w are two vertices of a square, what are the possibilities for the other
two vertices?

Here, as in the last problem, we proceed from a special case. If w = 0
and z = a > 0, then there are two possibilities: The additional vertices may
be ai and a+ ai or −ai and a− ai. That is, the two additional vertices are

±ai and a± ai



50 CHAPTER 1. CHAPTER I

in general (for this special case).
Now, if w is still the origin, but z is arbitrary (and nonzero), then denoting

the additional vertices by ζ and ζ̃, we know 0, a = |z|, ζz/|z| and ζ̃z/|z| are
the vertices of a square, that is we may take (without loss of generality)

ζz/|z| = ±|z|i and ζ̃z/|z| = |z| ± |z|i.

That is, we obtain in this case additional vertices

|z|iz̄ and z̄|z|(1 ± i).

Finally, in the general case, if z, w, ζ , and ζ̃ are the vertices of a square, then
so are z − w, 0, ζ − w, and ζ̃ − w. It follows that (up to renaming ζ and ζ̃)
we must have

ζ − w = |z − w|i ¯z − w and ζ̃ − w = ¯z − w|z − w|(1 ± i).

The two additional vertices are given by

w + |z − w|i ¯z − w and w + z − w|z − w|(1 ± i).

Exercise 4

Given z1, z2 and z3 any three noncolinear points in C, find the center and
radius of the circle that circumscribes the triangle with vertices z1, z2 and
z3. Put the expressions in symmetric form.

Let us try the strategy of the previous two problems. If one of the points,
say z3, were the origin and we had z2 = a > 0 with z1 = z arbitrary,
then the center should be the intersection of the perpendicular bisectors of
the segments connecting the origin to a and z. The first of these lines is
Re(ζ) = a/2. Thus, we look for a point z/2 + tiz/2 subject to the condition
Re(z/2 + tiz/2) = a/2. That is, Re(z) − t Im(z) = a. This means

z + z̄ + it(z − z̄) = 2a or t = i
z + z̄ − 2a

z − z̄
.

In this case, the center is

z0 =
z

2
− z + z̄ − 2a

z − z̄
· z
2

=
z

2

(

z − z̄ − (z + z̄ − 2a)

z − z̄

)

=
a− z̄

z − z̄
z.
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The radius is the modulus of this point:

r =
|a− z̄|
|z − z̄| |z| =

|a− z|
|2 Im(z)| |z| =

|z2 − az|
|2 Im(z)| .

It’s not entirely clear what Ahlfors means by “symmetric form.” Presumably,
he means the expressions should be symmetric in z1, z2 and z3. He also
talks about expressions which are invariant under switching z and z̄. The
expression we have here does not satisfy this kind of symmetry condition.
The center may also be written the following forms

z0 =
az̄ − az − z̄2 + |z|2

2|z|2 z =
a|z|2 − az2 − z̄|z|2 + z|z|2

2|z|2

=
(a+ z − z̄)|z|2 − az2

2|z|2 =
1

2

(

a+ z − z̄ − a
z2

|z|2
)

.

=
a(|z|2 − z2)

2|z|2 + i Im z.

We proceed to the case in which two vertices z1 and z2 are arbitrary, while
the third z3 = 0. By rotation we reduce to the previous case with

a =
z2z̄2
|z2|

= |z2| and z =
z1z̄2
|z2|

.

The center is then given by

z0 =
a− z̄

z − z̄
z =

|z2|2 − z̄1z2
z1z̄2 − z̄1z2

· z1z̄2|z2|
=
z2z̄2 − z̄1z2
z1z̄2 − z̄1z2

· z1
z2

=
z̄2 − z̄1

z1z̄2 − z̄1z2
z1

(This needs more work.)

1.2.3 §2.2 n-th roots of a complex number
(binomial equation)

We have seen that the complex square ζ(z) = z2 covers the complex plane
with a right half plane so that any complex number ζ has a unique square
root z =

√
ζ (a principal square root) with

−π
2
< arg(z) ≤ π

2
.
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Figure 1.13: squaring the right half plane

Alternatively, we can use the upper half plane to get a principal square root
z =

√
ζ with

0 ≤ arg(z) < π.

Of course, we could use any half plane, but these are the standard choices,
and each has its advantages and disadvantages. The second choice, indexed
from the positive real axis, is somewhat more standard for other integer
powers where

Figure 1.14: squaring the upper half plane

zn = |z|n[cos(nθ) + i sin(nθ)] for θ = arg z and n = 3, 4, 5, . . .
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The principal n-th root is

Figure 1.15: complex cube function

ζ1/n = |ζ |1/n

(

cos
φ

n
+ i sin

φ

n

)

where arg(ζ) = φ and 0 ≤ φ < 2π.

The other n-th roots of ζ are

|ζ |1/n

[

cos

(

φ

n
+

2π

n

)

+ i sin

(

φ

n
+

2π

n

)]

,

|ζ |1/n

[

cos

(

φ

n
+ 2 · 2π

n

)

+ i sin

(

φ

n
+ 2 · 2π

n

)]

,

...

|ζ |1/n

[

cos

(

φ

n
+ (n− 1)

2π

n

)

+ i sin

(

φ

n
+ (n− 1)

2π

n

)]

.

Taking ζ = 1, we get the n-th roots of unity:

1, ω = cos
2π

n
+ i sin

2π

n
, ω2, . . . ωn−1.

The first root ω is called the principal n-th root of unity or the primitive
n-th root of unity.
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Figure 1.16: third, fourth, and fifth roots of unity

1.2.4 §2.2 exercises

Exercise 1

Ahlfors mentions that expressions for the trigonometric functions of multiple
angles, cosnθ and sin nθ, may be found easily (in an “extremely simple way”)
in terms of cos θ and sin θ. This exercise asks for some of those expressions.
The basis for the calculation is the binomial formula:

(x+ iy)n =
n
∑

j=0

(

n
j

)

xj(iy)n−j

where
(

n
j

)

=
n!

j!(n− j)!

is the number of distinct subsets having j elements that are contained in a
set with n (distinct) elements. The ordering of the j elements in a subset is
irrelevant, and this number is called the number of combinations of j elements
taken from among n elements, or the number of combinations of j taken from
n, or simply the “combination of n taken j.” The number is also called the
binomial coefficient.

Alternatively, switching the order of the terms,

(x+ iy)n =
n
∑

j=0

ij
(

n
j

)

xn−jyj.
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If n is even the sum has n + 1 terms, and there will be one more term in
which y has an even power than an odd one:

(x+ iy)n =

n/2
∑

k=1

(−1)k

(

n
2k

)

xn−2ky2k + i

n/2−1
∑

k=1

(−1)k

(

n
2k + 1

)

xn−2k−1y2k+1.

If n is odd the terms split evenly:

(x+ iy)n =

(n−1)/2
∑

k=1

(−1)k

(

n
2k

)

xn−2ky2k + i

(n−1)/2
∑

k=1

(−1)k

(

n
2k + 1

)

xn−2k−1y2k+1.

These expressions may be unified by using the “floor” function

⌊n

2

⌋

=

{

n
2
, n even

n−1
2
, n odd.

One finds in all cases

(x+ iy)n =

⌊n/2⌋
∑

k=1

(−1)k

(

n
2k

)

xn−2ky2k + i

⌊(n−1)/2⌋
∑

k=1

(−1)k

(

n
2k + 1

)

xn−2k−1y2k+1.

Owing to the addition of arguments which results from multiplication of
complex numbers, the special case where x = cos θ and y = sin θ leads to the
relation

cosnθ + i sinnθ = (cos θ + i sin θ)n =

n
∑

j=0

cosj θ(i sin θ)n−j .

That is, we obtain general multiple angle formulas:

cosnθ =

⌊n/2⌋
∑

k=0

(−1)k

(

n
2k

)

cosn−2k θ sin2k θ

and

sinnθ =

⌊(n−1)/2⌋
∑

k=0

(−1)k

(

n
2k + 1

)

cosn−2k−1 θ sin2k+1 θ.
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Using these formulas we find

cos 3θ = cos3 θ − 3 cos θ sin2 θ,

cos 4θ = cos4 θ − 6 cos2 θ sin2 θ + sin4 θ,

and
sin 5θ = 5 cos4 θ sin θ − 20 cos2 θ sin3 θ + sin5 θ

as requested by Ahlfors. There are a number of interesting observations about
the general formulas which may be made. Some of those may be relevant to
the next problem.

Exercise 2

Here we are requested to “simplify” the expressions

1 + cosφ+ cos 2φ+ · · ·+ cosnφ =
n
∑

j−0

cos jφ

and

sinφ+ sin 2φ+ · · ·+ sin nφ =

n
∑

j−0

sin jφ

One obvious thing to do is write

n
∑

j−0

cos jφ+ i

n
∑

j−0

sin jφ =

n
∑

j−0

(cosφ+ i sinφ)j.

This is a partial sum for a geometric series with ratio r = cosφ+ i sinφ. The
usual telescoping sum for such a series yields

n
∑

j−0

(cosφ+ i sinφ)j =
1 − rn+1

1 − r

=
1 − cos(n+ 1)φ− i sin(n+ 1)φ

1 − cos φ− i sinφ
.

The last expression may be written as

1

(1 − cosφ)2 + sin2 φ
[1 − cosφ− cos(n+ 1)φ+ cos(n+ 1)φ cosφ+ sin(n+ 1)φ sinφ

+ i(sin φ− sin(n + 1)φ− sinφ cos(n + 1)φ+ sin(n+ 1)φ cosφ)]
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or

1 − cosφ+ cosnφ− cos(n+ 1)φ+ i(sinφ+ sinnφ− sin(n+ 1)φ)

2(1 − cosφ)
.

Equating real and imaginary parts, we obtain the formulas

n
∑

j−0

cos jφ =
1 − cosφ+ cosnφ− cos(n+ 1)φ

2(1 − cosφ)

and
n
∑

j−0

cos jφ =
sin φ+ sin nθ − sin(n+ 1)φ

2(1 − cosφ)
.

These formulas are not so satisfying in several ways.

Exercise 4

We are to show

1 + ωk + ω2k + · · · + ω(n−1)k =
n−1
∑

j=0

ωjk = 0

where ω is the principal n-th root of unity

ω = cos
2π

n
+ i sin

2π

n

and k is not a multiple of n. We can use here the formula for the sum of the
first n terms of a geometric series:

n−1
∑

j=0

rj =
1 − rn

1 − r
. (1.33)

The formula is valid if r 6= 1 and follows from the telescoping expansion

(1 − r)
n−1
∑

j=0

rj =
n−1
∑

j=0

rj −
n−1
∑

j=0

rj+1 = 1 − rn.

If r = 1, then the sum is just n.
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In this case we take r = ωk, and

n−1
∑

j=0

ωjk =
1 − ωkn

1 − ωk
=

1 − (ωn)k

1 − ωk
=

1 − (1)k

1 − ωk
= 0

as long as ωk 6= 1. If ωk = 1, then k must be a multiple of n and the sum
takes the value n. Perhaps this point deserves a little explanation. Evidently
Ahlfors intends for k to be a non-negative (and probably positive) integer. If
0 < k < n, we know ωk 6= 1; see Figure 1.16. If k ≥ n, then we can use the
division algorithm to write k = αn+ β where α and β are (unique positive)
integers with 0 ≤ β < n. Therefore,

ωk = ωαn+β = ωβ.

If ωk = 1, therefore, then β = 0 and k = αn is a multiple of n.

Exercise 5

Here we are presented with the alternating version of the sum in the last
problem:

1 − ωk + ω2k − · · · + (−1)n−1ω(n−1)k =
n−1
∑

j=0

(−1)jωjk =
n−1
∑

j=0

(−ωk)j .

Here, obviously, we have r = −ωk and

n−1
∑

j=0

(−1)jωjk =
1 − (−ωk)n

1 + ωk

as long as ωk 6= −1. To complete the exercise, we should simplify the answer
and examine the exceptional case(s) when the sum becomes n.

First of all, it is possible to have ωk = −1 only when n is even; see
Figure 1.16. In the case where n is even, the discussion in the previous
problem leads to the conclusion that ωk = 0 if and only if k is a multiple of
n/2. This takes care of the exceptional cases.

If k is not an integer multiple of n/2, then

n−1
∑

j=0

(−1)jωjk =
1 − (−1)n(ωn)k

1 + ωk
=

1 − (−1)n

1 + ωk
=

{

0 if n is even
2/(1 + ωk) if n is odd.
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Finally, when n is odd we get

2

1 + ωk
=

2

1 + cos 2πk
n

+ sin 2πk
n

=
1 + cos 2πk

n
− i sin 2πk

n

1 − cos 2πk
n

.

1.2.5 §2.2a The complex dot product and orthonormal

bases

Most really good textbooks2 are really good as much for what the author has
left unsaid as for what he has written. The art of making the student work
toward that which is unsaid seems to be the key. At the risk of ruining that
experience for someone, I have decided to add many extra details, pictures,
and relatively long-winded solutions to Ahlfors’ problems. This is a short
“additional” section of this nature.

In R2 one has for vectors v = (v1, v2) and w = (w1, w2) the dot product

v · w = v1w1 + v2w2 = |v||w| cosθ

where θ is the angle between v and w. We also have the orhonormality
generalizing the standard basis {e1 = (1, 0), e1 = (0, 1)} so that, whenever
{u1,u2} satisfies |u1| = |u2| = 1 and u1 ·u2 = 0, any vector v may be written
immediately as

v = (v · u1)u1 + (v · u2)u2.

In the complex plane, naturally, these structures are still operative but
look somewhat different. Let us take two complex numbers v and w which,
as we know, are identified with two real vectors v and w respectively. Com-
puting the products

vw = (x+ iy)(ξ + iη) = xξ − yη + i(xη + yξ)

and
vw̄ = (x+ iy)(ξ − iη) = xξ + yη + i(yξ − xη)

we see among the coefficients (real and imaginary parts) the dot product:

v · w = Re(vw̄).

2Some examples of really good textbooks are Ahlfors’ Complex Analysis, Royden’s
(or Rudin’s) Real (and Complex) Analysis, and Lang’s Algebra, though it is also Lang’s
peculiar charm of expressing things poorly and in a somewhat disorganized way that makes
his book surpass, say, Hungerford’s Algebra.
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This is, perhaps, the main observation of this section. We can go on to
observe

v · w = Re(vw̄) = Re(v̄w) =
1

2
(vw̄ + v̄w).

Also, given any nonzero ζ ∈ C, we can write u = ζ/|ζ | and form what
amounts to a right handed orthonormal basis {u, iu}. Given any complex
number z, we should have

z = Re(zū) u+ Re(ziu) (iu)

= [Re(zū) − iRe(izū)]u

= [Re(zū) + i Im(zū)]u.

Indeed,

Re(zū) + i Im(zū) =

[

zū+ z̄u

2
+ i

zū− z̄u

2i

]

= zū

so that [Re(zū)+ i Im(zū)]u = z|u|2 = z. We will use the following summary
of our discussion several times below:

Lemma 1 If u is any complex number with unit modulus and z is any com-
plex number, then there are unique real numbers α and β (representing the
real coordinates of z in the “basis” {u, iu}) such that

z = (α+ iβ)u.

1.2.6 §2.3 Analytic geometry (and linear algebra)

We have already considered, in Exercise 4 of § 1.5, the equation of an ellipse.
Also, Exercise 1 in the section currently under consideration involves the
equation of a line and amounts to the reexpressing some concepts familiar
from the linear algebra of R2 in complex notation. Conic sections are central
to the study of analytic geometry in the plane, and it seems appropriate to
focus on Exercise 2 of this section where we are asked to consider the conic
sections. The most general ellipse (taking the Euclidean perspective) has a
translated center (h, k) and a rotated major axis parallel to (cosψ, sinψ) for
some angle ψ. As we know, any vector (x−h, y−k) ∈ R2 may be written as

[(x− h) cosψ + (y − k) sinψ](cosψ, sinψ)

+ [−(x− h) sinψ + (y − k) cosψ](− sinψ, cosψ)
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so that the equation of an ellipse becomes

[(x− h) cosψ + (y − k) sinψ]2

a2

+
[−(x− h) sinψ + (y − k) cosψ]2

b2
= 1 (1.34)

where a > b > 0 and c =
√
a2 − b2 is the focal length. It may be verified

that this equation is expressing the geometric relation

The sum of the distances from the point (x, y) to the focal points

(h, k) ± c(cosψ, sinψ)

is 2a.

That is,

|(x−h, y−k)+c(cosψ, sinψ)|+ |(x−h, y−k)−c(cosψ, sinψ)| = 2a. (1.35)

Nexercise 9 Show the equation (1.34) for an ellipse can be written in the
form (1.35).

Figure 1.17: ellipses

As noted previously, the direction vector (cosψ, sinψ) ∼ u = cosψ + i sinψ
has complementary basis vector iu in complex notation. More generally, any
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nonzero u = ζ/|ζ | ∈ C may be completed to a right handed “basis” so that
every z ∈ C may be expressed as

z = αu+ β(iu).

In fact, α = Re(zū) and β = Im(zū) with

z =
zū+ z̄u

2
u+

zū − z̄u

2i
(iu).

Notably, the “dot product” of any two vectors z and ζ is Re(zζ̄) = Re(z̄ζ)
and

Re(z̄iu) = − Im(z̄u) = Im(zū).

This observation allows us to express (1.35) in complex notation and write
the R2 norms appearing in (1.35), in particular, as complex absolute values.
It is, furthermore, natural to specify the focal points w1 and w2 directly and
independently in the complex setting:

|z − w1| + |z − w2| = 2a (1.36)

where
w1 + w2

2
= h+ ik (1.37)

is the center, and w1 and w2 are the focal points with (say)

wj = h+ik+(−1)jc(cosψ+i sinψ) = h+ik+(−1)jcu for j = 1, 2. (1.38)

Starting directly with (1.36) we may write

∣

∣

∣

∣

z − w1 + w2

2
+
w2 − w1

2

∣

∣

∣

∣

+

∣

∣

∣

∣

z − w1 + w2

2
− w2 − w1

2

∣

∣

∣

∣

= 2a. (1.39)

The relations (1.37) and (1.38) may then be recovered with

c =
|w2 − w1|

2
and ψ = arg(w2 − w1).

For a nondegenerate ellipse it is required that 2a > |w2 − w1| > 0. That

{z ∈ C : |z − w1| + |z − w2| = 2a}
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is a locus with the properties we associate to an ellipse follows by setting

u =
w2 − w1

|w2 − w1|
and writing z − (h+ ik) = αu+ β(iu) = (α + iβ)u

as in Exercise 4 of § 1.5: Squaring (1.39)

4a2 = (|(α + iβ)u+ cu| + |(α+ iβ)u− cu|)2

= (α + c)2 + β2 + 2|α2 − c2 − β2 + 2αβ i| + (α− c)2 + β2

= 2(α2 + c2 + β2) + 2|α2 − c2 − β2 + 2αβ i|.

That is,
√

(α2 − c2 − β2)2 + 4α2β2 = 2a2 − (α2 + c2 + β2).

Squaring once again,

(α2 + β2)2 − 2c2(α2 − β2) + c4 = (α2 + β2 + c2)2 − 4a2(α2 + β2 + c2) + 4a4.

That is

−2c2(α2 − β2) = 2c2(α2 + β2) − 4a2(α2 + β2 + c2) + 4a4.

This becomes
(a2 − c2)α2 + a2β2 = a2(a2 − c2).

That is,
α2

a2
+
β2

b2
= 1

where b2 = a2 − c2 is the length of the minor semi-axis and we see the
usual/standard form of the ellipse.

The parabola

The general parabola in R2 with vertex at (h, k) is given by

−(x− h) sinψ + (y − k) cosψ = a[(x− h) cosψ + (y − k) sinψ]2 (1.40)

where a > 0 and ψ is, again, an angle of rotation. We know also the parabola
is the set of points equidistant from a fixed focal point and a fixed line
(directrix). The parabola defined by (1.40) has focal point

(h, k) +
1

4a
(− sinψ, cosψ)



64 CHAPTER 1. CHAPTER I

and directrix

L =

{

(h, k) − 1

4a
(− sinψ, cosψ) + t(cosψ, sinψ) : t ∈ R

}

.

Again, one can verify via a lengthy calculation that (1.40) expresses the
condition

∣

∣

∣

∣

(x− h, y − k) − 1

4a
(− sinψ, cosψ)

∣

∣

∣

∣

= −(x− h) sinψ + (y − k) cosψ +
1

4a
. (1.41)

Letting w be the complex focal point and

L ∼
{

w − 1

4a
(− sinψ + i cosψ) + t(cosψ + i sinψ) : t ∈ R

}

,

we can write (1.41) as

|z − w| = Re[(z − z0)iu] = Im[(z − z0)ū] (1.42)

where z0 is any point in the directrix, for example,

z0 = w − 1

2a
(− sinψ + i cosψ) = w − i

2a
u

with u = cosψ + i sinψ as usual.
The right side of (1.42) may be written as

Re[(z − z0)iu] =
1

2
[(z − z0)(−iū) + (z̄ − z̄0)iu]

=
i

2
[(z̄ − z̄0)u− (z − z0)ū] .

Starting with (1.41) the vertex is

w − i

4a
u = h + ik

so

z − z0 = z − w +
i

2a
u = z − (h+ ik) +

i

4a
u,
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and (1.41) becomes
∣

∣

∣

∣

z − (h+ ik) − i

4a
u

∣

∣

∣

∣

=
i

2

[(

z̄ − (h− ik) − i

4a
ū

)

u−
(

z − (h+ ik) +
i

4a
u

)

ū

]

.

To put this relation in familiar form, we again write

z − (h+ ik) = (α+ iβ)u.

Then we have
∣

∣

∣

∣

α + iβ − i

4a

∣

∣

∣

∣

=
i

2

[(

α− iβ − i

4a

)

−
(

α+ iβ +
i

4a

)]

= β +
1

4a
.

Squaring both sides we find

α2 +

(

β − i

4a

)2

=

(

β +
i

4a

)2

.

This simplifies to β = aα2.

The hyperbola

Finally, we consider the hyperbola. Like the ellipse there are two focal points
w1 and w2. Here there is a constant difference

| |z − w1| − |z − w2| | = 2a. (1.43)

Following the computation for the ellipse (with the geometry of the hyper-
bola) we have center

h+ ik =
w1 + w2

2
,

focal length

c =
|w2 − w1|

2
,

and rotation angle
ψ = arg(w2 − w1).
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The nondegeneracy condition is 0 < a < c. With these assignments we set

z − (h+ ik) = (α + iβ)u

with

u = cosψ + i sinψ =
w2 − w1

|w2 − w1|
.

Noting that

z−w1 = z−(h+ik)+cu = (α+c+iβ)u and z−w2 = z−(h+ik)−cu = (α−c+iβ)u,

the equation (1.43) can be written as

| |α+ c+ iβ| − |α− c+ iβ| | = 2a.

Squaring gives

α2 + β2 + c2 − |α2 − β2 − c2 + 2iαβ| = 2a2.

Rearranging and squaring again,

(α2 − β2 − c2)2 + 4α2β2 = (α2 + β2 + c2 − 2a2)2

or

(α2 + β2)2 − 2c2(α2 − β2) = (α2 + β2)2 + 2(c2 − 2a2)(α2 + β2)− 4a2(c2 − a2).

This becomes

(c2 − a2)α2 − a2β2 = a2(c2 − a2)

which is the standard form of a hyperbola:

α2

a2
− β2

b2
= 1

where b2 = c2 − a2.
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1.2.7 §2.3 exercises

Exercise 1

We are asked to determine when the set

S = {z : az + bz̄ + c = 0}
is a line in the complex plane. This is essentially an exercise in expressing the
linear algebra of 2 × 2 real matrices in complex form. We have already seen
the equation az+ bz̄+ c = 0 in Exercise I 1.4.4 where we found it equivalent
to the real 2 × 2 system

{

(a1 + b1)x− (a2 − b2)y = −c1
(a2 + b2)x+ (a1 − b1)y = −c2.

(1.44)

If we let a and b range over all complex numbers, we see this system is, in
turn, equivalent to the general system

{

a11x+ a12y = −c1
a21x+ a22y = −c2

owing to the fact that the matrices
(

1 1
1 −1

)

and

(

1 −1
1 1

)

are invertible, and the systems
{

a1 + b1 = a11

a1 − b1 = a22
and

{

a2 − b2 = −a12

a2 + b2 = a21

are always uniquely solvable. As in the previous problem, however, we again
prefer to avoid using the real and imaginary parts a1 ,a2, b1, and b2 explicitly.
Proceeding as in the “better solution” of the previous problem we take the
conjugate of the complex equation and arrive at a 2 × 2 complex coefficient
system for z and z̄:

{

az + bz̄ = −c
b̄z + āz̄ = −c̄.

Now we take the opposite point of view noting that in order to have more
than one unique solution, we need |a| = |b|. If |a| = |b| = 0, then we either
get no solution (if c 6= 0) or S = C (if c = 0). We conclude

|a| = |b| 6= 0 (1.45)
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is necessary for S to be a line. Assuming (1.45), we can multiply the first
equation by ā, the second by b, and subtract to get

āc = bc̄. (1.46)

This condition must be satisfied in order to get any solution whatsoever.
Thus, for S to be a line, both conditions (1.45) and (1.46) are necessary.
They are also sufficient. To see this clearly and point out some other aspects
of the problem, it is convenient to consider two separate cases.

If c = 0, then (1.46) is trivially satisfied, and it remains to show that
S = {az + bz̄ = 0} is a line when (1.45) holds. There are various ways
to see this. One way is to use our observation from Exercise I 1.4.4 that
the defining equation az + bz̄ = 0 is equivalent to a 2 × 2 linear system of
real equations for x and y. In this case it is a homogeneous system, and we
know the solution set is a vector space, meaning we can either have S = {0},
S = C, or S is a line (through the origin). The assumption (1.45) rules out
having a unique solution, so S 6= {0}. Thus, showing S is a line reduces to
showing S is not the entire complex plane. We can do this by contradiction:

b ∈ S ⇒ ab+ bb̄ = 0 ⇒ a+ b̄ = 0

ib ∈ S ⇒ abi− bb̄i = 0 ⇒ a− b̄ = 0.

Adding the last relations gives a = 0 which is a contradiction. A similar
contradiction may be reached by assuming a, ia ∈ S.

The foregoing argument is somewhat unsatisfying because we have used
the real and imaginary parts a1 ,a2, b1, and b2 (in the previous problem) to see
the equivalence with the real system (1.44). Notice, however, the argument
showing S 6= C is essentially independent of (1.44).

Here is another explanation which rests on two observations about real
linear combinations of complex numbers:

Lemma 2 S = {az + bz̄ = 0} is closed under real linear combinations, i.e.,
if z ∈ S and w ∈ S, then tz + sw ∈ S for t, s ∈ R.

This is, more or less, obvious since az+bz̄ is linear in z and z̄ (and conjugation
does not change real numbers).

Lemma 3 If α 6= 0 and there is no t ∈ R such that β 6= tα, then

{tα + sβ : t, s ∈ R} = C.
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Proof: Writing α = α1 + iα2 and β = β1 + iβ2, we claim

α1β2 − α2β1 6= 0 (1.47)

so that the system
{

α1t+ β1s = x
α2t+ β2s = y

always has a unique solution. To see (1.47), assume α1β2 − α2β1 = 0. If
α1 6= 0, then β2 = α2β1/α1 and

β = β1 +
α2

α1
β1i =

β1

α1
α

which is a contradiction. The alternative is α2 6= 0. In this case, β1 =
α1β2/α2 and we obtain a similar contradiction:

β =
α1

α2

β2 + β2i =
β2

α2

α. 2

Using these two observations, which are essentially translations of facts
about real linear combinations in R2 into complex notation, we may argue
as follows: If a = −b, then the equation reduces to z− z̄ = 0, i.e., Im(z) = 0.
Thus, S is the real axis, which is a line. If a+ b 6= 0, then

α =
b

a+ b
i

is a nonzero solution. In fact,

a
b

a+ b
i+ b

b̄

ā + b̄
(−i) = ib

a(ā + b̄) − b̄(a+ b)

|a+ b|2 = 0.

Since we also know S 6= C by the argument using b and ib above, we can use
Lemmas 2 and 3 to conclude every solution of az + z̄ = 0 is a real multiple
of the nonzero solution, i.e.,

S =

{

t
b

a + b
i : t ∈ R

}

which is a line in C. This completes the case c = 0.



70 CHAPTER 1. CHAPTER I

If c 6= 0, we have the additional condition (1.46) from which we know

b =
āc

c̄
.

It follows that

S =
{

z : az +
āc

c̄
z̄ + c = 0

}

=
{

z : ac̄z + ac̄z = −|c|2
}

=

{

z : Re(ac̄z) = −|c|2
2

}

=

{

z : ac̄z = −|c|2
2

+ ti, t ∈ R

}

=

{

− c

2a
+

t

ac̄
i : t ∈ R

}

.

This is a line. 2

Exercise 2

We have covered this exercise rather thoroughly in the lecture above. Let us
record the complex forms of each conic section:
ellipse:

|z − w1| + |z − w2| = 2a

where the focal points are w1 and w2 and the major semi-axis has length 2a
with 2a > |w2 − w1| = 2c. This can also be written in “symmetric” form as

√

(z − w1)(z̄ − w̄1) +
√

(z − w2)(z̄ − w̄2) = 2a.

hyperbola:
| |z − w1| − |z − w2| | = 2a

where w1 and w2 are the focal points and 2a is the distance between the
vertices with 2a < |w2 − w1| = 2c. The Symmetric form is

∣

∣

∣

√

(z − w1)(z̄ − w̄1) −
√

(z − w2)(z̄ − w̄2)
∣

∣

∣
= 2a.

parabola:
|z − w| = Im[(z − z0)ū]
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or

|z − w| =
i

2
[(z̄ − z̄0)u− (z − z0)ū]

where w is the focal point and t 7→ z0 + tu parameterizes the directrix. For
a symmetric form we have

√

(z − w)(z̄ − w̄) =
i

2
[(z̄ − z̄0)u− (z − z0)ū]

Exercise 3

The diagonals of a parallelogram bisect each other.
To see this, we may introduce complex coordinates so that two of the sides

of the parallelogram are v and w. The diagonals may then be represented by
z+w and z−w. The condition that these vectors intersect in their midpoints
is

z + w

2
= z +

w − z

2
.

This is obviously the case.
The diagonals of a rhombus are orthogonal.
Again, we can take two sides of the rhombus to be z, w ∈ C; in this case,

we have |z| = |w|. Orthogonality of the diagonals is then

Re
[

(z + w)(z − w)
]

= 0.

In fact, (z + w)(z̄ − w̄) = |z|2 − zw̄ + wz̄ − |w|2 = 2i Im(wz̄) ∈ iR.

1.2.8 §2.4 Stereographic projection
and the Riemann sphere

In the previous sections, we have taken advantage of the identification

C ∼ R2 by a+ ib ∼ (a, b)

of C with R2. We have seen how it is useful to represent C by the plane
owing to the geometry of angles and vectors in the plane. We now introduce
another useful representation of C. Consider

S2 = {x = (x, y, z) : x2 + y2 + z2 = 1}.
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S2 is just the unit sphere in three-dimensional Euclidean space. We can
identify, trivially, the plane with the x, y-plane of R3 as well:

R2 = {(x, y, z) : z = 0}.

For each (x, y, 0) ∈ R2, there is a unique point

(x, y, 0) + t[(0, 0, 1) − (x, y, 0)] ∈ S2\{(0, 0, 1)}.

In fact, the condition (x, y, 0) + t[(0, 0, 1) − (x, y, 0)] ∈ S2 implies

(x2 + y2 + 1)t2 − 2(x2 + y2)t+ x2 + y2 − 1 = 0

which has solutions

t = 1,
x2 + y2 − 1

x2 + y2 + 1
.

The value t = 1 gives the north pole e3 = (0, 0, 1), and the other value gives
the point in the sphere we seek:

(x, y, z) =
(2x, 2y, x2 + y2 − 1)

x2 + y2 + 1
.

Geometrically, it is clear that we have a one-to-one correspondence between

Figure 1.18: stereographic projection
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R2 and S2\{(0, 0, 1)}. In fact, given (x, y, z) ∈ S2\{(0, 0, 1)}, we may also
seek t ∈ R for which (1 − t)(0, 0, 1) + t(x, y, z) ∈ R2, i.e., 1 − t + tz = 0.
Taking the unique value t = 1/(1 − z), we obtain a mapping

σ : S2\{(0, 0, 1)} → R2 by σ(x, y, z) =
(x, y)

1 − z
.

This mapping is called stereographic projection. The reverse identifica-
tion is called inverse stereographic projection:

σ−1 : R2 → S2 by σ−1(x, y) =
(2x, 2y, x2 + y2 − 1)

x2 + y2 + 1
.

The formulas associated with σ and σ−1 are somewhat complicated, but the
geometry is intuitively clear, and the mapping has many interesting proper-
ties.

First, there is a natural concrete representative for “the point at infinity”
in S2, namely the north pole (0, 0, 1). The stereographic projection of a
circle C on S2 passing through (0, 0, 1), i.e., ∞, is the intersection of a non-
horizontal plane through (0, 0, 1) with S2. Thus, the projection of such a
circle gives a straight line in R2, which also passes through “the point at
infinity.” Analytically,

C = S2 ∩ {[(x, y, z) − (0, 0, 1)] ·N = 0}
for some unit normal N = (N1, N2, N3) ∈ R\{(0, 0,±1)}. Therefore, if
(x, y, z) ∈ C\{(0, 0, 1)}, then

σ(x, y, z) =
(x, y)

1 − z
satisfies N1

(

x

1 − z

)

+N2

(

y

1 − z

)

= N3

since N1x + N2y = N3(1 − z). Thus, the stereographic projection of C,
denoted σ(C) = {σ(x) : x ∈ C\{(0, 0, 1)}}, is a straight line in R2.

Also, every straight line in R2 is given by such a projection. Geometrically,
just take the plane passing through the line and (0, 0, 1); intersect it with S2.
Analytically, we have

L = {(x, y) : ax+ by = c},
and

σ−1(L) =

{

(2x, 2y, x2 + y2 − 1)

x2 + y2 + 1
: ax+ by = c

}

= {(x, y, z) : ax+ by + cz = c} ∩ S2.
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The stereographic projection of the equator {(x, y, 0) : x2 + y2 = 1} is
itself and, therefore, a circle. It is somewhat less obvious that the stereo-
graphic projection of any circles in S3\{(0, 0, 1)} is a circle. To see this, let
us use complex notation in the plane so that

σ−1(z) = σ−1(x+ iy) =
(z + z̄, (z − z̄)/i, |z|2 − 1)

|z|2 + 1
.

When C is used to provide coordinates for S2, i.e., S2\{(0, 0, 1)}, the sphere
is called the Riemann sphere, and this is a first example (and a very simple
example) of a Riemann surface.

To distinquish coordinates we now use x1, x2, x3-coordinates in R3. A
circle C in S2 determined by

N1x1 +N2x2 +N3x3 = d

does not contain (0, 0, 1) when N3 6= d. Also, by the Cauchy-Schwarz in-
equality in R3, we have

|d| ≤ |N · x| ≤ |N ||x|

with equality only if N and x are parallel. In the case of equality, therefore,
the circle C degenerates to a single point. We may therefore assume d < 1.
The image, σ(C), corresponds to points z ∈ C with

N1(z + z̄) − iN2(z − z̄) +N3(|z|2 − 1) = d(|z|2 + 1)

or
(N3 − d)(x2 + y2) + 2N1x+ 2N2y − (N3 + d) = 0.

This is the equation of a circle since

N3 + d

N3 − d
+

N2
1

(N3 − d)2
+

N2
2

(N3 − d)2
=

1 − d2

(N3 − d)2
> 0.

Again, every circle in R2 is the stereographic projection of a circle in S3: If

(x− h)2 + (y − k)2 = r2,

then x2 + y2 + 2hx+ 2ky + k2 + h2 − r2 = 0, and we can solve the system
{

N3 − d = 1
N3 + d = r2 − h2 − k2.
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Therefore,

σ−1
(

{(x, y) : (x− h)2 + (y − k)2 = r2}
)

= {σ−1(z) : h(z + z̄) − ik(z − z̄) + c(|z|2 − 1) = d(|z|2 + 1)}
= {(x1, x2, x3) : hx1 + kx2 + cx2 = d} ∩ S2.

We make one more calculation. As we have seen above, we can think of
points on S2 as given by coordinates in the complex plane. In a similar way,
except in the opposite direction, we can also induce a nonstandard metric
on the plane by considering the distance between points z and w to be the
distance between the inverse stereographic projections of the points. This
allows us to take limits, as points z and w tend to infinity in the plane,
and measure how the points get closer to one another because they are both
getting close to the point at infinity. Notice the Euclidean distance of such
points tending to infinity may become very large (or may get small).

Ahlfors uses the euclidean distance between σ−1(z) and σ−1(w), but we
will use the intrinsic distance in the sphere. The two metrics are essentially
equivalent, but we find the latter more natural. Since σ−1(z) and σ−1(w) lie
in the unit sphere in R3, the distance between them (on the sphere) is the
angle between the vectors, which is given by the dot product:

cos θ = σ−1(z) · σ−1(w)

=
(z + z̄)(w + w̄) − (z − z̄)(w − w̄) + (|z|2 − 1)(|w|2 − 1)

(|z|2 + 1)(|w|2 + 1)

=
2zw̄ + 2z̄w + |z|2|w|2 − |z|2 − |w|2 + 1

(|z|2 + 1)(|w|2 + 1)

= 1 − 2|z − w|2
(|z|2 + 1)(|w|2 + 1)

.

Thus, our new metric on C is

d(z, w) = cos−1

(

1 − 2|z − w|2
(|z|2 + 1)(|w|2 + 1)

)

. (1.48)

Notice this metric allows us to compute the distance from a point z ∈ C to
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the point at infinity:

d(z,∞) = lim
|w|ր∞

d(z, w)

= lim
|w|ր∞

cos−1

(

1 − 2[(|z|2 − zw̄ − z̄w)/|w|2 + 1

(|z|2 + 1)(1 + 1/|w|2)

)

= cos−1

(

1 − 2

|z|2 + 1

)

= cos−1

( |z|2 − 1

|z|2 + 1

)

.

If one prefers Ahlfors’ Euclidean distance, it may be found via the law of
cosines:

d̃(z, w) = |σ−1(z) − σ−1(w)| =
√

2 − 2 cos θ

or

d̃(z, w) =
2|z − w|

√

(|z|2 + 1)(|w|2 + 1)
. (1.49)

Taking the same kind of limit

d̃(z,∞) =
2

√

|z|2 + 1
.

It may be a little premature for me to state (and students to understand)
the following principle, but this is an appropriate place because it is funda-
mentally related to stereographic projection.

Metaprinciple of complex numbers 1 The point at infinity is just like
any other point in the complex plane. This is the case, because the north pole
is just like any other point in the sphere.

1.3 §2.4 Exercises

Exercise 1

Two complex numbers z and w correspond to diametrically opposite points
in the Riemann sphere, i.e.,

σ−1(z) = −σ−1(w), (1.50)
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if and only if zw̄ = −1.
The condition (1.50) is equivalent to three component equations:

z + z̄

|z|2 + 1
= − w + w̄

|w|2 + 1
,

z − z̄

|z|2 + 1
= − w − w̄

|w|2 + 1
, (1.51)

and
|z|2 − 1

|z|2 + 1
= −|w|2 − 1

|w|2 + 1
. (1.52)

If w = 0, the condition (1.50) becomes σ−1(z) = (0, 0, 1) which is never
satisfied for z ∈ C. Likewise, the condition zw̄ = −1 cannot be satisfied by
any z ∈ C when w = 0. We may therefore exclude w = 0 from consideration.

The equation in (1.52) implies 2|z|2|w|2 = 2 which we can write as |z| =
1/|w|. Adding the equations in (1.51) and making the substitution |z| =
1/|w|, we find

z

1/|w|2 + 1
= − w

|w|2 + 1
.

This implies

zw̄ = −(1/|w|2 + 1)
|w|2

|w|2 + 1
= −1.

We have thus established one direction.
Conversely, if zw̄ = −1, then it is easy to check each of the equations in

(1.51-1.52) by substituting z = −1/w̄ on the left. In fact,

z + z̄

|z|2 + 1
=

−1/w̄ − 1/w

1/|w|2 + 1
=

−w − w̄

|w|2 + 1
,

z − z̄

|z|2 + 1
=

−1/w̄ + 1/w

1/|w|2 + 1
=

−w + w̄

|w|2 + 1
,

and
|z|2 − 1

|z|2 + 1
=

1/|w|2 − 1

1/|w|2 + 1
=

1 − |w|2
|w|2 + 1

.

Exercise 2

The cube inscribed in S2 with sides parallel to the coordinate planes is shown
in Figure 1.19. The two vertices that project into the first quadrant are

(

1√
3
,

1√
3
,

1√
3

)

and

(

1√
3
,

1√
3
,− 1√

3

)

.
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Figure 1.19: cube in the sphere

The stereographic projections of these points are

(1/
√

3, 1/
√

3)

1 − 1/
√

3
=

(1, 1)√
3 − 1

and
(1/

√
3, 1/

√
3)

1 − 1/
√

3
=

(1, 1)√
3 + 1

.

The remaining vertices are symmetric with these, namely,

(−1,−1)√
3 − 1

,
(−1,−1)√

3 + 1
,

(±1,∓1)√
3 − 1

, and
(±1,∓1)√

3 + 1

as indicated in Figure 1.20.
It is interesting (and perhaps fun) to centrally project the edges of the

cube onto the sphere as well, and then stereographically project them. In
order to organize the coding for visualization it is convenient to group the
edges into three groups of four: (1) edges parallel to the x1-axis, (2) those
parallel to the x2-axis, and (3) the vertical edges. The linear edges in R3

may be parameterized as:

pjk(t) =
1√
3

[

tej − (1 − t)ej +
√

2(cos(kπ/4)eℓ + sin(kπ/4)em)
]

where k = 1, 3, 5, 7 and j = 1, 2, 3 (as the edge is parallel to the xj-axis) with
ℓ = ℓ(j) = (j + 1) mod 3 and m = m(j) = (j + 2) mod 3. The centrally
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Figure 1.20: stereographically projected vertices (and edges)

projected edges are then given by

qjk =
pjk

|pjk|

where |pjk| is the three-dimensional Euclidean norm. Notice that, while the
linear edges intersect in pairs at right angles, the spherical edges intersect at
120 degrees. Thus, the central projection of the inscribed cube is a network
of great circles meeting in threes at 120 degrees. The fact that there are
exactly ten such networks is attributed to Fred Almgren and Jean Taylor.
They state this fact in their 1976 paper The geometry of soap films and
soap bubbles which appeared in Scientific American Vol. 235, no. 1. Alm-
gren and Taylor were interested in the possible point singularities in soap
films/minimal surfaces. Any such singularity produces (by scaling out with
the singularity at the origin in R3) a network of great circles on the sphere
meeting at 120 degree angles. Of the ten possible networks, only three cor-
respond to singularities in soap films, and the cube is not one of them, i.e.,
if you connect all the points on the edges of the cube back to the origin in
R3, then the network of intersecting planes you get does not correspond to a
soap film singularity. The tetrahedron in the next exercise, however, is one
of the three. That is, connecting all the points on the edges of a centrally
situated regular tetrahedron to the origin produces a singular minimal cone.
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The stereographic projections of the centrally projected edges are shown
on the right in Figure 1.20. Each of the horizontal edges projects to an
arc of a circle. Can you guess how the radius of the projections of the top
edges compares to those of the bottom edges? Stereographic projection is a
conformal map, that is, it preserves angles. The angles between the curves
in the projection should all be 120 degrees. This may not look to be the case
at first, but it is the case.

Exercise 3

Now we are to look at the regular tetrahedron (inscribed in S2) in “general
position.”

It was relatively easy to write down the coordinates for the vertices of the
cube in the previous problem. (It seemed pretty obvious that the one in the
first octant should be a multiple of (1, 1, 1), and the others were just reflec-
tions of the first one.) The situation seems rather less obvious here. Let’s
reverse our point of view to find the centrally located regular tetrahedron in
S2 in at least one position. Let’s say we put a vertex at the north pole, then
that one will not have a stereographic projection, but we can assume the
projections of the other three vertices lie somewhere along the third roots of
unity. That is, we may assume one is α > 0 while the other two are

α

(

cos
2π

3
± i sin

2π

3

)

= α

(

−1

2
± i

√
3

2

)

.

If we take the inverse stereographic projection of α and one of these other
points we obtain two points in the sphere:

(2α, 0, α2 − 1)

α2 + 1
and

(−α, α
√

3, α2 − 1)

α2 + 1
.

In order for these to be vertices of a regular tetrahedron (along with the
north pole), their dot product should be the same as the dot product of one
of them with (0, 0, 1):

−2α2 + (α2 − 1)2

(α2 + 1)2
=
α2 − 1

α2 + 1
.
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From this equation we conclude α = 1/
√

2. The three vertices on the bottom
of the tetrahedron are

v0 =

(

2
√

2

3
, 0,−1

3

)

and v± =

(

−
√

2

3
,±

√
6

3
,−1

3

)

, (1.53)

and their stereographic projections are
√

2

2
, and −

√
2

4
± i

√
6

4
.

Centrally projecting the edges onto the sphere and stereographically project-
ing the resulting Steiner network, we obtain the subset of C (also a planar
Steiner network) indicated on the right in Figure 1.21. Notice that with the

Figure 1.21: stereographically projected vertices (and edges)

tetrahedron in this position, one of the vertices is at the north pole and three
of the (centrally projected) edges stereographically project to rays approach-
ing the point at infinity.

At this point, it is not too difficult to write down expressions for the
stereographic projection of the vertices (and/or the centrally projected eges)
of a tetrahedron in any particular position. Presumably this is what Ahlfors
means by “general position.” A general rotation R3 may be expressed as a
composition of three coordinate rotations determined by matrix multiplica-
tion with




1 0 0
0 cosφ3 − sin φ3

0 sin φ3 cosφ3









cosφ2 0 − sinφ2

0 1 0
sin φ2 0 cosφ2









cosφ1 − sinφ1 0
sinφ3 cosφ2 0

0 0 1



 .
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Letting this transformation be denoted by ρ, the stereographic projection of
the vertices in “general position” would be

σ ◦ ρ(0, 0, 1), σ ◦ ρ(v0) and σ ◦ ρ(v±)

where v0 and v± are the original vertices defined in (1.53). This formula
does not strike me as particularly enlightening. What I think would be more
interesting is to consider some particular projections with the tetrahedron in
some particular positions. Let us begin by rotating the tetrahedron we found
above about the x2-axis until the the vertex projecting to the real line

(

2
√

2

3
, 0,−1

3

)

has moved to the equator. Noting the coordinates of this vector, we see the
appropriate rotation is one by an angle θ satisfying

cos θ =
2
√

2

3
and sin θ =

1

3
.

Thus, letting ρ denote the rotation about the x2 axis associated with the
matrix

1

3





2
√

2 0 −1
0 1 0

1 0 2
√

2





we find rotated vertices:

ρ(0, 0, 1) =
(−1, 0,

√
2)

3
, rho(v0) = (0, 0, 1), and ρ(v±) =

(−1,±
√

6,
√

2)

3
.

All four vertices now project into C as indicated on the right in Figure 1.22,
though one of the centrally projected edges still passes through the north
pole, so one side passes through the point at infinity. We could not execute
a rotation about the x1-axis and see various stereographic projections with
all the normally projected edges stereographically projecting into C.

Instead we will consider rotating in the opposite direction about the x2-
axis until the original point v0 moves to the south pole (0, 0,−1). This is
equivalent to using the negatives of our original vertices:

(0, 0,−1), −v0 =

(

−2
√

2

3
, 0,

1

3

)

and −v± =

(√
2

3
,∓

√
6

3
,
1

3

)

.

This is an “upside down” tetrahedron. It has an entirely nonsingular projec-
tion as shown in Figure 1.23.
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Figure 1.22: stereographically projected vertices (and edges)

Figure 1.23: upside down tetrahedron

Exercise 5

Let z0 = h+ik be the center of a circle C in C of radius r. We are asked to find
the radius of the inverse stereographic projection σ−1(C) of this circle. The
question can have two meanings depending on whether one wants the intrinsic
radius, with σ−1(C) considered as a circle in S2, or the extrinsic radius in R3.
Both answers are easy to find from the induced distance formulas above.

Rotations of the complex plane (centered at the origin) correspond to
rotations of the sphere about the z3 axis and, thus, do not change the radius
of either circle. This reduces the problem to consideration of a circle with
center |z0|. Two diametrically opposite points in σ−1(C) are given by

σ−1(|z0| − r) =
(2(|z0| − r), 0, (|z0| − r)2 − 1)

(|z0| − r)2 + 1
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and

σ−1(|z0| + r) =
(2(|z0| + r), 0, (|z0| + r)2 − 1)

(|z0| + r)2 + 1
.

Both the intrinsic distance and the extrinsic distance between two such points
is calculated above. The intrinsic distance is calculated using (1.48):

d(|z0| − r, |z0| + r) = cos−1

(

1 − 8r2

[(|z0| − r)2 + 1][(|z1| + r)2 + 1]

)

.

Therefore, the intrinsic radius of the circle on the sphere is

1

2
cos−1

(

1 − 8r2

[(|z0| − r)2 + 1][(|z1| + r)2 + 1]

)

.

Using the half angle formula for cosine, namely,

cos
θ

2
=

√

1 + cos θ

2
,

this can also be written as

cos−1

√

1 − 4r2

[(|z0| − r)2 + 1][(|z1| + r)2 + 1]
.

Similarly, the extrinsic distance is given in (1.49):

d̃(|z0| − r, |z0| + r) =
4r

√

[(|z0| − r)2 + 1][(|z1| + r)2 + 1]
,

so the extrinsic radius is

2r
√

[(|z0| − r)2 + 1][(|z1| + r)2 + 1]
.

I don’t see any substantial simplification of this formula.



Chapter 2

Chapter II

2.1 Lecture 3: § 1.1-2; differentiability of com-

plex functions

2.1.1 functions, continuity, and differentiability

Let U be an open subset of C, and consider f : U → C.

Figure 2.1: a complex mapping on an open domain in C

(To be open in C means that for each z ∈ U , there is some r > 0 such that
Br(z) = {ζ : |ζ − z| < r} ⊂ U .)

Continuity at z means for any ǫ > 0, there is some δ > 0 such that

|ζ − z| < δ ⇒ |f(ζ)− f(z)| < ǫ.

85
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Equivalently,
lim
ζ→z

f(ζ) = f(z).

(Generally, limζ→z f(z) = L ∈ C means for any ǫ > 0, there is some δ > 0
such that

0 < |ζ − z| < δ ⇒ |f(ζ) − L| < ǫ.)

Remember C ∼ R2, and for everything we have said so far we can assume
f is like a mapping (vector field) on R2. In principle f : U → C is equivalent
to a mapping φ : U → R2 (with U ⊂ R2) and

{

f(z) = f(z) + v(z) i
φ(x, y) = u(x, y) + v(x, y) i.

For φ, however, differentiability means the existence of the four partial
derivatives

Dφ =









∂u
∂x

∂u
∂y

∂v
∂x

∂v
∂y









.

There is also a somewhat stricter notion involving linear approximation, but if
we assume the four partial derivatives are continuous on an open set, i.e., φ ∈
C1(U), then the two notions are equivalent. In any case, differentiability
(complex differentiability) for f is something quite different:

f ′(z) = lim
ζ→z

f(ζ) − f(z)

ζ − z
. (2.1)

That is to say, f is differentiable if the limit of the difference quotient
in (2.1) exists and has a complex limit f ′(z).

Nexercise 10 Show that if the four partials of Dφ are continuous on U ,
then the mapping φ : U → R2 (with U ⊂ R2) is continuous.

Lemma 4 If f : U → C is differentiable at z, then f is continuous at z.

Proof:

lim
ζ→z

|f(ζ) − f(z)| = lim
ζ→z

|f(ζ) − f(z)|
|ζ − z| · |ζ − z|

= |f ′(z)| · 0 2.

Notice this lemma parallels the real case. Now we will start to see some
differences.
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2.1.2 Cauchy-Riemann equations

Let us calculate the complex derivative by letting ζ tend to z in the difference
quotient in two different ways.

f ′(z) = lim
hց0

f(z + h) − f(z)

h

= lim
hց0

u(x+ h, y) + iv(x+ h, y) − u(x, y)− iv(x, y)

h

= lim
hց0

[

u(x+ h, y) − u(x, y)

h
+ i

v(x+ h, y) − v(x, y)

h

]

=
∂u

∂x
+ i

∂v

∂x
.

Notice the existence of the complex derivative f ′ implies the existence of the
partial derivatives here. Similarly, we find

f ′(z) = lim
hց0

f(z + hi) − f(z)

hi

= lim
hց0

[

−iu(x, y + h) − u(x, y)

h
+
v(x, y + h) − v(x, y)

h

]

=
∂v

∂y
− i

∂u

∂y
.

We have established the following fundamental result:

Theorem 1 Differentiability of f : U → C implies differentiability of φ :
U → R2 (with U ⊂ R2) and φ(x, y) = (u, v), i.e., the partial derivatives

∂u

∂x
,
∂u

∂y
,
∂v

∂x
, and

∂v

∂y
all exist.

Moreover, if f ′ exists, then

∂u

∂x
=
∂v

∂y
and

∂u

∂y
= −∂v

∂x
. (2.2)

These are called the Cauchy-Riemann Equations.

Nexercise 11 Give an example of a complex valued function f : U → C

which is not differentiable, but the associated mapping φ : U → R2 (with
U ⊂ R2) is differentiable.
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2.1.3 regularity and harmonic functions

Here is a result that shows even more clearly how different complex differen-
tiable functions are from any real counterpart.

Theorem 2 (the regularity theorem) If f ′ : U → C exists at each point
in U , then the real and imaginary parts u and v are in C∞(U), i.e., all partial
derivatives of all orders exist and are continuous. Consequently, all higher
order complex derivatives of f also exist.

Nexercise 12 Give an example of a real mapping φ : U → R2 (with U ⊂ R2)
which is continuously differentiable but not twice differentiable.

Definition/terminology 1 A function f : U → C which is differentiable
on an open set U (as opposed to the associated mapping φ : U → R2) is called
analytic or holomorphic.

Assuming the regularity theorem above, we can use the Cauchy-Riemann
equations to prove the following important result.

Theorem 3 (harmonic conjugates) If f = u + iv is analytic, then the
real an imaginary parts are harmonic, i.e.,

∂2u

∂x2
+
∂2u

∂y2
= 0 and

∂2v

∂x2
+
∂2v

∂y2
= 0. (2.3)

Proof:
∂2u

∂x2
=

∂

∂x

(

∂v

∂y

)

=
∂

∂y

(

∂v

∂x

)

=
∂

∂y

(

−∂u
∂y

)

= −∂
2u

∂y2
.

We have used the Cauchy-Riemann equations and the theorem that if a
real function v ∈ C2(U), then the mixed partials of v are equal. A similar
calculation using the Cauchy-Riemann equations and that the mixed partials
of u are equal shows that v is harmonic. 2

Example 1 f(z) = z = x+ iy.

u(x, y) = x and v(x, y) = y are harmonic.

f(z) = z2 = (x+ iy)2 = x2 − y2 + 2xy i.

∂2u

∂x2
+
∂2u

∂y2
= 2 − 2 = 0 and

∂2v

∂x2
+
∂2v

∂y2
= 0 + 0 = 0.



2.1. LECTURE 3: § 1.1-2; DIFFERENTIABILITY OF COMPLEX FUNCTIONS89

Note: Two harmonic functions are not necessarily related as the real and
imaginary parts of a complex analytic function. If we take

u(x, y) = x and v(x, y) = 2xy,

Then the function f(z) = Re(z) + 2Re(z) Im(z) i is not analytic. (Why?)

Definition 2 If u and v are harmonic (real functions of two real variables
on an open set U ⊂ R2), then u and v are called harmonic conjugates if
they satisfy the Cauchy-Riemann equations:

∂u

∂x
=
∂v

∂y
and

∂u

∂y
= −∂v

∂x
.

Example 2 u(x, y) = x and v(x, y) = 2xy are not harmonic conjugates.

∂u

∂x
= 1 6= ∂v

∂y
= 2x.

Theorem 4 (harmonic conjugates) If u and v are continuously differen-
tiable on U and satisfy the Cauchy-Riemann equations, then

f = u+ iv is analytic.

Proof:

u(x+ h, y + k) = u(x, y) +

(

∂u

∂x
,
∂u

∂y

)

· (h, k) + ◦
(√

h2 + k2
)

where
∂u

∂x
=
∂u

∂x
(x, y) and

∂u

∂y
=
∂u

∂y
(x, y).

The notation g = ◦
(√

h2 + k2
)

denotes a function g = g(h, k) for which

lim
(h,k)→(0,0)

g(h, k)√
h2 + k2

= 0.

Thus, we are saying

lim
(h,k)→(0,0)

u(x+ h, y + k) − u(x, y)−
(

∂u
∂x
, ∂u

∂y

)

· (h, k)
√
h2 + k2

= 0.
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Similarly,

v(x+ h, y + k) = v(x, y) +

(

∂v

∂x
,
∂v

∂y

)

· (h, k) + ◦
(√

h2 + k2
)

.

Therefore,

f(z + h + ik) − f(z)

h+ ik
=

(

∂u
∂x
, ∂u

∂y

)

· (h, k) + i
(

∂v
∂x
, ∂v

∂y

)

· (h, k) + ◦
(√

h2 + k2
)

h + ik
.

Expanding the inner products appearing in the numerator and using the
Cauchy-Riemann equations, we find

∂u

∂x
h− ∂v

∂x
k + i

(

∂v

∂x
h +

∂u

∂x
k

)

=

(

∂u

∂x
+ i

∂v

∂x

)

(h + ik).

Therefore,

f(z + h + ik) − f(z)

h+ ik
=

(

∂u

∂x
+ i

∂v

∂x

)

+
◦
(√

h2 + k2
)

h+ ik
.

Finally,

lim
h+ik→0

∣

∣

∣

∣

∣

◦
(√

h2 + k2
)

h+ ik

∣

∣

∣

∣

∣

= lim
(h,k)→(0,0)

∣

∣◦
(√

h2 + k2
)∣

∣

√
h2 + k2

= 0.

We conclude that f ′(z) exists and

f ′(z) =
∂u

∂x
+ i

∂v

∂x

as we already knew. 2

In summary, we can write the following:

Theorem 5 f is analytic in U if and only if f = u+iv with u and v (C1(U))
harmonic conjugates.
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2.2 §1.2 exercises

Exercise 3

u = ax3 + bx2y + cxy2 + dy3.

∂u

∂x
= 3ax2 + 2bxy + cy2 and

∂u

∂y
= bx2 + 2cxy + 3dy2.

∂2u

∂x2
= 6ax+ 2by and

∂2u

∂y2
= 2cx+ 6dy.

Thus, for u to be harmonic, we need c = −3a and b = −3d. Assuming this
is the case, any harmonic conjugate v must satisfy

∂v

∂y
=
∂u

∂x
= 3ax2 − 6dxy − 3ay2 and

∂v

∂x
= −∂u

∂y
= 3dx2 + 6axy − 3dy2.

Integrating the first equation, we find v = 3ax2y− 3dxy2 − ay3 + c(x) where
c(x) now represents some function of x. Differentiating with respect to x, we
must also have

c′(x) = 3dx2 or c(x) = dx3 + c

where c is a constant. Therefore, the most general form of v is

v(x) = dx3 + 3ax2y − 3dxy2 − ay3 + c.

Exercise 4

Show that if |f | = r (constant) and f is analytic, then f must be constant.
This is a very typical complex analysis assertion very analogous to the

facts in the text that if an analytic function is real (or purely imaginary)
then it must be constant. Let us review the argument for these other facts:
If f is purely real, then f = u + iv = u and taking the limit limζ→z[f(ζ) −
f(z)]/(ζ − z) with ζ = z + h and h ∈ R, we find

f ′(z) =
∂u

∂x
+
∂v

∂x
i =

∂u

∂x
∈ R.

On the other hand, taking the same limit with ζ = z+ ih and h ∈ R, we get

f ′(z) = −i∂u
∂y

+
∂v

∂y
= −i∂u

∂y
∈ iR.
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Thus, f ′(z) ∈ R∩iR = {0} and f ≡ c (constant). This is Ahlfors’ elementary
proof. From the perspective of the Cauchy-Riemann equations, one can
conclude immediately from the fact that v ≡ 0 that

∂u

∂x
=
∂v

∂y
≡ 0 and

∂u

∂y
= −∂v

∂x
≡ 0,

and hence f = u ≡ c (constant). This problem, in any case, seems to require
a little more work. Differentiating the condition |f |2 = u2 + v2 = r2 with
respect to x and y we get

u
∂u

∂x
+ v

∂v

∂x
= 0 and u

∂u

∂y
+ v

∂v

∂y
= 0.

On the other hand, we can use the Cauchy-Riemann equations to get

f̄ f ′ = (u− iv)

(

∂u

∂x
+ i

∂v

∂x

)

= u
∂u

∂x
+ v

∂v

∂x
+ i

(

u
∂v

∂x
− v

∂u

∂x

)

= 0 + i

(

−u∂u
∂y

− v
∂v

∂y

)

= 0.

With this in mind, let A = {z : f ′(z) 6= 0}. This is an open set. If z0 ∈ A,
then there is some ball Br(z0) ⊂ A. From the fact that f̄ f ′ = 0, it follows
that f ≡ 0 on A. But this would mean f ′ ≡ 0 on A which is is a contradiction.

We conclude that f ′ ≡ 0. That is,

∂u

∂x
=
∂v

∂y
= 0 and

∂u

∂y
= −∂v

∂x
= 0.

Thus, f ≡ c (constant).

Exercise 5

Show f = u+ iv is analytic if and only if

g(z) = f(z̄) = u(x,−y) − iv(x,−y)
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is analytic. I’m skeptical of the “Cauchy-Riemann equations” solution to
this problem offered by Dustin Smith. It shouldn’t be the case that f(z̄) is
analytic. One should be able to give a solution using the Cauchy-Riemann
equations, but this requires u, v ∈ C1. A more economical proof seems to be
the one using the definition of differentiability directly.

The difference quotient for g at x+ iy is given by

g(z + h + ik) − g(z)

h+ ik
=
u(x+ h,−y − k) − iv(x+ h,−y − k) − u(x,−y) + iv(x,−y)

h+ ik

=
u(x+ h,−y − k) − u(x,−y) − i[v(x+ h,−y − k) − v(x,−y)]

h+ ik
.

Notice the functions f and g are not necessarily defined on the same
domain. It may be assumed, however, that if z is a point where g is defined,
then f should be defined (and differentiable) at z̄ = x − iy. If we assume
differentiability for f at z̄, then we have

lim
h−ik→0

f(z̄ + h− ik) − f(z̄)

h− ik
=
∂u

∂x
(x,−y) + i

∂v

∂x
(x,−y).

Multiplying the right side of this equation by (h− ik)/(h− ik) we get

1

h− ik

[

h
∂u

∂x
+ k

∂v

∂x
+

(

h
∂v

∂x
− k

∂u

∂x

)

i

]

.

where
∂u

∂x
=
∂u

∂x
(x,−y) and

∂v

∂x
=
∂v

∂x
(x,−y).

Subtracting the right side limit from the left, we obtain terms

u(x+ h,−y − k) − u(x,−y) −
(

h
∂u

∂x
+ k

∂v

∂x

)

and

i

[

v(x+ h,−y − k) − v(x,−y) −
(

h
∂v

∂x
− k

∂u

∂x

)]

the sum of which is ◦(h− ik) as h− ik → 0. That is,

lim
h−ik→0

1

h− ik

{

u(x+ h,−y − k) − u(x,−y) −
(

h
∂u

∂x
+ k

∂v

∂x

)

+ i

[

v(x+ h,−y − k) − v(x,−y) −
(

h
∂v

∂x
− k

∂u

∂x

)]}

= 0.
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Equivalently, the limit of the modulus of this complex number is zero. And
since the modulus of a quotient of complex numbers is the quotient of the
moduli of those numbers, we can take the conjugate of the numerator and
denominator and get the same limit. That is,

lim
h−ik→0

1

h + ik

{

u(x+ h,−y − k) − u(x,−y) −
(

h
∂u

∂x
+ k

∂v

∂x

)

− i

[

v(x+ h,−y − k) − v(x,−y) −
(

h
∂v

∂x
− k

∂u

∂x

)]}

= 0.

Noting that

(h+ ik)

(

∂u

∂x
− i

∂v

∂x

)

= h
∂u

∂x
+ k

∂v

∂x
+ i

(

k
∂u

∂x
− h

∂v

∂x

)

,

we see the limit above is exactly the limit

lim
h−ik→0

1

h + ik

{

g(z + h + ik) − g(z) − (h + ik)

(

∂u

∂x
− i

∂v

∂x

)}

involving the difference quotient for g. Taking the limit as h− ik → 0 is the
same as taking the limit as (h, k) → (0, 0) or as h+ ik → 0. We conclude g′

exists and
g′(z) = f ′(z̄).

We have shown that when f is analytic, then g is also analytic on the ap-
propriate domain. Dustin Smith rightly points out that this computation
essentially completes the problem since

f(z) = g(z̄).

That is, when g is analytic, then f is analytic by the same argument.

2.3 Lecture 4: § 1.3-4

polynomials and rational functions

2.3.1 polynomials

A complex polynomial of degree n is a function of the form

P (z) = anz
n + an−1z

n−1 + · · ·+ a1z + a0, an 6= 0.
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The complex number a0 is called the leading coefficient; the polynomial is
called monic if an = 1.

Nexercise 13 Show the polynomial above is analytic with

P ′(z) =

n
∑

j=0

jajz
j−1.

If P and Q are polynomials, we say P is divisible by Q if there is some
polynomial q = q(z) such that P = qQ. In this case, we write

Q
∣

∣P ”Q divides P .”

Notice that if Q divides P , then deg(Q) ≤ deg(P ). More generally, we have
the division algorithm for polynomials:

Proposition 2 If deg(Q) ≤ deg(P ) and Q is monic, then there are unique
polynomials q = q(z) and r = r(z) with deg(r) < deg(Q) and

P = qQ+ r.

The polynomial q is called the quotient and the polynomial r is called the
remainder.

Example 3 P = z4 + 4; Q = z2 + 1. q = z2 − 1; r = 5.

z4 + 4 = (z2 − 1)(z2 + 1) + 5.

Nexercise 14 You should make sure that given any two polynomials P and
Q with deg(P ) > deg(Q), you can find polynomials q and r with deg(r) <
deg(Q) and

P = qQ+ r.

Nexercise 15 The division algorithm still holds if deg(Q) > deg(P ). (Ex-
plain.)

Nexercise 16 Prove the division algorithm by induction on the degree of P .
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roots

If P (z0) = 0, then z0 is called a root of P .

Theorem 6 If P (z0) = 0, then (z − z0)
∣

∣P .

Proof: By the division algorithm

P = q(z − z0) + r

where r is a constant. Since P (z0) = 0, we know the constant r = 0. 2

Theorem 7 (fundamental theorem of algebra) We state the result in
two equivalent ways:

(version 1) Given a polynomial P with degree n, there are n complex roots,
α1, . . . , αn of P such that

P (z) = an

n
∏

j=1

(z − αj). (2.4)

(version 2) If P is a polynomial with deg(P ) ≥ 1, then there is a complex
number α such that P (α) = 0, i.e., P has a (complex) root.

multiplicity

The roots of a polynomial may not be all different from one another, i.e.,
distinct, i.e., there may be repeated roots. But the roots of a polynomial
{α1, . . . , αn} are unique as a set, even counted with multiplicites. That is,
up to ordering, the product in (2.4) is unique. In view of this situation, let
us change notation slightly. Let the distinct roots be α1, . . . , αk with k ≤ n,
and let the root αj have multiplicity mj . Then the product expression for
P becomes

P (z) = an

k
∏

j=1

(z − αj)
mj .

The power/multiplicity mj is also called the order of the zero αj, and the
zero is said to be simple if mj = 1.

Note that we have
k
∑

j=1

mj = n.
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The order of a zero mj is related to differentiation of P . For example, if αj

is a simple zero, then

P (z) = (z − αj)Q(z) with Q(αj) 6= 0.

This means

P ′(z) = Q(z) + (z − αj)Q
′(z) and P ′(α)Q(αj) 6= 0.

More generally, we have the following result:

Lemma 5 The zero α of a polynomial P has order m if and only if

P (j)(α) = 0, j = 0, . . . , m− 1 but P (m)(α) 6= 0. (2.5)

Proof: We first assume α has order m. Then P = (z − α)mQ where Q is a
polynomial with Q(α) 6= 0. This means, for example,

P ′ = m(z−α)m−1Q+(z−α)mQ′ and P ′(α) = m(α−α)m−1Q(α) = 0

unless m = 1. If m = 1, then the conclusion (2.5) of the theorem holds. If
m > 1, we can continue and write

P ′ = (z − α)m−1[mQ+ (z − α)Q′] = (z − α)m−1Q1

where Q1 is a polynomial with Q1(α) 6= 0. Evidently, we can repeat this
argument to find

P (j) = (z − α)m−jQj with Qj(α) 6= 0 for j = 0, . . . , m− 1.

Differentiating once more, we obtain

P (m) = Qm−1 + (z − α)Q′
m−1.

Plugging in z = α into these relations, we get the conclusion (2.5) of the
theorem.

Conversely, once we have established (2.5), it is clear that this conclusion
can hold for at most one integer m. Thus, the integer m for which this
relation holds must be the order of α. 2
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Lucas’ theorem

This result may be viewed as a kind of exercise in understanding the structure
of polynomials and the properties of complex numbers.

Theorem 8 (Lucas’ theorem) Let z0 and w be fixed (determining and
open left half plane in C). If P is a polynomial and Re[(α − z0)iw] > 0,
i.e.,

Im[(α− z0)w] < 0 for all roots α of P ,

then
Im[(β − z0)w] < 0 for all roots β of P ′.

Proof: We start with the product representation

P (z) = an

k
∏

j=1

(z − αj)
mj .

Differentiating, we see

P ′ = an

k
∑

ℓ=1

mℓ(z − αℓ)
mℓ−1

∏

j 6=ℓ

(z − αj)
mj .

From this expression we see

P ′

P
=

k
∑

ℓ=1

mℓ

z − αℓ

=
k
∑

ℓ=1

mℓ
z − αℓ

|z − αℓ|2
.

If β is any complex number in the complementary closed half space, then β
is not a root of P , and the function P ′/P is well-defined and finite valued at
β and has value

P ′(β)

P (β)
=

k
∑

ℓ=1

mℓ
β − αℓ

|β − αℓ|2
.

On the other hand, we also have

Im[(β − z0)w] ≥ 0,

but for each ℓ
β − αℓ = (β − z0)w − (αℓ − z0)w,



2.3. LECTURE 4: § 1.3-4POLYNOMIALS AND RATIONAL FUNCTIONS99

so
Im[(β − αℓ)w] = Im[(β − z0)w] − Im[(αℓ − z0)w] > 0

or
Im
[

(β − αℓ)w
]

< 0 for ℓ = 1, . . . , k.

Therefore, w̄P ′(β)/P (β) satisfies

Im

[

w̄
P ′(β)

P (β)

]

= Im

[

k
∑

ℓ=1

mℓ
w(β − αℓ)

|β − αℓ|2

]

=

k
∑

ℓ=1

Im
[

(β − αℓ)w
]

|β − αℓ|2

< 0.

Therefore, P ′(β) 6= 0, and any root of P ′ must actually lie in the same open
half plane with the roots of P . 2

This means that if one takes the collection of roots {α1, . . . , αk} of a
polynomial P and constructs from them the minimal convex polygon K
containing them, i.e., the convex hull of the roots, then the roots of P ′ also
lie in K.

2.3.2 rational functions

A rational function is a function of the form

R(z) =
P (z)

Q(z)
where P and Q are polynomials.

We can, and do, assume P and Q have no common factors, i.e., no common
zeros. If β ∈ C is a root of Q, then we say R has a pole at z = β, and we
define

R(β) = ∞.

This makes perfectly good sense on the Riemann sphere. That is to say, more
generally,

rational functions are naturally considered with domain and range
in the Riemann sphere.

But there is a question:
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Can we define R(∞)?

The answer is “yes,” but it will take a little work and terminology to do so.
Before we address the definition of R(∞) directly, let us focus on a finite
pole.

First of all, the poles of R have an order, like the order of the zeros of P
or of R. If β is a pole of R, then the order of the pole β is the order of
β as a zero of Q. Let us consider the behavior of R in a neighborhood of a
pole β of order m. The picture we should ultimately have in mind is that of
the mapping R̃ = σ−1 ◦ R ◦ σ. On the other hand, for the mapping R, we
can write

R =
P

Q
=

P

(z − β)mQ1
=

1

(z − β)m

P

Q1

where Q1 is a polynomial with a (finite) nonzero value at z = β. Thus,

R1 =
P

Q1

is a rational function with a finite nonzero value L ∈ C at z = β. As z → β,
the factor 1/(z − β)m satisfies

∣

∣

∣

∣

1

(z − β)m

∣

∣

∣

∣

≥ 1

|z − β| → +∞.

This means for any M > 0, there is some r > 0 such that

|z − β| < r implies

∣

∣

∣

∣

P

Q

∣

∣

∣

∣

=

∣

∣

∣

∣

1

(z − β)m

∣

∣

∣

∣

∣

∣

∣

∣

P

Q1

∣

∣

∣

∣

≥ 2M

|L|
|L|
2

= M.

This implies that for any ǫ > 0 there is some r∗ so that all points ζ ∈ S2 with
0 < d(ζ, σ−1(β)) < r∗ we have

d(R̃(ζ), (0, 0, 1)) < ǫ.

This is a fundamental observation about poles. Before we leave the topic,
let us briefly consider the derivative of a rational function (at a pole). The
quotient rule applies, and we have

R′ =
QP ′ − PQ′

Q2
=

(z − β)mQ1P
′ − PQ′

(z − β)2mQ2
1

.
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On the other hand,

Q′ = m(z − β)m−1Q1 + (z − β)mQ′
1 = (z − β)m−1Q11

where Q11 = mQ1 + (z − β)Q′
1 is a polynomial with Q11(β) 6= 0. Thus,

R′ =
(z − β)Q1P

′ − PQ11

(z − β)m+1Q2
1

has numerator P1 = (z−β)Q1P
′−PQ11 which is a polynomial with P1(β) =

−P (β)Q11(β) 6= 0. We conclude that R′ is a rational function with a pole of
order m+ 1 at β.

Now, let us consider R(∞). In order to see what is happening, we make
a change of variables and look at R(1/ζ) for ζ near ζ = 0. We find

R

(

1

ζ

)

=
P (1/ζ)

Q(1/ζ)
.

This is, of course, a rational function of ζ , and we claim the basic behavior
of R at z = ∞ is determined, first of all, by the relative orders of P and Q.
Let’s say

P =

n
∑

j=0

ajz
j and Q =

m
∑

j=0

bjz
j with n > m.

Then

R

(

1

ζ

)

=
an/ζ

n + an−1/ζ
n−1 + · · · + a1/ζ + a0

bm/ζm + bm−1/ζm−1 + · · ·+ b1/ζ + b0

=
a0ζ

n + a1ζ
n−1 + · · ·+ an−1ζ + an

ζn−m(b0ζm + b1ζm−1 + · · ·+ bm−1ζ + bm)
.

Since an and bm are nonzero, R(1/ζ) has a pole of order n−m at ζ = 0. With
this in mind let’s think about what happens to points near the north pole
under the mapping R̃ = σ−1◦R◦σ, but taking a detour via the reciprocal map
z 7→ ζ = 1/z. Points near the north pole correspond, under the reciprocal
map to points near ζ = 0. We know the images of these points tend to
w = ∞ satisfying an estimate

|R(z)| ≥ c

|ζ |n−m
as ζ → 0
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where c > 0 is a constant. Looking back at the spherical metric (1.48), we
see

d(z,∞) = d(ζ, 0) = cos−1

(

1 − 2|ζ |2
|ζ2|1

)

= cos−1

(

1 − |ζ |2
1 + |ζ |2

)

where ∞ means the north pole (0, 0, 1) ∈ S2.

Nexercise 17 There is a positive constant m such that for ζ near 0 ∈ C,

1

m
d(ζ, 0) ≤ |ζ | ≤ md(ζ, 0).

Hint: 1−x2/2 ≤ cos x ≤ 1−x2/4 and 1−2|ζ |2 ≤ (1−|ζ |2)/(1+|ζ |2) ≤ 1−|ζ |2.

Therefore, we have an estimate

|R(z)| ≥ mc

d(z,∞)n−m
.

By a similar argument, this also implies

d(R(z),∞) ≤ mc

d(z,∞)n−m
.

In such a situation, we say R has a pole of order n −m at z = ∞. We can
summarize our discussion as follows:

Definition-Proposition 3 A rational function R = P/Q has a pole at
infinity of order ℓ > 0 if any one of the following three equivalent conditions
holds.

1. R(1/ζ) has a pole of order ℓ at ζ = 0.

2. deg(P ) − deg(Q) = ℓ.

3. There is a constant C > 0 such that

d(R(z),∞) ≤ C

d(z,∞)ℓ
for z in some neighborhood of ∞.
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Figure 2.2: a convex angle domain

2.3.3 Abel limit theorem

An angle domain (or Stolz angle or sector) with vertex at z1 ∈ C and
reference direction w ∈ S1 is defined by

Am = {z ∈ C : Re[(z − z1)w̄/|z − z1| > m}.
The number m is the cosine of the half angle of the domain. If m > 0, then
the half angle is less than π/2 and the domain is convex. If −1 < m < 0,
then the domain is said to be reentrant. We will only be dealing with convex
sectors here.

The following result allows us to find the value of a convergent series
at a boundary point by taking a limit from within the disk of convergence.
Consequently, it gives a kind of one-sided continuity at the boundary when
the series converges.

Theorem 9 (Abel limit theorem) If f(z) is defined in BR(z0) by

f(z) =
∞
∑

j=0

aj(z − z0)
j

and z1 ∈ ∂BR(z0) satisfies

f(z1) =
∞
∑

j=0

aj(z1 − z0)
j ∈ C,

i.e., the series is convergent at z = z1, then for any ǫ > 0 and m > 0, there
is some δ > 0 such that

|f(z) − f(z1)| < ǫ for all z ∈ Bδ(z1) ∩ Am
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where

Am =

{

z ∈ C : Re

[

(z − z1)(z0 − z1)

|z − z1||z0 − z1|

]

> m

}

.

Proof: We will give the proof in the case z0 = 0 ∈ C, R = 1, and z1 = 1. In
this case, the angle domain becomes

Am =

{

z ∈ C : Re

[

(1 − z)

|1 − z|

]

=
1 − Re(z)

|1 − z| > m

}

.

Figure 2.3: a convex angle domain at the boundary point z1 = 1

Lemma 6 For any µ with 0 < µ < 1, there is some δ1 > 0 such that

1 − |z|
|1 − z| > µm for z ∈ Bδ1(1) ∩Am.

Proof: Let z = x+ iy ∈ Bδ1(1)∩Am and note that for δ1 small we must have
0 < x < 1. Also, the condition

1 − Re(z)

|1 − z| > m

can be written as

1 − x > m
√

(1 − x)2 + y2 which implies y2 <
(1 −m2)

m2
(1 − x)2.

From this, we see

1 − |z| = 1 −
√

x2 + y2 > 1 −
√

x2 +
(1 −m2)

m2
(1 − x)2 = g(x).
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We can compute

g′(x) = −x− (1 −m2)

m2
(1 − x)

√

x2 +
(1 −m2)

m2
(1 − x)2.

Therefore g(z) satisfies

g(1) = 0, and g′(1) = 1.

On the other hand, h(x) = µ(1 − x) satisfies

h(1) = 0 and h′(1) = −µ > −1.

Thus, for some δ1 > 0, we have

h(x) < g(x) for 1 − δ1 < x < δ1.

In particular, for z ∈ Bδ1(1) ∩ Am we have

1 − |z| > g(x) > h(x) = µ(1 − x) > µm|1 − z|. 2

Corollary 1 There is some δ1 > 0 and some M <∞ such that

|1 − z|
1 − |z| < M for z ∈ Bδ1(1) ∩ Am. (2.6)

Proof: M = 1/(µm). 2

Returning to the proof of the Abel limit theorem: Set

f(1) =
∑

aj = α.

Let ǫ > 0. We wish to show |f(z) − f(1)| < ǫ for z ∈ Bδ(1) ∩ Am (for some
δ > 0 yet to be identified).

Let us restrict, for the moment, to zBδ1(1) ∩ Am. As usual, we have the
partial sums

sk = a0 + a1z + z2z
2 + · · ·+ akz

k. (2.7)

Set
bk = a0 + a1 + z2 + · · · + ak.

Then bk − bk−1 = ak. Notice the coefficients ak in (2.7) may be replaced by
means of this relation. Let us modify this a little:

s̃k = sk − α = a0 − α + a1z + z2z
2 + · · · + akz

k;
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b̃k = bk − α = a0 − α+ a1 + z2 + · · ·+ ak.

Then

s̃k = b̃0 + (b̃1 − b̃0)z + (b̃2 − b̃1)z
2 + + · · ·+ (b̃k − b̃k−1)z

k

= b̃0(1 − z) + b̃1(1 − z)z + · · ·+ b̃k−1(1 − z)zk−1 + b̃kz
k

= (1 − z)

k−1
∑

j=0

b̃jz
j + b̃kz

k.

On the other hand, bk → α as k → ∞, so b̃k → 0 as k → ∞. This means the
last term tends to zero, and the series

∑

b̃jz
j has a finite limit:

f(z) − α = (1 − z)

∞
∑

j=0

b̃jz
j for z ∈ B1(0).

Again, since b̃j → 0, there is some N so that

j > N implies |b̃j | <
ǫ

2M

where M comes from Corollary 1. Taking N as an integer, we can now
estimate as follows:

|f(z) − f(1)| = |f(z) − α|

=

∣

∣

∣

∣

∣

(1 − z)
∞
∑

j=0

b̃jz
j

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

(1 − z)
N
∑

j=0

b̃jz
j + (1 − z)

∞
∑

j=N+1

b̃jz
j

∣

∣

∣

∣

∣

≤ |1 − z|
N
∑

j=0

|b̃j | + |1 − z| ǫ

2M

∞
∑

j=N+1

|z|j

≤ |1 − z|
N
∑

j=0

|b̃j | + |1 − z| ǫ

2M

∞
∑

j=0

|z|j

= |1 − z|
N
∑

j=0

|b̃j | + |1 − z| ǫ

2M

1

1 − |z| .
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Since
∑N

j=0 |b̃j | is fixed, there is some δ < δ1 for which

z ∈ Bδ(1) implies |1 − z|
N
∑

j=0

|b̃j| <
ǫ

2
.

Also, from Corollary 1 we know

|1 − z|
1 − |z| < M.

Therefore, we have that for z ∈ Bδ(1) ∩ Am there holds

|f(z) − f(1)| < ǫ

2
+
ǫ

2
= ǫ. 2

Nexercise 18 State and prove a version of Lemma 6 which applies in an
arbitrary ball BR(z0) with an arbitrary boundary point z1 ∈ ∂BR(z0) and a
convex angle domain determined by w = (z0 − z1)/|z0 − z1|.

Nexercise 19 Fill in the details to show Abel’s theorem holds in the general
case for z1 ∈ ∂BR(z0) as stated.

Exercise 4 from Chapter II § 1.4

Our starting point is the example

R(z) =
z − α

1 − ᾱz
.

This function may be found though experimentation (as described above).
Ahlfors also tries to lead us to this function in Chapter I; see Exercise 3 of
§ 1.4 and Exercise 1 of § 1.5. In any case, this problem is still relatively
difficult even with this example. What we should notice is that there is one
root and one pole, and they are related by reflection across the circle S1. The
basic question is

Can there be anything else?

For example, instead of introducing a pole at the reflection 1/ᾱ of the root
α, we might try to see if we could put a second root somewhere and create
“balance.” That is: Is there an example which is a quadratic polynomial

P (z) = a2(z − α1)(z − α2)
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with α1 and α2 both finite roots in C, so that there is a double pole at z = ∞?
Now, maybe we suspect this won’t work, and there should really be a pole
at 1/ᾱ1 (and a another at 1/ᾱ2. (Note that we could, by a rotation, assume
α1 ∈ R or even 0 < α1 < 1. Those might be good assumptions, but it turns
out they won’t be necessary.)

The first crucial observation/trick is that it is a good idea to consider
P (1/z̄). I do not see a compelling reason to look at this function, but except
that we are clearly interested in 1/ᾱj for j = 1, 2, and if you substitute these
values alone into P , then you can’t say much of anything, so considering
P (1/z̄) is a more general approach one might think might give something.
In fact it does.

P (1/z̄) = a2

(

1

z̄
− α1

)(

1

z̄
− α2

)

=
a2

z̄2
(1−α1z̄)(1−α2z̄) =

a2

|z|2 (z−α1|z|2)(z−α2|z|2).

Another thing to notice is that this function has zeros at z = 1/ᾱj for j = 1, 2.
Not poles, but zeros. Actually, it wouldn’t really make sense to think about
this function having poles becuase it’s not a rational function of z.

And maybe that’s the next crucial thing to realize:

This is not an analytic function (or rational function) of z.

If we take the conjugate of the whole thing, however, we get a rational
function of z:

P

(

1

z̄

)

=
ā2

|z|2 (z̄ − ᾱ1|z|2)(z̄ − ᾱ2|z|2).

Now we might be stuck. For lack of something better to do, we might look
at 1/P (z). This is a rational function. It’s analytic/meremorphic. It also
has poles where P had zeros. This too turns out to be a good function to
consider:

1

P (z)
=

1

a2

1

z − α1

1

z − α2
=
ā2(z̄ − ā1)(z̄ − ā1)

|P (z)|2 .

Now, here’s the third thing (and this is a big one): If we look at the two
expressions for these functions above, they are equal when |z| = 1. That is,
they are equal on the entire unit circle. In particular, if we took one and
divided by the other, then the result would be a rational function which was
identically 1 on the whole unit circle. But nonconstant rational functions
can take a particular value, like 1, at most finitely many times. This means
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one of these functions is a constant multiple of the other and, in fact, they
are equal:

P

(

1

z̄

)

=
1

P (z)
.

Cosine

The basic formula for the complex cosine is given by

cos z = cos(x+ iy)

=
1

2

(

ei(x+iy) + e−i(x+iy)
)

= cosh y cosx− i sinh y sin x.

If we begin at the origin and take z = x incerasing along the real axis, the
cosine decreases from w = 1 to w = −1. At each of these points z = 0 and
z = 1, the derivative vanishes and moving z = x further along the axis will
result in a repitition of the values between −1 and 1.

For fixed x with 0 < x < π/2 or π/2 < x < π, we see

(cosh y cos x)2

cos2 x
− (− sinh y sin x)2

sin2 x
= 1.

This means the image of the vertical lines z = x + iy with x 6= kπ/2 fixed
lie along hyperbolic curves centered at the origin with y > 0 corresponding
to Im(cos z) < 0 and y > 0 corresponding to Im(cos z) > 0 as indicated in
Figure 2.4.

The definition of a closed set is that it is the complement of an open
set.

Nexercise 20 If A is connected and A = C1∪C2 where C1 and C2 are closed
disjoint sets (in A), then either C1 = φ or C2 = φ.

Theorem 10 Invervals in R (including R = (−∞,∞)) are connected. If
A ⊂ R is connected, then A is an interval.

Theorem 11 Let U ⊂ C be open. Then:

U is connected if and only if for each z, w ∈ U , there is a polygonal
path Γ ⊂ U with endpoints z and w.
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Figure 2.4: a fundamental domain for cosine

By a polygonal path, we mean a finite collection of concatenated segments

{(1 − t)z1 + tz2 : 0 ≤ t ≤ 1}.

Proof: If U is open and connected, then for any fixed point z ∈ U we consider

U1 = {w ∈ U : w is connected to z by a polygonal path}

and U2 = U\U1.
If w0 ∈ U1, then there is some ǫ > 0 such that Bǫ(w0) ⊂ U . Let Γ =

Γ1 ∪ Γ2 ∪ · · · ∪ Γk be a concatenation of segments in U starting at z and
ending at w0. Concatenating

Γk+1 = {(1 − t)w0 + tw} ⊂ Bǫ(w0)

for any w ∈ Bǫ(0), we see Bǫ(0) ⊂ U1. Therefore, U1 is open.
If there is some w0 ∈ U\U1, then again, there is some ǫ > 0 so that

Bǫ(w0) ⊂ U . If Γ is a polygonal path connecting z to any w ∈ Bǫ(w0), then
concatenating

{(1 − t)w + tw0} ⊂ Bǫ(w0)
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to Γ we have w0 ∈ U (a contradiction). Therefore, Bǫ(w0) ⊂ U2 = U\U1.
This means U2 is open.

Since U = U1∪U2, both U1 and U2 are open, and U1∩U2 = φ (and U1 6= φ
unless U = φ), we must have U2 = φ and U1 = U is path connected.

The fact that (polygonal) path connectedness implies connectedness is
a consequence of the fact that intervals are connected in R. This is less
important for us, so we omit the details. 2

Definition-Proposition 4 Given a set A (a subset of a metric space) and
z0 ∈ A,

1. The union of all connected sets C containing z0 is a connected set.

This is called the component of z0 in A, and may be denoted by
comp(z0).

2. If C is any connected set in A, then either

C ∩ comp(z0) = C or C ∩ comp(z0) = φ.

3. In particular, the set A has a unique decomposition into components.

2.3.4 Chapter III § 2.2 (exercises)

Exercise 1

Give a precise definition of a single valued branch of
√

1 + z+
√

1 − z. Prove
it is analytic.

We can (and should) take a branch of the square root defined on the
Riemann surface

Σ = {ζ ∈ C : −π < arg ζ ≤ π}
with a branch cut along the negative real axis. We can then define

√
1 + z

on p−1(Σ) where p(z) = 1 + z. Since z = p−1(ζ) = ζ − 1, the set p−1(Σ) is

p−1(Σ) = {z ∈ C : −π < arg(z + 1) ≤ π}.

Similarly, We can define
√

1 − z on q−1(Σ) where q(z) = 1 − z. Since z =
q−1(ζ) = 1 − ζ , the set q−1(Σ) is

q−1(Σ) = {z ∈ C : 0 < arg(z − 1) ≤ 2π}.
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Figure 2.5: domains for
√

1 + z (left) and
√

1 − z (right)

These sets are indicated in Figure 2.5 with an indication of how the arguments
are measured for a typical point. The intersection Ω = p−1(Σ) ∩ q−1(Σ) of
these two domains, or if one wishes to have an open set the interior of this
set, gives a set on which the function

f(z) =
√

1 + z +
√

1 − z

has a well-defined branch. The derivative

f ′(z) =
1

2
√

1 + z
− 1

2
√

1 − z

is well-defined on the same region, so f is analytic there. Notice that aside
from the excluded vertices at z = ±1 where the square root requires branch
cuts and is singular, we have f ′(0) = 0.

Nexercise 21 Show that z = 0 is the only interior point where f ′(z) = 0.

This singularity/non-conformality makes the image somewhat difficult to de-
termine/visualize. As Ahlfors says, you can only really understand such a
mapping when it is one-to-one, and this mapping is not one-to-one on Ω.
For example, the segments [−1, 0] and [0, 1] map to the same segment [

√
2, 2]

with 0 7→ 2 and ±1 7→
√

2.
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Careful consideration reveals that the open right half of Ω, that is,

Ω+ = {z = x+ iy : x > 0}\{x ∈ R : x ≥ 1}

maps (one-to-one and onto) the cut hyperbolic region

f(Ω+) = {z = x+ iy : x >
√

2 − y2}\{x ∈ R : x ≥ 2}.

The correspondence is indicated in Figure 2.6. Consider the boundary a,

- 3 - 2 - 1 1 2 3

- 3

- 2

- 1

1

2

3

- 4 - 2 2 4

- 4

- 2

2

4

Figure 2.6: a fundamental domain for the map f

by which we mean approaching the real axis along x > 1 from the first
quadrant. Let us denote such a point by t = t+ ∈ R. To determine f(t), note
that

√
1 + t is simply the real square root, but

√
1 − t is purely imaginary

and determined as follows: We negate t = t+ to attain a point −t+ on the
lower boundary along x < −1. We add 1 to move the end (−1) of the left
branch cut to the origin and take the square root, which in this case, since
we have an argument close to arg(1− t+) is just greater than −π. Therefore,√

1 − t = −i
√
t− 1. Thus, we have a parameterization of this boundary

given by
f(t+) =

√
1 + t− i

√
t− 1 for t > 1.

Setting x =
√

1 + t and y = −
√
t− 1, we see x2−y2 = 2. Thus, the image of

this boundary is along the hyperbola labeled “a” on the right in Figure 2.6.
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We noted above, in our discussion of the cosine function that this region
Ω+ is nicely foliated by hyperbolas which are the image under the cosine
function of the vertical lines x + it where 0 < x < π/2 and t ∈ R; see
Figure 2.4. The domain curve labeled “b” is given by

t 7→ cosx cosh t− i sin x sinh t for some x with 0 < x < π/2 and t < 0.

We can calculate
√

1 + cosx cosh t− i sin x sinh t = r(cos θ + i sin θ)

where

r =
4

√

(1 + cosx cosh t)2 + sin2 x sinh2 t

and

θ = −1

2
tan−1 sin x sinh t

1 + cosx cosh t

with θ satisfying 0 < θ < π/4 since t < 0. Similarly,
√

1 − cosx cosh t+ i sin x sinh t = R(cos Θ + i sin Θ)

where

R =
4

√

(1 − cosx cosh t)2 + sin2 x sinh2 t

and

Θ =
arg(1 − cosx cosh t+ i sin x sinh t)

2

with Θ satisfying −π/2 < Θ < 0 since t < 0. We wish to show the image
points

f(cosx cosh t− i sin x sinh t) =
√

1 + cosx cosh t− i sin x sinh t

+
√

1 − cosx cosh t+ i sin x sinh t

lie along a portion of a hyperbola like the curve marked “b” on the right in
Figure 2.6. Note that

(r cos θ +R cos Θ)2 = r2 cos2 θ + 2rR cos θ cos Θ +R2 cos2 Θ.

Also,

(r sin θ +R sin Θ)2 = r2 sin2 θ + 2rR sin θ sin Θ +R2 sin2 Θ.
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Therefore, this will take a long calculation, but I’ll guess it’s true.

We consider one more pair of boundary curves which together make up
the imaginary axis. The point ti with t > 0 has

√
1 + ti =

4
√

1 + t2(cos θ/2 + i sin θ/2)

where

cos θ =
1√

1 + t2
and sin θ =

t√
1 + t2

.

Also, √
1 − ti =

4
√

1 + t2(cos θ/2 − i sin θ/2).

Therefore, f(ti) is real with Re f(ti) = 2 cos(θ/2) 4
√

1 + t2 > 2.

There is a branch point in the image at f(0) = 2 and the points z ∈ Ω
with Re z < 0 cover the same cut region bounded by the right portion of the
hyperbola again with the branch cut z < −1 having two boundary sides that
correspond to the hyperbolic boundary.

Exercise 2

2.3.5 Chapter III § 3.1 (exercises)

Exercise 1

Show the reflection z 7→ z̄ is not a linear fractional transformation.

The linear fractional transformations are degree one rational functions
and, therefore, analytic/holomorphic at most points. If f(x + iy) = x − iy,
then it’s easy to see the Cauchy-Riemann equations are not satisfied. We
have u = x and v = −y. Therefore,

ux = 1 6= vy = −1.

On the other hand,

ux = −vyand uy = 0 = vx.

These are the version of the Cauchy-Riemann equations for anti-holomorphic
functions, and z 7→ z̄ is anti-holomorphic.
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Exercise 2

T1(z) =
z + 2

z + 3
and T2(z) =

z

z + 1
.

T1(T2(z)) =
z

z+1
+ 2

z
z+1

+ 3
=

3z + 2

4z + 3
.

T2(T1(z)) =
z + 2

z + 2 + z + 3
=

z + 2

2z + 5
.

Setting ζ = T1(z), we find

T−1
1 (ζ) =

−3ζ + 2

ζ − 1
.

Therefore,

T−1
1 (T2(z)) =

−3(z + 2) + 2(z + 3)

z + 2 − (z + 3)
=

−z
−1

= z.

This means T−1
1 and T−1

2 are the same. That doesn’t seem correct. I should
double check that.

Exercise 3

2.3.6 Chapter IV § 1.3 (exercises)

Exercise 1


