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Abstract

Let H be a fixed graph. What can be said about graphs G that have no
subgraph isomorphic to a subdivision of H? Grohe and Marx proved
that such graphs G satisfy a certain structure theorem that is not
satisfied by graphs that contain a subdivision of a (larger) graph H1.
Dvořák found a clever strengthening—his structure is not satisfied by
graphs that contain a subdivision of a graph H2, where H2 has “similar
embedding properties” as H. Building upon Dvořák’s theorem, we
prove that said graphs G satisfy a similar structure theorem. Our
structure is not satisfied by graphs that contain a subdivision of a
graph H3 that has similar embedding properties as H and has the
same maximum degree as H. This will be important in a forthcoming
application to well-quasi-ordering.

1 Introduction

In this paper graphs are finite and are permitted to have loops and parallel
edges. A graph is a minor of another if the first can be obtained from a
subgraph of the second by contracting edges. The cornerstone of the Graph
Minors project of Robertson and Seymour is the following excluded minor
theorem. (The missing definitions are as in [15] and are given at the end of
this section.)

1Partially supported by NSF under Grant No. DMS-1202640. 15 July 2014
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Theorem 1.1 ([15, Theorem (1.3)]). Let L be a graph. Then there exist
integers κ, ρ, ξ > 0 such that every graph G with no L-minor can be con-
structed by clique-sums, starting from graphs that are an ≤ ξ-extension of an
outgrowth by ≤ κ ρ-rings of a graph that can be drawn in a surface in which
L cannot be drawn.

In this paper we are concerned with excluding topological minors. The
first such theorem was obtained by Grohe and Marx.

Theorem 1.2 ([3, Corollary 4.4]). For every graph H there exist integers
ξ, κ, ρ, g,D such that every graph G with no H-subdivision can be constructed
by clique-sums, starting from graphs that are an ≤ ξ-extension of either

(a) a graph of maximum degree D, or

(b) an outgrowth by ≤ κ ρ-rings of a graph that can be drawn in a surface
of genus at most g.

Thus the second outcome includes graphs drawn on surfaces in which H
can be drawn. Dvořák [1, Theorem 3] strengthened the result by restricting
the graphs in (b) to those that can be drawn in a surface Σ in which H can
possibly be drawn, but only “in a way in which H cannot be drawn in Σ”.
We omit the precise statement of Dvořák’s theorem, because it requires a
large amount of definitions that we otherwise do not need. Instead, let us
remark that the meaning of “the way in which H cannot be drawn in Σ” has
to do with the function mf, defined as follows.

Let H be a graph and Σ a surface in which H can be embedded. We
define mf(H,Σ) as the minimum of |S|, over all embeddings of H in Σ and
all sets S of regions of the embedded graph such that every vertex of H
of degree at least four is incident with a region in S. When H cannot be
embedded in Σ, we define mf(H,Σ) to be infinity.

Our objective is to strengthen the theorems of Grohe and Marx, and
Dvořák by reducing the value of the constant D to the maximum degree of
H, which is clearly best possible. However, we are not able to extend the
theorems verbatim; our theorem gives a structure relative to a tangle, as
follows. (Tangles, vortices and segregations are defined in Section 2.)

Theorem 1.3. Let d ≥ 4 and h > 0 be integers. Then there exist integers
θ, κ, ρ, ξ, g ≥ 0 such that the following holds. If H is a graph of maximum
degree d on h vertices, and a graph G does not admit an H-subdivision, then
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for every tangle T in G of order at least θ there exists a set Z ⊆ V (G) with
|Z| ≤ ξ such that either

1. for every vertex v ∈ V (G)− Z there exists (A,B) ∈ T − Z of order at
most d− 1 such that v ∈ V (A)− V (B), or

2. there exists a (T − Z)-central segregation S = S1 ∪ S2 of G − Z with
|S2| ≤ κ such that S has a proper arrangement in some surface Σ of
genus at most g, every society (S1,Ω1) in S1 satisfies |Ω1| ≤ 3, every
society (S2,Ω2) in S2 is a ρ-vortex, and either

(a) H cannot be drawn in Σ, or

(b) H can be drawn in Σ and mf(H,Σ) ≥ 2, and there exists S ′2 ⊆ S2

with |S ′2| ≤ mf(H,Σ)− 1 such that for every vertex v ∈ V (G)−Z
either v ∈ V (S)− Ω̄ for some (S,Ω) ∈ S ′2 or there exists (A,B) ∈
T − Z of order at most d− 1 such that v ∈ V (A)− V (B).

Theorem 1.3 has the following immediate corollary.

Corollary 1.4. Let d ≥ 4 and h > 0 be integers. Then there exist θ and
ξ such that for every graph H of order h and of maximum degree d that
can be drawn in the plane such that every vertex of degree at least four is
incident with the infinite region, and for every graph G, either G admits an
H-subdivision, or for every tangle T of order at least θ in G, there exists
Z ⊆ V (G) with |Z| ≤ ξ such that for every vertex v ∈ V (G)−Z there exists
(A,B) ∈ T − Z of order at most d− 1 such that v ∈ V (A)− V (B).

Proof. Let d ≥ 4 and h be given, let θ and ξ be as in Theorem 1.3, and
let H be as in the statement of the corollary. Then mf(H,Σ) = 1 for every
surface Σ, and hence the second outcome of Theorem 1.3 cannot hold. Thus
the first outcome holds, as desired.

Corollary 1.4 will be used in [6] to prove the following theorem, conjec-
tured by Robertson. In the application it will be important that the order
of the separation in Corollary 1.4 is at most d− 1.

Theorem 1.5. Let k ≥ 1 be an integer, let R denote the graph obtained from
a path of length k by replacing each edge by a pair of parallel edges, and let
G1, G2, . . . be an infinite sequence of graphs such that none of them has an
R-subdivision. Then there exist integers i, j such that 1 ≤ i < j and Gj has
a Gi-subdivision.
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Let us now introduce the missing definitions. Given a subset X of the
vertex-set V (G) of a graph G, the subgraph of G induced by X is denoted
by G[X]. We say that a graph G is the clique-sum of graphs G1, G2 if there
exist V1 = {v1,1, ..., v1,|V1|} ⊆ V (G1), V2 = {v2,1, v2,2, ..., v2,|V2|} ⊆ V (G2) with
|V1| = |V2| such that G1[V1] and G2[V2] are complete graphs, and G can be
obtained from G1 ∪ G2 by identifying v1,i and v2,i for each i and deleting a
subset of edges with both ends in V1∪V2. A graph G′ is a ≤ r-extension of a
graph G if G can be obtained from G′ by deleting at most r vertices of G. A
graph G is an r-ring with perimeter t1, ..., tn if t1, ..., tn ∈ V (G) are distinct
and there is a sequence X1, ..., Xn of subsets of V (G) such that

• X1 ∪ ... ∪Xn = V (G), and every edge of G has both ends in some Xi,

• ti ∈ Xi for 1 ≤ i ≤ n,

• Xi ∩Xk ⊆ Xj for 1 ≤ i ≤ j ≤ k ≤ n,

• |Xi| ≤ r for 1 ≤ i ≤ n.

Let G0 be a graph drawn in a surface Σ, and let ∆1, ...,∆d ⊆ Σ be pairwise
disjoint closed disks, each meeting the drawing only in vertices of G0, and
each containing no vertices of G0 in its interior. For 1 ≤ i ≤ d, let the
vertices of G0 in the boundary of ∆i be t1, ..., tn say, in order, and choose
an r-ring Gi with perimeter t1, ..., tn meeting G0 just in t1, ..., tn and disjoint
from every other Gj; and let G be the union of G0, G1, ..., Gd. We call such
a graph G an outgrowth by d r-rings of G0.

The paper is organized as follows. In Section 2 we review the notions of
tangles and graph minors. In Section 3 we prove an Erdős-Pósa-type result
for “spiders”, trees with one vertex of degree d and all other vertices of degree
one or two. In Section 4 we prove a lemma that will allow us to find a large
well-behaved family of spiders, given a huge number of spiders. In Section 5
we review some theorems related to graphs embedded on a surface, and prove
some other lemmas. In Section 6 we prove Theorem 1.3.

We remark that our proof of Theorem 1.3 uses the Graph Minors theory
developed by Robertson and Seymour and is inspired by ideas in the proof of
Dvořák’s theorem [1]. We would like to acknowledge that we have benefited
from conversations with Paul Wollan, and that the paper is based on part of
the PhD dissertation [5] of the first author.
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2 Tangles and minors

In this section, we review some theorems about tangles and graph minors.
A separation of a graph G is a pair (A,B) of subgraphs with A ∪B = G

and E(A ∩B) = ∅, and the order of (A,B) is |V (A) ∩ V (B)|. A tangle T in
G of order θ is a set of separations of G, each of order less than θ such that

(T1) for every separation (A,B) of G of order less than θ, either (A,B) ∈ T
or (B,A) ∈ T ;

(T2) if (A1, B1), (A2, B2), (A3, B3) ∈ T , then A1 ∪ A2 ∪ A3 6= G;

(T3) if (A,B) ∈ T , then V (A) 6= V (G).

The notion of tangle was first defined by Roberson and Seymour in [10].
(T1), (T2) and (T3) are called the first, second and third tangle axiom,
respectively.

Given a graph H, an H-minor of a graph G is a map α with domain
V (H) ∪ E(H) such that the following hold.

• α(h) is a nonempty connected subgraph of G, for every h ∈ V (H).

• If h1 and h2 are different vertices of H, then α(h1) and α(h2) are
disjoint.

• For each edge e of H with ends h1, h2, α(e) is an edge of G with one
end in α(h1) and one end in α(h2); furthermore, if h1 = h2, then
α(e) ∈ E(G)− E(α(h1)).

• If e1, e2 are two different edges of H, then α(e1) 6= α(e2).

We say that G contains an H-minor if such a function α exists. For every
h ∈ V (H), α(h) is called a branch set of α. A tangle T in G controls an
H-minor α if α is an H-minor such that there does not exist (A,B) ∈ T of
order less than |V (H)| and h ∈ V (H) such that V (α(h)) ⊆ V (A).

The following theorem offers a way to obtain a tangle in a graph from a
minor.

Theorem 2.1 ([10, Theorem (6.1)]). Let G and H be graphs. Let T ′ be
a tangle in H of order θ ≥ 2. If G admits an H-minor, and T is the
set of separations (A,B) of G of order less than θ such that there exists
(A′, B′) ∈ T ′ with E(A′) = E(A) ∩ α(E(H)), then T is a tangle in G of
order θ.
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The tangle T in Theorem 2.1 is called the tangle induced by T ′. We say
that T ′ is conformal with a tangle T ′′ in G if T ⊆ T ′′.

A society is a pair (S,Ω), where S is a graph and Ω is a cyclic permutation
of a subset Ω̄ of V (S). Let ρ be a nonnegative integer. A society (S,Ω) is a
ρ-vortex if for all distinct u, v ∈ Ω̄, there do not exist ρ+ 1 mutually disjoint
paths of S between I ∪ {u} and J ∪ {v}, where I is the set of vertices in Ω̄
after u and before v in the natural order, and J is the set of vertices in Ω̄
after v and before u.

A segregation of a graph G is a set S of societies such that the following
hold.

• S is a subgraph of G for every (S,Ω) ∈ S, and
⋃
{S : (S,Ω) ∈ S} = G.

• For every distinct (S,Ω) and (S ′,Ω′) ∈ S, V (S ∩ S ′) ⊆ Ω̄ ∩ Ω
′

and
E(S ∩ S ′) = ∅.

We write V (S) =
⋃
{Ω̄ : (S,Ω) ∈ S}. If T is a tangle in G, a segregation S

of G is T -central if for every (S,Ω) ∈ S, there is no (A,B) ∈ T of order at
most half of the order of T with B ⊆ S.

A surface is a nonnull compact connected 2-manifold without boundary.
Let Σ be a surface and S = {(S1,Ω1), ..., (Sk,Ωk)} a segregation of G. An
arrangement of S in Σ is a function α with domain S ∪ V (S), such that the
following hold.

• For 1 ≤ i ≤ k, α(Si,Ωi) is a closed disk ∆i ⊆ Σ, and α(x) ∈ ∂∆i for
each x ∈ Ωi.

• For 1 ≤ i ≤ k, if x ∈ ∆i ∩∆j, then x = α(v) for some v ∈ Ωi ∩ Ωj.

• For all distinct x, y ∈ V (S), α(x) 6= α(y).

• For 1 ≤ i ≤ k, Ωi is mapped by α to the natural order of α(Ωi)
determined by ∂∆i.

An arrangement is proper if ∆i ∩ ∆j = ∅ for all 1 ≤ i < j ≤ k such that
|Ωi|, |Ωj| > 3.

Given a graph H, an H-subdivision is a pair of functions (πV , πE) such
that the following hold.

• πV : V (H)→ V (G) is an injective function.
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• πE maps loops of H to cycles in G and maps other edges of H to paths
in G such that πE(e) contains πV (v), and πE(e′) has the ends πV (x)
and πV (y) for every loop e with end v and every edge e = xy ∈ E(H).

• If f1, f2 are two different edges in H, then πE(f1) and πE(f2) are inter-
nally vertex-disjoint.

We say that G admits an H-subdivision if such a pair of functions (πV , πE)
exists.

3 Finding disjoint spiders

First, we introduce a lemma proved by Robertson and Seymour [13].

Lemma 3.1 ([13, Theorem (5.4)]). Let G be a graph, and let Z be a subset
of V (G) with |Z| = ξ. Let k ≥ d3

2
ξe, and let α be a Kk-minor in G. If

there is no separation (A,B) of G of order less than |Z| such that Z ⊆ V (A)
and A ∩ α(h) = ∅ for some h ∈ V (Kk), then for every partition (Z1, ..., Zn)
of Z into non-empty subsets, there are n connected graphs T1, ..., Tn of G,
mutually disjoint and V (Ti) ∩ Z = Zi for 1 ≤ i ≤ n.

A d-spider with head v is a tree such that every vertex other than v in
the tree has degree at most 2, and the degree of v is d. A leaf is a vertex of
degree one. Let G be a graph, and let S, Y be subsets of V (G). A d-spider
from S to Y is a d-spider with head v ∈ S whose leaves are in Y .

Let G be a graph and T a tangle in G. We say that a subset X of V (G) is
free if there exists no (A,B) ∈ T of order less than |X| such that X ⊆ V (A).

Lemma 3.2. Let G be a graph and H be a graph on h vertices of maximum
degree d. Let t ≥ d3hd

2
e. Let T be a tangle of order at least hd in G that

controls a Kt-minor. If there exist pairwise disjoint sets X1, X2, ..., Xh such
that for 1 ≤ i ≤ h the set Xi consists of a vertex of G and d−1 of its neighbors
and

⋃h
i=1Xi is free with respect to T , then G has an H-subdivision.

Proof. Let Z =
⋃h
i=1 Xi, and let α be a Kt-minor controlled by T . Suppose

that there exists a separation (A,B) of G of order less than |Z| such that
Z ⊆ V (A) and A ∩ α(v) = ∅ for some v ∈ V (Kt). By the first tangle axiom,
either (A,B) ∈ T or (B,A) ∈ T . Since Z is free, (B,A) ∈ T . But it is
a contradiction since t ≥ hd and T controls α. Therefore, there does not

7



exist a separation (A,B) of G of order less than |Z| such that Z ⊆ V (A) and
A ∩ α(v) = ∅ for some v ∈ V (Kt).

Denote V (H) by {u1, u2, ..., uh} and E(H) by {e1, e2, ..., e|E(H)|}. Since
the maximum degree of H is at most d, there exist Z0 ⊆ Z and a partition
(Z1, Z2, ..., Z|E(H)|) of Z −Z0 such that for every 1 ≤ ` ≤ |E(H)|, Z` consists
of two distinct vertices where one is in Xi and one is in Xj, where the ends of
e` are ui and uj. By Lemma 3.1, there exist |E(H)| pairwise disjoint paths in
G′ − Z0 connecting the two vertices of each part of (Z1, Z2, ..., Z|E(H)|). This
creates a subdivision of H.

Theorem 3.3 ([8, Theorem 6]). Let G be a graph and T a tangle in G of
order θ. Let {Xj ⊆ V (G) : j ∈ J} be a family of subsets of V (G) indexed by
J . Let d, k be an integer with θ ≥ (k+d)d+1 +d. If |Xj| = d for every j ∈ J ,
then there exists a set J ′ ⊆ J satisfying the following.

1. For all j 6= j′ ∈ J ′, Xj and Xj′ are disjoint.

2.
⋃
j∈J ′ Xj is free.

3. If |
⋃
j∈J ′ Xj| ≤ k, then there exists Z with |Z| ≤ (k + d)d+1 satisfying

that for all j ∈ J ′, either Xj ∩ Z 6= ∅, or Xj is not free in T − Z.

Theorem 3.4. Let h and d be positive integers. Let G be a graph, and let
S be a subset of vertices of degree at least d in G. Let T be a tangle in G of
order θ. If θ ≥ (hd)d+1 + d, then either

1. there exist h vertices v1, v2, ..., vh ∈ S and h pairwise disjoint subsets
X1, X2, ..., Xh of V (G), where Xi consists of vi and d− 1 neighbors of
vi for each 1 ≤ i ≤ h, such that

⋃h
i=1Xi is free in T , or

2. there exists a set C ⊆ V (G) with |C| ≤ (hd)d+1 such that for every
v ∈ S − C, there exists (A,B) ∈ T − C of order less than d such that
v ∈ V (A)− V (B).

Proof. Let {Xj : j ∈ J} be the collection of the d-element subsets consisting
of one vertex vj in S and d − 1 of its neighbors. Applying Theorem 3.3 by
further taking k = (h− 1)d, then there exists J ′ ⊆ J such that Xj ∩Xj′ = ∅
for every distinct j, j′ in J ′, and

⋃
j∈J ′ Xj is free. Furthermore, if |

⋃
j∈J ′ Xj| ≤

(h − 1)d, there exists C ⊆ V (G) with |C| ≤ (hd)d+1 satisfying that for all
j ∈ J ′, either Xj ∩ C 6= ∅, or Xj is not free in T − C.
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Observe that if |
⋃
j∈J ′ Xj| > (h−1)d, then |J ′| ≥ h and the first statement

holds. So we assume that |
⋃
j∈J ′ Xj| ≤ (h− 1)d, and we shall prove that the

second statement of this theorem holds. Let v ∈ S − C. Suppose that there
does not exist (A,B) ∈ T −C of order less than d such that v ∈ V (A)−V (B).
Let U be the collection of those Xj that is disjoint from C and consists of
v and d − 1 neighbors of v. For every member Xj of U , we define the rank
of Xj to be the minimum order of a separation (A,B) ∈ T − C such that
Xj ⊆ V (A). As none of member of U is free, the rank of each member of
U is at most d − 1. Let r be the maximum rank of a member of Xj, and
let X be a member of U of rank r. Let (A,B) ∈ T − C of order r such
that X ⊆ V (A), and subject to that, |V (B)− V (A)| is as small as possible.
By the assumption, v ∈ V (A) ∩ V (B) and r ≤ d − 1. On the other hand,
there exist r disjoint paths from X − {v} to V (B), as v is adjacent to all
vertices in X − {v}. We denote these r disjoint paths by P1, P2, ..., Pr, and
denote the end of Pi in X − {v} by ui for 1 ≤ i ≤ r. As v ∈ V (A) ∩ V (B)
and |V (A) ∩ V (B)| = r, v ∈ V (Pi) for some 1 ≤ i ≤ r. Without loss of
generality, we may assume that v ∈ V (Pr). In addition, v is adjacent to a
vertex u in V (B) − V (A), otherwise, the rank of X is smaller than r. As
(X−{ur})∪{u} is a member of U , its rank is at most r. Let (A′, B′) ∈ T −C
be a separation of order at most r such that (X − {ur}) ∪ {u} ⊆ V (A′).
X ⊆ V (A ∪ A′) and u ∈ (V (B)− V (A))− (V (B ∩ B′)− V (A ∪ A′)), so the
order of (A∪A′, B∩B′) is at least r+1 by the choice of (A,B). It implies that
the order of (A∩A′, B ∪B′) is at most r− 1. Notice that v ∈ V (A′)∩V (B′)
by the assumption, so ((A ∩ A′) − {v}, (B ∪ B′) − {v}) is a separation of
G− {v} of order less than r− 1. But P1, P2, ..., Pr−1 are r− 1 disjoint paths
from V (A ∩A′)− {v} to V (B ∪B′)− {v} in G− {v}, a contradiction. This
proves the second statement.

We need the following variation of Theorem 3.4. A version for edge-
disjoint spiders was proved in [7] and [8, Theorem 6].

Theorem 3.5. Let G be a graph, and let X, Y be disjoint subsets of V (G).
Let h, d be nonnegative integers. Then either there exist h disjoint d-spiders
from X to Y , or there exists C ⊆ V (G) with |C| ≤ 3

2
(hd)d+1 + d

2
+ 1 such

that every d-spider from X to Y intersects C.

Proof. Note that for every subset C of Y such that |Y −C| ≤ d−1, every d-
spider fromX to C intersects C. So we may assume that |Y | ≥ 3

2
((hd)d+1+d),

otherwise we are done. Let G′ be the graph obtained from G by adding edges
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such that Y induced a clique in G′. As every clique of size k contains a tangle
of order b2k/3c, G′[Y ] contains a tangle of order (hd)d+1 + d. And Y is a
minor of G′, so G′ contains a tangle T of order (hd)d+1 + d induced by G′[Y ]
by Theorem 2.1 such that Y ⊆ V (B) for every (A,B) ∈ T . Let {Xj : j ∈ J}
be the collection of d-element subsets of V (G) such that every Xj consisting
of one vertex x in X and d− 1 neighbors of x. By Theorem 3.3, there exists
J ′ ⊆ J such that Xj ∩ Xj′ = ∅ for every distinct j, j′ in J ′, and

⋃
j∈J ′ Xj

is free. Furthermore, if |
⋃
j∈J ′ Xj| ≤ (h − 1)d, there exists C ⊆ V (G) with

|C| ≤ (hd)d+1 satisfying that for all j ∈ J ′, either Xj ∩ C 6= ∅, or Xj is not
free in T − Z.

First, assume that |
⋃
j∈J ′ Xj| > (h−1)d, so |J ′| ≥ h. Let {1, 2, ..., h} ⊆ J ′,

and let xj be a vertex in Xj∩X for 1 ≤ j ≤ h. Suppose that there do not exist

dh disjoint paths from
⋃h
j=1 Xj to Y in G′. Then there exists a separation

(A,B) of G′ of order less than dh such that
⋃h
j=1 Xj ⊆ V (A) and Y ⊆ V (B).

Since Y ⊆ V (B), we know that (A,B) ∈ T . But it implies that
⋃h
j=1Xj is

not free, a contradiction. Hence, there exist dh disjoint paths from
⋃h
j=1Xj

in G′. That is, there exist h disjoint d-spiders from xj to Y in G′. We are
done in this case since every d-spiders from X to Y in G′ contains a d-spider
from X to Y in G as a subgraph.

So we may assume that |
⋃
j∈J ′ Xj| ≤ (h − 1)d, there exists C ⊆ V (G)

with |C| ≤ (hd)d+1 satisfying that for all j ∈ J ′, either Xj ∩ C 6= ∅, or Xj is
not free in T − C. Let v ∈ V (G)− C, and let D be a d-spider from v to Y
in G. Note that D is also a d-spider from v to Y in G′. Suppose that D is
disjoint from C. So D contains some Xj such that v ∈ Xj and Xj ∩ C = ∅.
Since Xj is not free in T −C, there exists (A,B) ∈ T −C of order less than
d such that Xj ⊆ V (A) and Y −C ⊆ V (B). It is a contradiction since there
exist d disjoint paths in D from V (A) to V (B). This proves that D intersects
C.

4 Taming spiders

We say that (S,Ω,Ω0) is a neighborhood if S is a graph and Ω,Ω0 are
cyclic permutations with Ω̄,Ω0 ⊆ V (S). A neighborhood (S,Ω,Ω0) is rural if
S has a drawing Γ in the plane without crossings and there are disks ∆0 ⊆ ∆
such that

• Γ uses no point outside ∆ and none in the interior of ∆0, and
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• Ω̄ are the vertices in Γ ∩ ∂∆, and Ω0 are the vertices in Γ ∩∆0, and

• the cyclic permutations of Ω̄ and Ω0 coincide with the natural cyclic
order on ∆ and ∆0.

In this case, we say that (Γ,∆,∆0) is a presentation of (S,Ω,Ω0). For a fixed
presentation (Γ,∆,∆0) of a neighborhood (S,Ω,Ω0) and an integer s ≥ 0, an
s-nest for (Γ,∆,∆0) is a sequence (C1, C2, ..., Cs) of pairwise disjoint cycles
of S such that ∆0 ⊆ ∆1 ⊆ ... ⊆ ∆s ⊆ ∆, where ∆i is the closed disk in the
plane bounded by Ci.

If (S,Ω,Ω0) is a neighborhood and (S0,Ω0) is a society, then (S ∪ S0,Ω)
is a society and we call this society the composition of the society (S0,Ω0)
with the neighborhood (S,Ω,Ω0). A society (S,Ω) is s-nested if it is the
composition of a society with a rural neighborhood that has an s-nest for
some presentation of it.

A subgraph F of a rural neighborhood (S,Ω,Ω0) is perpendicular to an
s-nest (C1, C2, ..., Cs) if for every component P of F

• P is a path with one end in Ω̄ and the other in Ω0, and

• P ∩ Ci is a path for all i = 1, 2, ..., s.

We shall use the following theorem, which was proved in [4], to prove the
main theorem of this section. We present a simplified restatement of it.

Theorem 4.1 ([4, Theorem 10.3]). For every three positive integers s, k, c,
there exists an integer s′(s, k, c) such that for every s′-nested society (S,Ω)
that is a composition of a society (S0,Ω0) with a rural neighborhood with a s′-
nest, and for every union of c pairwise disjoint k-spiders F0 from V (S0)−Ω0

to Ω̄, there exists a union of c pairwise disjoint k-spiders F in (S,Ω) from the
set of the heads of F0 to the set of leaves of F0 such that (S,Ω) can be expressed
as a composition of some society with a rural neighborhood (S ′,Ω,Ω′) that has
a presentation with an s-nest (C1, C2, ..., Cs) such that S ′∩F is perpendicular
to (C1, C2, ..., Cs).

Now, we are ready to prove the main theorem of this section.

Theorem 4.2. For every positive integers d ≥ 3, ρ, k and s, there exist inte-
gers s′ = s′(k, d, s, ρ) and k′ = k′(k, d, ρ) such that for every s′-nested society
(S,Ω) that is a composition of a ρ-vortex (S0,Ω0) with a rural neighborhood
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that has an s′-nest, and for every k′ pairwise disjoint d-spiders D1, D2, ..., Dk′

from V (S0)−Ω0 to Ω̄, there exist k pairwise disjoint d-spiders D′1, D
′
2, ..., D

′
k

from V (S0) to Ω̄ such that the following hold.

1. (S,Ω) can be expressed as a composition of a society (S ′0,Ω
′) with a

rural neighborhood (S ′,Ω,Ω′) that has a presentation with an s-nest
(C1, C2, ..., Cs) such that D′i ∩ S ′ is perpendicular to (C1, C2, ..., Cs) for
every 1 ≤ i ≤ k.

2. For every 1 ≤ i ≤ k, the head of D′i is the head of Di′ for some
1 ≤ i′ ≤ k′.

3. For every 1 ≤ i ≤ k, every leaf of D′i is a leaf of D1 ∪D2 ∪ ... ∪Dk′.

4. For every 1 ≤ i ≤ k, there exists an interval Ii of Ω̄ containing all
leaves of D′i such that Ii is disjoint from Ij for every j 6= i.

Proof. Let s′(k, d, s, ρ) = s′4.1(s, d, 3k(ρ + 1)) and k′(k, d, ρ) = 3k(ρ + 1),
where s′4.1 is the function s′ mentioned in Theorem 4.1. By Theorem 4.1,
there exist 3k(ρ+1) pairwise disjoint d-spiders D′1, D

′
2, ..., D

′
k′ from the set of

the heads of D1, D2, ..., Dk′ to the union of the set of leaves of D1, D2, ..., Dk′

such that (S,Ω) can be expressed as a composition of some society with
a rural neighborhood (S ′,Ω,Ω′) that has a presentation with an s′-nest
(C1, C2, ..., Cs) such that D′i ∩ S ′ is perpendicular to (C1, C2, ..., Cs) for ev-
ery 1 ≤ i ≤ k. For every 1 ≤ i ≤ k′, let Ii be a minimum interval of Ω̄
containing all leaves of Di. Then it is sufficient to prove that there exist
1 ≤ i1 < i2 < ... < ik ≤ k′ such that are Ii1 , Ii2 , ..., Iik are pairwise disjoint.
Suppose that there do not exist such k pairwise disjoint intervals. Then the
intersection graph of I1, I2, ..., Ik′ does not contain an independent set of size
k, so it contains a clique of size at least k′/(k−1) > 3(ρ+1), as every interval
graph is perfect.

Let Ω0 = {v1, v2, ..., v|Ω0|} in order. Since (S0,Ω0) is a ρ-vortex, by The-
orem 8.1 in [9], there exists a path-decomposition (t1t2...t|Ω0|,X ) of S0 such

that |Xti ∩ Xtj | ≤ ρ for every 1 ≤ i < j ≤ |Ω0| and vi ∈ Xti for every

1 ≤ i ≤ |Ω0|. Since S−S0 is a plane graph, for every i 6= j, if Ii intersects Ij,
then there exists an integer a such that D′i ∩D′j ∩Xa ∩Xa+1 6= ∅. Let G be
the graph obtained from S by adding edges such that G[Xi∩Xi+1] is a clique,
for every 1 ≤ i ≤ |Ω0| − 1. Recall that the intersection graph of I1, I2, ..., Ik′
has a clique of size at least 3(ρ+ 1). Therefore, G contains a K3(ρ+1)-minor,
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where each branch set is D′i for some i. Without loss of generality, we may
assume that the branch set of the K3(ρ+1)-minor is D′1, D

′
2, ..., D

′
3(ρ+1).

Observe that D′i ∩Xtj is connected in G for every 1 ≤ i ≤ 3(ρ + 1) and

1 ≤ j ≤ |Ω0|. Let G′ be the graph obtained from G by deleting vertices not
in D′1∪D′2∪...∪D′3(ρ+1) and then contracting each component of D′i∩(S−S0)

into a vertex and contracting D′i∩Xtj into a vertex, for every 1 ≤ i ≤ 3(ρ+1)

and 1 ≤ j ≤ |Ω0|. Note that G′ contains a K3(ρ+1)-minor, so the tree-width
of G′ is at least 3ρ. On the other hand, G′ can be written as G1 ∪ G2 such
that V (G1 ∩ G2) ⊆ Ω0, and G1 is an outerplanar graph that can be drawn
in the plane such that the vertices of V (G1 ∩ G2) are in the boundary of a
region in order, and G2 has a path decomposition of width less ρ such that
each bag contains a vertex in V (G1 ∩G2) in order. By Lemma 8.1 in [2], G′

has tree-width less than 3ρ, a contradiction. This proves the theorem.

5 Theorems on surfaces

In this section, we recall some results about graphs embedded in surfaces.
A surface is a compact 2-manifold. An O-arc is a subset homeomorphic to

a circle, and a line is a subset homeomorphic to [0, 1]. Let Σ be a surface. For
every subset ∆ of Σ, we denote the closure of ∆ by ∆̄, and the boundary of
∆ by ∂∆. A drawing Γ in Σ is a pair (U, V ), where V ⊆ U ⊆ Σ, U is closed,
V is finite, U − V has only finitely many arc-wise connected components,
called edges, and for every edge e, either ē is a line whose set of ends in ē∩V ,
or ē is an O-arc and |ē∩V | = 1. The components of Σ−U are called regions.
The members of V are called vertices. For a drawing Γ = (U, V ), we write
U = U(Γ), V = V (Γ), and E(Γ), R(Γ) are defined to be the set of edges and
the set of regions, respectively. The sets {v}, for v ∈ V (Γ), the sets of edges
and regions of Γ are called the atoms of Γ. If v is a vertex of a drawing Γ and
e is an edge or a region of Γ, we say that e is incident with v if v is contained
in the closure of e. Note that the incidence relation between V (Γ) and E(Γ)
defines a graph, and we say that Γ is a drawing of G in Σ if G is defined by
this incident relation. In this case, we say that G is embeddable in Σ, or G
can be drawn in Σ. A drawing is 2-cell if Σ is connected and every region is
an open disk.

Let Γ be a 2-cell drawing in a surface Σ. We say that a drawing K in Σ
is a radial drawing of Γ if it satisfies the following conditions.
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• U(Γ) ∩ U(K) = V (Γ) ⊆ V (K).

• Each region r of Γ contains a unique vertex of K.

• K is a drawing of a bipartite graph, and (V (Γ), V (K) − V (Γ)) is a
bipartition of it.

• For every v ∈ V (Γ), the edges of K ∪ Γ incident with v belong alter-
nately to Γ and to K (in their cyclic order around v).

Let Σ be a surface, and let Γ be a drawing in Σ. A subset Z of Σ is
Γ-normal if Z ∩ U(Γ) ⊆ V (Γ). If Σ is connected and not a sphere, we say
that Γ is θ-representative if |F ∩ V (Γ)| ≥ θ for every non-null-homotopic
Γ-normal O-arc F in Σ.

Let Σ be a surface, and let Γ be a drawing of a graph G in Σ. A tangle in
Γ is a tangle in G. A tangle T in Γ of order θ is said to be respectful (towards
Σ if Σ is connected and for every Γ-normal O-arc F in Σ with |F ∩V (Γ)| < θ,
there is a closed disk ∆ ⊆ Σ with ∂∆ = F such that (Γ∩∆,Γ∩Σ−∆) ∈ T .
It is clear that ∆ has to be unique, and we write ∆ = ins(F ); the function
ins is called the inside function of T . Assume that Γ is 2-cell, and let K be
the radial drawing of Γ. If W is a closed walk of K, we define K|W to be the
subdrawing of K formed by the vertices and the edges in W . If the length
of W is less than 2θ, then we define ins(W ) to be the union of U(K|W ) and
ins(C), taken over all cycles C of K|W . For every two atoms a, b of K, define
a function mT (a, b) as follows:

• if a = b, then mT (a, b) = 0;

• if a 6= b and a, b ⊆ ins(W ) for some closed walk W of K of length
less than 2θ, then mT (a, b) = min 1

2
|E(W )|, taking over all such closed

walks W ;

• otherwise, mT (a, b) = θ.

Note that K is bipartite, so mT is integral. In addition, for every atom c of
Γ, we define a(c) to be an atom of K such that

• a(c) = c if c ⊆ V (Γ);

• a(c) is the region of K including c if c is an edge of Γ;

• a(c) = {v}, where v is the vertex of K in c, if c is a region of Γ.
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For every atoms b, c of Γ, we define mT (b, c) = mT (a(b), a(c)). The following
is a consequence of Theorem 9.1 of [11].

Theorem 5.1. Let Σ be a surface, and let Γ be a 2-cell drawing of a graph
in Σ. If T is a respectful tangle in Γ, then mT is a metric on the atoms of
G.

The following theorem is useful.

Theorem 5.2 ([12, Theorem (1.1)]). Let Σ be a surface, and let Γ be a 2-cell
drawing of a graph in Σ with E(Γ) 6= ∅. Let T be a respectful tangle of order
θ in Γ, and let K be a radial drawing of Γ. Then (A,B) ∈ T if and only
if for every edge e of A, there exists a cycle C of K with V (C) ∩ V (Γ) ⊆
V (A) ∩ V (B) and with e ⊆ ins(C).

Theorem 5.3. Let Σ be a surface, and let Γ be a 2-cell drawing of a graph in
Σ with E(Γ) 6= ∅. Let T be a respectful tangle of order θ in Γ. Let x ∈ V (Γ).
If (A,B) ∈ T is a separation of Γ such that x ∈ V (A) − V (B) and subject
to that, A is minimal, then mT (x, y) ≤ |V (A) ∩ V (B)| for every y ∈ V (A).

Proof. Let y ∈ V (A) be a vertex different from x. Since (A,B) ∈ T is a
separation with the minimal A such that x ∈ V (A) − V (B), there exists a
path P in A from x to y internally disjoint from V (B). Let e be the edge
in P incident with x. By Theorem 5.2, there exists a cycle C of the radial
drawing K of Γ with V (C) ∩ V (Γ) ⊆ V (A) ∩ V (B) and with e ⊆ ins(C).
So x ∈ ins(C). If y 6∈ ins(C), then C intersects P at an internal vertex of
P . However, V (C) ∩ V (Γ) ⊆ V (A) ∩ V (B). This implies that some internal
vertex of P is in V (A)∩V (B), a contradiction. Hence, y ∈ ins(C). Therefore,
mT (x, y) ≤ |V (A) ∩ V (B)|.

Theorem 5.4 ([11, Theorem (8.12)], [12, Theorem (1.2)]). Let T be a re-
spectful tangle of order θ, where θ ≥ 2, in a 2-cell drawing Γ in a connected
surface Σ. If c is an atom in Γ, then there exists an edge e of Γ such that
mT (c, e) = θ.

Let Γ be a 2-cell drawing in a surface Σ, and let T be a respectful tangle
of order θ in Γ. Let x be an atom of Γ. A λ-zone around x is an open disk
∆ in Σ with x ⊆ ∆, such that ∂∆ is an O-arc, ∂∆ ⊆ Γ, mT (x, y) ≤ λ for
every atom y of G with y ⊆ ∆̄, and if x ∈ E(G), then λ ≥ 2. A λ-zone is a
λ-zone around some atom.
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Let ∆ be a λ-zone. Note that U(Γ) ∩ ∂∆ is a cycle, and the drawing
Γ′ = Γ ∩ (Σ−∆) is 2-cell in Σ. We say that Γ′ is the drawing obtained from
Γ by clearing ∆. We say that T ′ is a tangle of order θ − 4λ− 2 obtained by
clearing ∆ if T ′ is a tangle in Γ′ of order θ − 4λ− 2, and

• T ′ is respectful with a metric mT ′ , and

• T ′ is conformal with T , and

• if x, y are atoms of Γ and x′, y′ are atoms of Γ′ with x ⊆ x′ and y ⊆ y′,
then mT (x, y) ≥ mT ′(x

′, y′) ≥ mT (x, y)− 4λ− 2.

Theorem 5.5 ([12, Theorem (7.10)]). Let ∆ be a λ-zone. If θ ≥ 4λ + 3,
then there exists a unique respectful tangle of order θ − 4λ − 2 obtained by
clearing ∆.

Theorem 5.6 ([14, Theorem (9.2)]). Let Γ be a 2-cell drawing in a surface
Σ, and let T be a respectful tangle in Γ of order θ. Let x be an atom of Γ,
and λ an integer with 2 ≤ λ ≤ θ − 4. Then there exists a (λ + 3)-zone ∆
around x such that x′ ⊆ ∆ for every atom x′ of Γ with mT (x, x′) ≤ λ.

Lemma 5.7. Let Γ be a 2-cell drawing in a surface, z an atom, and T a
respectful tangle in Γ of order θ. Let λ be a nonnegative integer, and let C
be the cycle of the boundary of a λ-zone around z. If θ ≥ λ + 8, then there
exists a (λ + 7)-zone Λ around z such that the cycle bounding Λ is disjoint
from C.

Proof. For every atom x of Γ, let Λx be a 4-zone around x containing all
atoms y with mT (x, y) ≤ 1, and let ∆x be the closure of Λx, and let Cx be the
boundary cycle of ∆x. For every v ∈ V (C), since every region incident with v
has distance 1 from v, v is an interior point of ∆v. Let ∆ = ∆′∪

⋃
v∈V (C) ∆v,

where ∆′ is the open disk with the boundary C. So V (C) are interior points
of ∆. By the triangle-inequality, for every v ∈ V (C) and for every vertex u
in ∆v, mT (z, u) ≤ λ + 4. Therefore, there exists a (λ + 7)-zone Λ around z
that contains ∆ by Theorem 5.6. Since any vertex in C is an interior point
of ∆, it is an interior point of Λ, so C is disjoint from the cycle that bounds
Λ.

Let Σ be a connected surface, and let ∆1, ...,∆t be pairwise disjoint closed
disks in Σ. Let Γ be a drawing in Σ such that U(Γ) ∩∆i = V (Γ) ∩ ∂∆i for
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1 ≤ i ≤ t. Let Z =
⋃t
i=1 V (Γ)∩ ∂∆i. We say that a partition (Z1, Z2, ..., Zp)

of Z satisfies the topological feasibility condition if there exist pairwise disjoint
disks D1, D2, ..., Dp in Σ such that Dj ∩ (

⋃t
i=1 ∆i) = Zj for 1 ≤ j ≤ p.

Theorem 5.8 ([12, Theorem (3.2)]). For every connected surface Σ and all
integers t ≥ 0 and z ≥ 0, there exists a positive integer θ ≥ z such that the
following is true. Let ∆1, ...,∆t be pairwise disjoint closed disks in Σ, and let
Γ be a 2-cell drawing in Σ such that U(Γ)∩∆i = V (Γ)∩∂∆i for 1 ≤ i ≤ t. Let
|Z| ≤ z, where Z =

⋃t
i=1 V (Γ) ∩ ∂∆i, and let (Z1, Z2, ..., Zp) be a partition

of Z satisfying the topological feasibility condition. Let T be a respectful
tangle of order at least θ in Γ with metric mT such that mT (ri, rj) ≥ θ for
1 ≤ i < j ≤ t, where ri is the region of Γ meeting ∆i for 1 ≤ i ≤ t, and
V (Γ)∩ ∂∆i is free for 1 ≤ i ≤ t. Then there are mutually disjoint connected
drawing Γ1,Γ2, ...,Γp of Γ with V (Γj) ∩ Z = Zj for 1 ≤ j ≤ p.

6 Excluding subdivision of a fixed graph

Let G be a graph and T a tangle in G. Given an integer k, a vertex v of
G is said to be k-free (with respect to T ) if there is no (A,B) ∈ T of order
less than k such that v ∈ V (A) − V (B). Similarly, we say that a subgraph
X of G is k-free (with respect to T ) if there is no (A,B) ∈ T of order less
than k such that V (X) ⊆ V (A)− V (B).

The skeleton of a proper arrangement α of a segregation S in Σ is the
drawing Γ = (U, V ) in Σ with V (Γ) =

⋃
v∈V (S) α(v) such that U(Γ) consists

of the boundary of α(S,Ω) for each (S,Ω) ∈ S with |Ω̄| = 3, and a line in
α(S ′,Ω′) with ends Ω′ for each (S ′,Ω′) ∈ S with |Ω′| = 2. Note that we do
not add any edges into the skeleton for (S,Ω) with |Ω̄| ≤ 1 or |Ω̄| > 3.

Lemma 6.1. Let t, ρ, θ be nonnegative integers. Let G be a graph and T a
tangle in G of order at least θ. Let α be a proper arrangement of a segregation
S of G in a surface Σ. Let (S,Ω) ∈ S be a ρ-vortex. Let G′ be the skeleton
of α and T ′ a respectful tangle in G′ of order θ conformal with T . If G′ is
2-cell and θ ≥ 2t+9, then there exists a cycle C such that the following hold.

1. C bounds a (2t+ 8)-zone Λ in G′ around some vertex in Ω̄.

2. Λ contains every vertex x of G′ with mT ′(x, y) ≤ t for some y ∈ Ω̄.

3. The closure of Λ contains α(S,Ω).
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4. Let S ′ be the union of S ′′ over all societies (S ′′,Ω′′) ∈ S with α(S ′′,Ω′′)
contained in the closure of Λ. Let Ω′ be the cyclic ordering on V (C) that
coincides with the cyclic ordering of C. Then (S ′,Ω′) is a (ρ+4t+16)-
vortex.

Proof. Let y be a vertex in Ω̄. By Theorem 5.6, there exists a (t+5)-zone Λ′

around y in G′ such that x ∈ Λ′ for every x ∈ V (G′) with mT ′(x, y) ≤ t+ 2.
Since mT ′(y

′, y′′) ≤ 2 for every two vertices y′, y′′ in Ω̄, x ∈ Λ′ for every
x ∈ V (G′) with mT ′(x, z) ≤ t for some z ∈ Ω̄. Let H be the drawing
obtained from G′ by deleting every vertex x ∈ V (G′) with mT ′(x, y) ≤ t+ 2.
It follows from [11, Theorem (8.10)] that H has a region f homeomorphic to
an open disk that contains α(S,Ω) and all deleted vertices.
Claim 1: For every vertex v of H incident with f , there exists a closed walk
`v of length at most 2t + 8 in the radial drawing of G′ with v, y ⊆ ins(`v)
such that v is adjacent to only one vertex in `v and V (`v) ∩ V (H) = {v}.
Proof of Claim 1: Since v is incident with f , there exists a path P of length
two in the radial drawing of G′ containing v and a vertex v′ of G′ − V (H)
internally disjoint from V (H). As mT ′(v

′, y) ≤ t + 2, there exists a closed
walk Wv′ of length at most 2t + 4 in the radial drawing of G′ such that
{v′, y} ⊆ ins(Wv′). Note that v ∈ V (H), so mT ′(v, y) > t + 2 and {v} 6⊆
ins(Wv′). Hence, there exists a closed walk `v of length at most 2t + 8 in
Wv′ ∪ P with {v, y} ⊆ ins(`v) and such that v is adjacent to only one vertex
in `v. �

We define Lv to be the set of all `v’s mentioned in Claim 1 for each
vertex v incident with f , and let Qv be the set of closed walks W in the
radial drawing with V (W ) contained in the union of any two members of Lv.
Note that if the boundary of f has a cut-vertex v, then there exists a block
of H containing v and contained in ins(W ) for some W ∈ Qv. Define L to be
the graph obtained from H by deleting

⋃
v

⋃
W∈Qv

(ins(W )−{v}), where the
first union runs through all vertices v incident with f . As V (`v)∩V (H) = {v}
for every vertex v incident with f and `v ∈ Lv, there exists a cycle C in L
such that C is contained in the boundary of f . Observe that Claim 1 implies
that mT ′(v, y) ≤ t+4 for every v ∈ V (C). And every vertex in V (H)−V (L)
is in the inside of a closed walk of length at most 4t+16 in the radial drawing
of W ′, so C is the boundary of a (2t+ 8)-zone.

Let S ′ be the union of S ′′ over all societies (S ′′,Ω′′) ∈ S with α(S ′′,Ω′′)
contained in the closure of the disk bounded by C. Let Ω′ be the cyclic
ordering on V (C) that coincides with the cyclic ordering of C. Since (S,Ω)
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is a ρ-vortex, for every two intervals I, J that partition Ω̄, there exists XI,J ⊆
V (S) with |XI,J | ≤ ρ such that there exists no path in S from I − XI,J to
J −XI,J .

Now we prove that (S ′,Ω′) is a (ρ + 4t + 16)-vortex. Let I ′, J ′ be two
intervals that partition Ω′, let u, v be the first vertex in I ′, J ′, respectively,
under the ordering Ω′, and let `∗u ∈ Lu and `∗v ∈ Lv. Let u′ be a vertex in
V (`∗u)∩ Ω̄ and v′ a vertex in V (`∗v)∩ Ω̄, and let Pu be a path in `∗u from u to u′

and Pv a path in `∗v from v to v′. If V (Pu)∩V (Pv) = ∅, then let I ′′, J ′′ be the
two intervals partitioning Ω̄ with the first vertex u′, v′, respectively. In this
case, there does not exist a path from I ′ −X ′ to J ′ −X ′ in S ′ −X ′, where
X ′ = V (Pu)∪V (Pv)∪XI′′,J ′′ has size at most ρ+4t+16. If V (Pu)∩V (Pv) 6= ∅,
then there exists a path Q in Pu ∪ Pv from u to v such that there exists no
path in S ′−V (Q) from I ′−V (Q) to J ′−V (Q). Note that |V (Q)| ≤ 4t+ 16.
Therefore, (S ′,Ω′) is a (ρ+ 4t+ 16)-vortex.

Lemma 6.2. Let d ≥ 3, and let κ, h, h1, h2, ..., hκ, ρ, θ
′′ be nonnegative in-

tegers. Then there exist integers θ0(d, h, ρ, κ, θ′′), β(d, h, ρ) and f(d, h, ρ, κ)
such that the following holds. Suppose that

1. G is a graph and T is a tangle in G, and

2. τ is a proper arrangement of a T -central segregation S of G in a surface
Σ, and

3. G′ is the skeleton of τ , G′ is 2-cell, and T ′ is a respectful tangle in G′

of order θ, for some θ ≥ θ0, such that G contains G′ as a minor and
T ′ is conformal with T , and

4. let (S1,Ω1), ..., (Sκ,Ωκ) be societies in S, where each (Si,Ωi) is a ρ-
vortex and contains at least one d-free vertex with respect to T such
that for every 1 ≤ i < j ≤ κ, and for every x ∈ Ωi and y ∈ Ωj,
mT ′(x, y) ≥ 2f + 1, and

5. mT ′(x, y) ≥ f + 1, for every x ∈ Ωi with 1 ≤ i ≤ κ, and for every
y ∈ Ω̄ with (S,Ω) ∈ S and |Ω̄| > 3, and

6. hi ≤ h for 1 ≤ i ≤ κ.

Then there exist Z1, Z2, ..., Zκ, U1, U2, ..., Uκ ⊆ V (G), a subdrawing G′′ =
G′ −

⋃κ
i=1(Zi ∪ Ui) of G′, a tangle T ′′ in G′′ of order at least θ′′ conformal

with T ′ obtained from T ′−
⋃κ
i=1 Zi by clearing at most κ f -zones in G′ such

that for every i ∈ {1, 2, ..., κ}, either
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1. hi ≥ 2, Ui = ∅ and |Zi| ≤ β such that every vertex in Si − Zi is not
d-free with respect to T ′′, or

2. Zi = ∅, and Ui is the set of vertices of G contained in an f -zone Λi in
G′ around a vertex in Ωi with the boundary cycle Yi, and there exist hi
subsets Ai,1, Ai,2, ..., Ai,hi of Yi such that the following hold.

(a) V (Si) ⊆ Ui.

(b) Each Ai,j has size d and
⋃hi
j=1Ai,j is free in G′′ with respect to T ′′.

(c) Ij ∩ Ik = ∅ for 1 ≤ j < k ≤ hi, where Ij, Ik is the minimum
interval of Yi containing Ai,j, Ai,k, respectively.

(d) There exist vi,1, vi,2, ..., vi,hi ∈ Ui such that there are hi disjoint
d-spiders in G contained in Λi, where the j-th spider is from vi,j
to Ai,j.

Proof. Define k′ to be the value k′(h, d, ρ) mentioned in Theorem 4.2, and let
β(d, h, ρ) = 2(k′d)d+1 + 1. Define s′ = s′4.2(h, d, 4hd+ 3, ρ) + 2hd+κβ, where
s′4.2 is the value s′ mentioned in Theorem 4.2. Let f(d, h, ρ, κ) = 36 + 10s′

and θ0(d, h, ρ, κ) = θ′′ + κ(4f + β + 2). Let i ∈ {1, 2, ..., κ} be fixed. For
simplicity, we denote (Si,Ωi) by (S,Ω), and let vS be a vertex in Ω̄. Let Λ′S,0
be a 5-zone in G′ around vS such that Λ′S,0 contains all atoms y of G′ with
mT ′(vS, y) ≤ 2 in its interior. Note that every vertex in Ω̄ has distance at
most 2 from vS with respect to the metric mT ′ , so Λ′S,0 contains τ(S,Ω). Let
ΛS,0 be an 18-zone in G′ around a vertex in Ω̄ such that ΛS,0 satisfies Lemma
6.1 and contains every vertex of Λ′S,0∩G and Ω̄ are interior points of ΛS,0. Let
GS,0 be the union of S ′ over all societies (S ′,Ω′) with τ(S ′,Ω′) contained in
the closure of ΛS,0, and let CS,0 be the boundary cycle of ΛS,0. Let (GS,0,ΩS,0)
be a society, where ΩS,0 = V (CS,0) with the cyclic ordering determined by
CS,0. Note that Lemma 6.1 ensures that (GS,0,ΩS,0) is a (ρ+ 36)-vortex.

For 1 ≤ j ≤ s′, let ΛS,j be a (36 + 10j)-zone around vS such that ΛS,j

contains every vertex x of G′′ with mT ′(x, vS) ≤ 36 + 10(j − 1) and ∂ΛS,j ∩
∂ΛS,j−1 = ∅. Note that the existence of ΛS,j follows from Lemmas 5.6 and
5.7. Let CS,j be the boundary cycle of ΛS,j for 1 ≤ j ≤ s′. Let ΛS = ΛS,s′ .
Let GS be the union of S ′ over all societies (S ′,Ω′) with τ(S ′,Ω′) contained in
the closure of ΛS, and let ΩS be the cyclic ordering on the boundary cycle of
ΛS. So (GS,ΩS) is a composition of a (ρ+36)-vortex (GS,0,ΩS,0) with a rural
neighborhood which has a presentation with an s′-nest (CS,1, CS,2, ..., CS,s′).
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Let h′i = k′ if hi 6= 1, and h′i = 1 if hi = 1. Let XS be the set of d-free
vertices in S with respect to T . Note that XS 6= ∅ by assumption. By
Theorem 3.5, either there exist h′i disjoint d-spiders from XS to ΩS, or there
exists WS ⊆ V (G) ∩ ΛS with |WS| ≤ 2(h′id)d+1 + 1 ≤ β such that every d-
spider from XS to ΩS intersects WS. When the latter case holds and hi > 1,
the first statement of the theorem holds by taking Ui = ∅ and Zi = WS.
When hi = 1, the former case holds by Menger’s Theorem and the fact that
S contains a d-free vertex. Therefore, we assume that the former case holds.

Define Zi to be the empty set. Let Di,1, Di,2, ..., Di,h′i
be disjoint d-

spiders from XSi
to ΩSi

. Apply Theorem 4.2 by taking (S,Ω) = (GSi
,ΩSi

),
(S0,Ω0) = (Si,Ωi) and Dj = Di,j for 1 ≤ j ≤ h′i, there exist pairwise
disjoint d-spiders D′i,1, D

′
i,2, ..., D

′
i,hi

from XSi
to V (CSi,s′), a (4hd + 3)-nest

(NSi,1, ..., NSi,4hd+3) and intervals Ii,1, Ii,2, ..., Ii,hi of CSi,s′ satisfying the con-
clusions of Theorem 4.2. For every 1 ≤ j ≤ hi, since each D′i,j is per-
pendicular to (NSi,1, ..., NSi,4hd+3), there exists a set Ai,j of hid vertices in
D′i,j ∩V (NSi,1) such that there exist hid disjoint paths from Ai,j to V (CSi,s′),
but there exists no path from D′i,j ∩XSi

to V (NSi,1) in D′i,j −Ai,j. Note that
NSi,1 is contained in the disk bounded by CSi,s′ which bounds an f -zone, so
NSi,1 is the boundary of an f -zone. Define Ui to be the set of vertices of G
inside the open disk bounded by NSi,1. Define G′′ = G′ −

⋃κ
i=1(Zi ∪ Ui). So

G′′ is a subgraph of G′−
⋃κ
j=1 Zi obtained by clearing at most κ f -zones. By

Theorem 5.5, there exists a tangle T ′′ of G′′ of order θ−κβ−κ(4f + 2) ≥ θ′′

obtained from T ′ −
⋃κ
i=1 Zi by clearing at most κ f -zones. Therefore, T ′′

is conformal with T ′ −
⋃κ
i=1 Zi. On the other hand, by planarity, for every

1 ≤ j ≤ hi, there exists an interval Ji,j of NSi,1 containing Ai,j, such that
Ji,j ∩ Ji,j′ = ∅ for every j′ 6= j.

To prove this lemma, it is sufficient to show that
⋃hi
j=1 Ai,j is free with

respect to T ′′. We first prove that mT ′′(x, y) ≥ 2hid + 1 for every atom x
in Ai,j and atom y ∈ ΩSi

. Suppose to the contrary that mT ′′(x, y) ≤ 2hid
for some x ∈ Ai,j and y ∈ ΩSi

. So there exists a closed walk W of length
at most 4hid in the radial drawing of G′′ such that {x, y} ⊆ ins(W ). Since
(NSi,2, ..., NSi,4hd+2) is a (4hd + 1)-nest such that x is inside the open disk
bounded by NSi,2 and y is outside the closed disk bounded by NSi,4hd+2, {y}
and the closed disk bounded by NSi,4hd+2 are contained in ins(W ). Note
that V (W ) ∩ Ui′ = ∅ for every i′ 6= i, otherwise V (W ) ∩ V (NSi′ ,j

) 6= ∅
for 2 ≤ j ≤ 4hd + 2, since each Ui′ is contained in the disk bounded by
NSi′ ,1

. Therefore, there exists a closed walk W ′ of length at most |V (W )|+
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∑κ
j=1|Zj| ≤ 4hd + 2κβ in the radial drawing of G′ such that {y} and the

closed disk bounded by NSi,1 are contained in ins(W ′). In other words,
mT ′(vS, y) ≤ 2hd+ κβ. But then Λi,s′−1 contains y, a contradiction. Hence,
mT ′′(x, y) ≥ 2hid+ 1 for every atom x in Ai,j and atom y ∈ ΩSi

.

Suppose that
⋃hi
j=1Ai,j is not free with respect to T ′′ for some i, then

there exists (A,B) ∈ T ′′ such that
⋃hi
j=1Ai,j ⊆ V (A) with order less than

dhi. We assume that A is as small as possible, so mT ′′(x, y) < dh for every
atom x in A and y ∈ V (A)∩V (B). That is, mT ′′(x, y) < 2dh for every atoms
x, y in A. Therefore, ΩSi

⊆ V (B)− V (A). However, there exist dhi disjoint
paths from

⋃hi
j=1 Ai,j to ΩSi

, a contradiction. So
⋃hi
j=1Ai,j is free with respect

to T ′′ for every i. This proves the lemma.

Lemma 6.3. Let d ≥ 3, h be positive integers. Let G be a 2-cell drawing in
a surface Σ, and let T be a respectful tangle in G. Then there exist integers
θ(d, h,Σ), φ(d, h,Σ) such that if T has order at least θ and G contains h
d-free vertices v1, v2, ..., vh with mT (vi, vj) > φ for 1 ≤ i < j ≤ h, then
G admits an H-subdivision for every graph H of order h and of maximum
degree d embeddable in Σ.

Proof. Let H be a graph of order h and of maximum degree d embeddable
in Σ. Let θ5.8 be the positive integer θ mentioned in Theorem 5.8 by taking
t = h and z = dh. Note that ({vi}, {vi}) is a 0-vortex for every i. For
1 ≤ i ≤ h, let Λi be the 12-zone around vi of G mentioned in Lemma 6.1
such that Λi contains vi and all its neighbors, and let Si be the subgraph of
G that is the union of S ′ over all societies (S ′,Ω′) with α(S ′,Ω′) contained
in the inside the closure of Λi, and let Ωi = ∂Λi ∩ V (G) with the cyclic
order defined by the boundary cycle of Λi. So (Si,Ωi) is a 24-vortex. Let
θ′ = θ6.2(d, 1, 24, h, θ5.8), β = β6.2(d, 1, 24) and f = f6.2(d, 1, 24, κ), where
θ6.2, β6.2 and f6.2 be the numbers θ0, β, f mentioned in Lemma 6.2. Define
θ = θ′ + h(4f + 2) + 2f + 1 and φ = θ5.8 + h(4f + 2) + 2f + 1.

Applying Lemma 6.2 by taking κ = h, hi = 1 for 1 ≤ i ≤ h, ρ = 24,
θ′′ = θ5.8, and S the segregation consisting of (S1,Ω1), (S2,Ω2), ..., (Sh,Ωh)
and the societies in which each of them consists of exactly one edge that is
not in

⋃h
i=1 Si, we obtain the desired subgraph G′′ with a respectful tangle

T ′′, and Ai,1 for 1 ≤ i ≤ h, such that every Ai,1 is free with respect to T ′′,
as mentioned in the conclusion of Lemma 6.2. Then for every x ∈ Ai,1 and
y ∈ Aj,1 for some i 6= j, we have that mT ′′(x, y) ≥ θ5.8 by Theorem 5.5.

For 1 ≤ i ≤ h, let ∆i be a closed disk in Σ contained in the closure
of Λi such that ∆i ∩ G′′ = Ai,1. Since H can be embedded in Σ, we can
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partition
⋃h
i=1 Ai,1 and apply Theorem 5.8 to obtain a linear forest so that

an H-subdivision in G can be obtained by concatenating these linear forests
and h disjoint d-spiders in S1, S2, ..., Sh, where each Si is from vi to Ai,1, we
obtain an H-subdivision in G.

Lemma 6.4. Let ρ be an integer, G a graph, T a tangle in G of order at
least 2ρ+ 2, and S a segregation of G. If (S,Ω) ∈ S is a ρ-vortex and there
exists no (A,B) ∈ T of order at most 2ρ + 1 such that B ⊆ S, then there
exists no (A′, B′) ∈ T of order at most the half of the order of T such that
B′ ⊆ S.

Proof. Suppose that there exists (A,B) ∈ T of order at most the half of the
order of T such that B ⊆ S. Let Ω̄ = v1, v2, ..., vn in order, where n = |Ω̄|.
We may assume that every vi is adjacent to a vertex in G− V (S), otherwise
we may remove it from Ω̄. As (S,Ω) is a ρ-vortex, by Theorem 8.1 in [9],
there exists a path decomposition (P,X ) of S of adhesion at most ρ such
that the i-th bag Xi of (P,X ) contains vi for every 1 ≤ i ≤ n. For every
subgraphH of S, we define (AH , BH) to be the separation ofG with minimum
order such that AH = H. In particular, for 1 ≤ i ≤ n, (AS[Xi], BS[Xi]) has
order at most 2ρ+1, so (AS[Xi], BS[Xi]) ∈ T . For 1 ≤ i ≤ n, define (Ai, Bi) =
(A∪AS[

⋃i
j=1Xj ], B∩BS[

⋃i
j=1Xj ]). Note that if vi ∈ V (B), then vi ∈ V (A) since

B ⊆ S and vi is adjacent to a vertex in G−V (S). So the order of (Ai, Bi) is
at most |V (A)∩V (B)|+ |V (AS[

⋃i
j=1Xj ])∩V (BS[

⋃i
j=1Xj ])∩ (V (B)−V (A))| ≤

|V (A) ∩ V (B)| + ρ. Since the order of (A,B) is at most the half of the
order of T , and the order of T is greater than 2ρ, either (Ai, Bi) ∈ T or
(Bi, Ai) ∈ T by the first tangle axiom. Let (A0, B0) = (A,B). We shall
prove that (Ai, Bi) ∈ T for 0 ≤ i ≤ n by induction on i.

When i = 0, (A0, B0) = (A,B) ∈ T . Assume that (Ai, Bi) ∈ T for some
i. Suppose that (Bi+1, Ai+1) ∈ T . But (Ai, Bi), (AS[Xi+1], BS[Xi+1]) ∈ T , and
Bi+1 ∪ Ai ∪ S[Xi+1] = G, a contradiction. This proves that (Ai, Bi) ∈ T for
every 0 ≤ i ≤ n.

Furthermore, (An, Bn) = (A∪S,B∩BS). Recall that V (B∩BS) ⊆ V (B)∩
Ω̄ ⊆ V (A)∩V (B), so |V (Bn)| ≤ |V (A)∩V (B)|. Hence, (Bn, G−E(Bn)) has
order less the order of T , so (Bn, G−E(Bn)) ∈ T by the third tangle axiom.
However, An ∪Bn = G, contradicting the second axiom. This completes the
proof.

Given a proper arrangement α of a segregation S in a surface Σ, we
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say that the trunk of α is the drawing Γ = (U, V ) in Σ, where V (Γ) =⋃
v∈V (S) α(v), and U(Γ) consists of the following.

• The boundary of α(S,Ω) for each (S,Ω) ∈ S with |Ω̄| ≥ 3.

• The boundary of α(S,Ω) for each (S,Ω) ∈ S with |Ω̄| = 2 such that
there exist two edge-disjoint paths in S connecting the two vertices in
Ω̄.

• A line in α(S,Ω) with ends Ω̄ for each (S,Ω) ∈ S with |Ω̄| = 2 such
that there do not exist two edge-disjoint paths in S connecting the two
vertices in Ω̄.

Note that we do not add any edges into the trunk for (S,Ω) with |Ω̄| ≤ 1.
The notion of trunk is very similar with the skeleton, and we will prove

the following general lemma for skeletons and trunks. The notion of trunk
will be used in a subsequent paper but not in the rest of this paper. We
say a graph is weakly subcubic if every vertex is adjacent to at most three
neighbors.

Lemma 6.5. For a positive nondecreasing function φ, integers ρ, λ, κ, k, θ∗, d, s
with d ≥ 4, and every collection of graphs F on at most s vertices, there ex-
ist integers θ, ρ∗ such that the following is true. Assume that a graph G
has a tangle T and a T -central segregation S = S1 ∪ S2 that has a proper
arrangement τ in a surface Σ such that the following hold.

1. |Ω̄| ≤ 3 for every (S,Ω) ∈ S1.

2. |S2| ≤ κ.

3. (S,Ω) is a ρ-vortex for every (S,Ω) ∈ S2.

4. Let G′ be the skeleton of S or the trunk of S. G′ is 2-cell embedded in
Σ and has a respectful tangle T ′ of order at least θ conformal with T .

5. There exist k λ-zones Λ1,Λ2, ...,Λk in G′ with respect to the metric mT ′
such that every d-free subgraph of G′ with respect to T ′ isomorphic to
a member of F is contained in

⋃k
i=1 Λi.

6. If G′ is the trunk of S, then the following hold.

(a) G′ is weakly subcubic.
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(b) S ∩ S ′ = ∅ for different members (S,Ω), (S ′,Ω′) ∈ S1 with |Ω̄| =
|Ω′| = 3.

(c) For every (S,Ω) ∈ S2, there exists a cycle in S passing through all
vertices in Ω̄ in order.

(d) For every edge in a graph in F , there exists another edge that has
the same ends.

Then there exists a T -central segregation S∗ = S∗1 ∪ S∗2 properly arranged in
Σ such that the following hold.

1. S∗1 ⊆ S1; in particular, |Ω̄| ≤ 3 for every (S,Ω) ∈ S∗1 .

2. |S∗2 | ≤ κ+ k and
⋃

(S,Ω)∈S2 S ⊆
⋃

(S,Ω)∈S∗2
S.

3. There exists an integer ρ′ with ρ′ ≤ ρ∗ such that (S,Ω) is a ρ′-vortex
for every (S,Ω) ∈ S∗2 .

4. Let G∗ be the skeleton of S∗ or the trunk of S∗, respectively, if G′ is
the skeleton of S or the trunk of S, respectively. G∗ is 2-cell embedded
in Σ and has a respectful tangle T ∗ of order at least θ∗ + φ(ρ∗) + 2ρ∗

conformal with T .

5. If for every (S ′,Ω′) ∈ S1 and for every x ∈ Ω′, there exist |Ω′| − 1
paths in S ′ from x to Ω′ − {x} intersecting only in {x}, then for every
(S,Ω) ∈ S∗2 , there exists a cycle passing through all vertices in Ω∗ in
order.

6. If G∗ is the trunk of S∗, then it is weakly subcubic.

7. There is no d-free subgraph of G∗ with respect to T ∗ isomorphic to a
member of F .

8. mT ∗(x, y) ≥ φ(ρ′) for every atoms x, y of G∗ with x ∈ Sx, y ∈ Sy for
different members (Sx,Ωx), (Sy,Ωy) ∈ S∗2 ,

Proof. Note that each society that consists of a single vertex is a 0-vortex.
So by Lemma 6.1, for each Λi, we can find a (2λ + 8)-zone Λ′i containing
Λi such that (G ∩ Λi,Ω) is a (4λ + 16)-vortex, where Ω is a cyclic ordering
on V (G) ∩ ∂Λi consistent with the cyclic ordering of the cycle bounding Λi.
Therefore, we can replace Λi by Λ′i so that we may assume that every Λi is
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a λ′-zone and the subgraph of G inside the disk Λi is a λ′-vortex (S,Ω) for
some constant λ′ only depending on λ. Similarly, for each (S,Ω) ∈ S2, there
exists a 12-zone ΛS containing the disk τ(S,Ω), and the subgraph of G inside
this disk is a (ρ+ 24)-vortex by Lemma 6.1.

Let C = {Λi,ΛS : 1 ≤ i ≤ k, (S,Ω) ∈ S2}, and let λ′′ be the minimum t
such that every member of C is a t-zone. For each member Λ of C, let SΛ =
G ∩ Λ, and let ΩΛ = V (G) ∩ ∂Λ ordered by the cyclic ordering given by the
cycle bounding Λ. Let M be the maximum depth of (SΛ,ΩΛ) for all members
Λ of C. Note that |C| ≤ k + κ, M = max{λ′, ρ+ 24}, and λ′′ ≤ max{λ′, 12}.
Then we consecutively test whether there exist two atoms of G′ in different
members of C with distance less than φ(M + 2) + (4λ′′ + 2)|C|+ 4 under the
metric mT ′ , and if such two nearby vortices exist, then we do the following.
Find a minimum number t such that the (2t + 8)-zone Λ mentioned in the
conclusion of Lemma 6.1 contains these two nearby members of C, and remove
these two members from C and add Λ into C, and then we update M and λ′′.
Since |C| decreases in each step, this process will terminate within κ+k steps.
Furthermore, when the process terminates, each member of C defines a M -
vortex, where M only depends on φ, κ, k, λ and ρ, and the distance between
two members of C is at least φ(M + 2) + (4λ′′ + 2)|C| + 4 under the metric
mT ′ . Clearly, there exists an integer ρ∗ (that only depends on φ, κ, k, λ, ρ)
such that M + 2 ≤ ρ∗. We define θ = 2ρ∗(θ∗ + φ(ρ∗) + 2ρ∗) + 4λ′′ + 16.

For every Λ ∈ C, let Λ′ be the minimal closed disk in Σ containing Λ and
τ(S,Ω) for every (S,Ω) ∈ S1 with |Ω̄∩Λ| ≥ 2. Clearly, Λ′ is a (λ′′+ 2)-zone,
and (SΛ′ ,ΩΛ′) is a (M + 2)-vortex, and every two atoms of G′ in different
members of C have distance at least φ(M + 2) + (4λ′′ + 2)|C|. If G′ is the
skeleton of S, then define (S ′Λ,Ω

′
Λ) to be (SΛ,ΩΛ) for every Λ ∈ C. Now

assume that G′ is the trunk of S. Recall that G′ is weakly subcubic and
S ∩ S ′ = ∅ for different members (S,Ω), (S ′,Ω′) ∈ S1 with |Ω̄| = |Ω′| = 3 in
this case. Observe that there is no (S,Ω) ∈ S1 with S 6⊆ G∩Λ′ and |Ω̄∩Λ′| ≥
2 unless |Ω̄| ≤ 2, since S ∩ S ′ = ∅ for different members (S,Ω), (S ′,Ω′) ∈ S1

with |Ω̄| = |Ω′| = 3. We replace Λ′ by the minimal disk that contains Λ′ and
τ(S,Ω) for every (S,Ω) ∈ S1 with |Ω̄| ≤ 2. Then there is no (S,Ω) ∈ S1 with
S 6⊆ G ∩ Λ′ and |Ω̄ ∩ Λ′| ≥ 2. Then we define (S ′Λ,Ω

′
Λ) to be (SΛ′ ,ΩΛ′) for

every Λ ∈ C. Note that in the both cases, if S satisfies the property that for
every (S,Ω) ∈ S1 and for every x ∈ Ω̄, there exist |Ω̄| − 1 paths in S from x
to Ω̄−{x}, then there exists a cycle in S ′Λ passing through all vertices in Ω′Λ
in order, since Λ′ is bounded by a cycle in G′.

Define a new segregation S∗ = S∗1 ∪ S∗2 of G by letting S∗2 = {(S ′Λ,Ω′Λ) :
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Λ ∈ C} and S∗1 = {(S,Ω) ∈ S1 : V (S) 6⊆
⋃

Λ∈C V (S ′Λ)}. Let G∗ be the
skeleton (or trunk, respectively) of S∗ if G′ is the skeleton (or trunk, respec-
tively) of S. Observe that for every integer t and separation (A,B) of G′ or
G∗ of order t, there exists a separation (A′, B′) of G of order at most 2ρ∗t
such that A ⊆ A′ and B ⊆ B′, since every member of S2 or S∗2 has depth
at most ρ∗. Similarly, for every G∗-normal O-arc in Σ that intersects in G∗

at most t vertices, there exists a G′-normal O-arc in Σ that intersects in G′

at most 2ρ∗t vertices. Therefore, there exists a tangle T ∗ in G∗ of order at
least θ/(2ρ∗) ≥ θ∗+φ(ρ∗) + 2ρ∗ conformal with T and T ′, and T ∗ is respect-
ful. On the other hand, T ∗ can be obtained from T ′ by clearing at most
|C| (λ′′ + 2)-zones, so mT ∗(x, y) ≥ mT ′(x, y) − |C|(4λ′′ + 2) ≥ φ(M + 2) by
Theorem 5.5. Therefore, Conclusions 1-4 and 8 hold.

Recall that every member in S∗2 is a society obtained by applying Lemma
6.1, so Conclusion 5 holds. This implies that G′ contains G∗ as a subdivision.
So if G′ is the trunk of S, then G∗ is weakly subcubic as G′ is. This proves
Conclusion 6. In fact, G∗ is a subgraph of G′ if G′ is the skeleton of S. So
Conclusion 7 holds in this case. But when G∗ is the trunk of S∗, there do
not exist vertices x, y of G∗ such that there are multiple edges between x, y
in G∗ but not in G′; otherwise, there exists a society (S,Ω) ∈ S∗1 such that
S 6⊆ G ∩ Λ′ and |Ω̄ ∩ Λ′| ≥ 2, where Λ′ is the λ′′-zone corresponding to the
vortex containing x, y, a contradiction. But when G∗ is the trunk of S∗, for
every edge in a graph in F , there exists another edge with the same ends, so
no subgraph of G∗ that is not a subgraph of G′ but is isomorphic to a graph
in F . Hence, Conclusion 7 holds.

It remains to prove that S∗ is a T -central segregation of G. Since T ′
has order at least θ and is conformal with T , the order of T is at least θ.
Since S∗1 ⊆ S1 and S is T -central, by Lemma 6.4, it is sufficient to show that
there is no (A,B) ∈ T of order at most 2ρ∗ + 1 such that B ⊆ S for some
(S,Ω) ∈ S∗2 . Suppose that such (A,B) exists. Let (A′, B′) be a separation
of G∗ such that V (A′) = V (A) ∩ V (G∗) and V (B′) = V (B) ∩ V (G∗). Note
that (A′, B′) ∈ T ∗ since T ∗ is a tangle of order at least 2ρ∗ + 1 conformal
with T . Since B ⊆ S, V (B′) ⊆ V (A) ∩ V (B), so B′ contains at most
2ρ∗+ 1 vertices. However, the first and the second tangle axioms imply that
(G∗ − E(B′), B′) ∈ T ∗, contradicting the third tangle axiom. Hence S∗ is
T -central.

A segregation S of G is maximal if there exists no segregation S ′ such
that {(S,Ω) ∈ S : |Ω̄| > 3} = {(S ′,Ω′) ∈ S ′ : |Ω′| > 3} and for every
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(S,Ω) ∈ S with |Ω̄| ≤ 3, there exists (S ′,Ω′) ∈ S ′ with |Ω′| ≤ 3 such that
S ′ ⊆ S, and the containment is strict for at least one society. Furthermore,
if H is a triangle-free graph and the skeleton of a maximal segregation S of
G admits an H-subdivision, then G admits an H-subdivision. Note that if a
segregation S of G is maximal, then G contains the skeleton of S as a minor.

The following theorem is a stronger form of the structure theorem for
excluding minors in [15].

Theorem 6.6 ([1, Theorem 7]). For every graph L, there exists an integer
κ such that for any nondecreasing positive function φ, there exist integers
θ, ξ, ρ with the following property. Let T be a tangle of order at least θ in a
graph G controlling no L-minor of G. Then there exist Z ⊆ V (G) with size
at most ξ and a maximal (T − Z)-central segregation S = S1 ∪ S2 of G− Z
properly arranged in a surface Σ in which L cannot be drawn, where every
(S,Ω) ∈ S1 has the property that |Ω̄| ≤ 3, and |S2| ≤ κ and every member in
S2 is a p-vortex for some p ≤ ρ. Furthermore, the skeleton G′ of S is 2-cell
embedded in Σ with a respectful tangle T ′ of order at least φ(p) conformal
with T −Z, and if x and y are two vertices in G′ incident with two different
members in S2, then mT ′(x, y) ≥ φ(p).

Let us recall that the function mf was defined prior to Theorem 1.3. A
graph H has a nice embedding in Σ if H can be 2-cell embedded in Σ and
it has a set F of regions such that every vertex of H of degree at least 4 is
incident with exactly one region in F , and |F | = mf(H,Σ).

Lemma 6.7 ([1, Lemma 12]). Let H be a graph of maximum degree d that
can be embedded in a surface Σ. Then there exists a triangle-free graph H ′

of maximum degree d admitting an H-subdivision such that mf(H ′,Σ) =
mf(H,Σ) and H ′ has a nice embedding in Σ.

Recall that a vertex v in a graph G is d-free with respect to a tangle T
in G if there does not exist a separation (A,B) ∈ T of order less than d such
that v ∈ V (A)−V (B). Now, we are ready to prove our main theorem, which
we restate.

Theorem 6.8. Let d ≥ 4, h be positive integers. Then there exist θ, κ, ρ, ξ, g ≥
0 satisfying the following property. If H is a graph of maximum degree d on
h vertices, and a graph G does not admit an H-subdivision, then for every
tangle T in G of order at least θ, there exists Z ⊆ V (G) with |Z| ≤ ξ such
that either
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1. no vertex of G− Z is d-free with respect to T − Z, or

2. there exist a (T − Z)-central segregation S = S1 ∪ S2 of G − Z with
|S2| ≤ κ, having a proper arrangement in some surface Σ of genus
at most g such that every society (S1,Ω1) in S1 satisfies that |Ω1| ≤ 3,
and every society (S2,Ω2) in S2 is a ρ-vortex, and satisfies the following
property: either

(a) H cannot be drawn in Σ, or

(b) H can be drawn in Σ and mf(H,Σ) ≥ 2, and there exists S ′2 ⊆ S2

with |S ′2| ≤ mf(H,Σ) − 1 such that every d-free vertex of G − Z
with respect to T − Z is in S − Ω̄ for some (S,Ω) ∈ S ′2.

Proof. Note that there are only finitely many graphs of maximum degree d
on h vertices, and there are only finitely many surfaces in which H can be
drawn but Kd 3

2
dhe cannot. So there exists h∗ such that for every graph H on

h vertices of maximum degree d and surface in which H can be drawn but
Kd 3

2
dhe cannot, the graph H ′ mentioned in Lemma 6.7 can be chosen such

that it has at most h∗ vertices.
We define the following.

• Let κ6.6 be the number κ mentioned in Theorem 6.6 by taking L =
Kd 3

2
dhe.

• Let θ6.2, β6.2, f6.2 be the functions θ0, β, f mentioned in Lemma 6.2,
respectively.

• Let φ′ be the maximum φ6.3(d, h∗,Σ) among all surfaces Σ in which
Kd 3

2
dhe cannot be drawn, where φ6.3 is the number φ mentioned in

Lemma 6.3.

• Let θ5.8 be the maximum of θ mentioned in Theorem 5.8 by taking all
surfaces in which Kd 3

2
dhe cannot be drawn, and t = h∗, z = dh∗.

• Let φ∗(x) = 2f6.2(d, h∗, x, κ6.6) + κ6.6(5β6.2(d, h∗, x) + 2) + 2(dh∗+ h∗+
1)(θ5.8 + 6).

• Let θ′6.5(x) be the function θ obtained by applying Lemma 6.5 by taking
φ = φ∗, ρ = x, λ = d + φ′ + 11, κ = κ6.6, k = h∗ + κ6.6, θ∗ =
θ6.2(d, h∗, x, κ6.6, (dh

∗ + h∗ + 1)(θ5.8 + 1)), d = d, s = 1 and F the set
consisting of the graph that has exactly one vertex with no edges.
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• Let θ6.6, ξ6.6, ρ6.6 be the number θ, ξ, ρ mentioned in Theorem 6.6,
respectively, by taking κ = κ6.6 and further taking φ(x) = θ′6.5(x).

• Let θ6.3 be the maximum of θ(d, h∗,Σ) mentioned in Lemma 6.3 among
all surfaces Σ in which Kd 3

2
dhe cannot be drawn.

• Let θ6.5 and ρ6.5 be the numbers θ and ρ∗ obtained by applying Lemma
6.5 by taking φ to be the function such that φ(x) = φ∗(x), ρ = ρ6.6,
λ = d+ φ′ + 11, κ = κ6.6, k = h∗ + κ6.6, θ∗ = θ6.2(d, h∗, ρ6.6, κ6.6, (dh

∗ +
h∗+ 1)(θ5.8 + 1)), d = d, s = 1 and F be the set consisting of the graph
that has exactly one vertex with no edges.

• Let θ3.4 = (hd)d+1 + d.

Now we are ready to define the numbers for the conclusion of this theorem.

• Let ξ = max{ξ6.6 + (κ6.6 + h∗)β6.2(d, h∗, ρ6.5), (hd)d+1}.

• Let θ = 2ρκ6.6+h∗(θ6.5 + θ6.3 + θ6.6) + ξ.

• Let κ = κ6.6 + h∗.

• Let ρ = ρκ6.6 + h∗.

• Let g be the maximum genus of a surface in which Kd 3
2
dhe cannot be

drawn.

Let T be a tangle of order at least θ in G. We may assume that G
contains at least h vertices of degree at least d, otherwise the first statement
holds by letting Z be the set of vertices of degree at least d. We first assume
that T controls a Kd 3

2
dhe-minor. By Lemma 3.2 and Theorem 3.4, since G

does not admit an H-subdivision, there exists a set of vertices Z of G with
|Z| ≤ ξ such that for every vertex v of G−Z of degree at least d in G, there
exists a separation (Av, Bv) ∈ T − Z of G − Z of order at most d − 1 such
that v ∈ V (Av) − V (Bv). Therefore, the first statement holds. So we may
assume that T does not control a Kd 3

2
dhe-minor.

By Theorem 6.6, there exist a surface Σ in which Kd 3
2
dhe cannot be drawn,

Z ⊆ V (G) with |Z| ≤ ξ6.6, and a maximal (T − Z)-central segregation
S = S1 ∪ S2 of G− Z with |S2| ≤ κ6.6, having a proper arrangement τ in Σ
such that every society (S,Ω) in S1 satisfies that |Ω̄| ≤ 3, and every society
in S2 is a ρ6.6-vortex, and the skeleton G′ of S is 2-cell embedded in Σ and
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has a respectful tangle T ′ of order at least φ(ρ6.6) conformal with T −Z, and
if x, y are two vertices in G′ incident with two different members in S2, then
mT ′(x, y) ≥ φ(ρ6.6). If H cannot be drawn in Σ, then Statement 2(a) holds,
so we may assume that H can be drawn in Σ.

On the other hand, we may assume that G − Z contains d-free vertices
with respect to T − Z, for otherwise Statement 1 holds. Note that every
vertex in

⋃
(S,Ω)∈S1 V (S) − V (G′) is not d-free with respect to T − Z since

d ≥ 4. If v is in V ((G − Z) ∩ G′) but is not d-free respect to T ′, then
there exists a separation (A′, B′) ∈ T ′ of order less than d such that v ∈
V (A′)−V (B′). We choose (A′, B′) such that A′ is as small as possible. Note
mT ′(v, x) < d for every x ∈ V (A′) by Theorem 5.3. Suppose that there is
no vertex x ∈ V (S) with (S,Ω) ∈ S2 and mT ′(v, x) < d. Then there exists
(A,B) ∈ T − Z of order less than d such that V (A′) =

⋃
(S,Ω)∈S,V (S)⊆V (A) Ω̄

and V (A)∩V (B) = V (A′)∩V (B′). So v is not d-free with respect to T −Z.
Therefore, if v is a vertex in (G−Z)∩G′ that is d-free with respect to T −Z
but not d-free with respect to T ′, then mT ′(v, x) < d for some x ∈ V (S) with
(S,Ω) ∈ S2. By Theorem 5.6 and Lemma 5.7, for every (S,Ω) ∈ S2, there
exists a (d+ 11)-zone ΛS with respect to T ′ around a vertex in Ω̄ containing
every atom y with mT ′(x, y) ≤ d+ 1 as an interior point for all such x. Thus
every vertex of (G − Z) ∩ G′ that is d-free with respect to T − Z but not
d-free with respect to T ′ is in

⋃
(S,Ω)∈S2 ΛS.

Let H ′ be a graph that has a nice embedding mentioned in Lemma 6.7
such that |V (H ′)| ≤ h∗. By Lemma 6.3, there do not exist |V (H ′)| d-free
vertices such that every pair of them has distance at least φ′ under the
metric mT ′ , otherwise, G contains an H-subdivision. So by Theorem 5.6 and
Lemma 5.7, there exist integer k with 0 ≤ k ≤ h∗, d-free vertices v1, v2, ..., vk
of G′ with respect to T ′, and (φ′+10)-zones Λ1,Λ2, ...,Λk around v1, v2, ..., vk,
respectively, such that every d-free vertex of G′ with respect to T ′ is in the
interior of

⋃k
i=1 Λi. Then every d-free vertex in G−Z with respect to T −Z

is a vertex of G′, and it is in the interior of
⋃k
i=1 Λi ∪

⋃
(S,Ω)∈S2 ΛS.

Then let S∗ = S∗1 ∪ S∗2 , T ∗ and G∗ be the S∗, T ∗ and G∗, respectively,
mentioned in the conclusion of Lemma 6.5 by taking φ = φ∗, ρ = ρ6.6, λ = d+
φ′+11, κ = κ6.6, k = h∗+κ6.6, θ∗ = θ6.2(d, h∗, ρ6.6, κ6.6, (dh

∗+h∗+1)(θ5.8+1)),
d = d, s = 1 and F be the family of graphs that contains exactly one vertex
with no edges, and further taking G = G − Z, T = T − Z, S = S, τ = τ ,
Σ = Σ, and G′ to be the skeleton of S.

Let κ′ be the number of members of S∗2 containing d-free vertices with
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respect to T − Z. Let Z1, Z2, ..., Zκ′ , U1, U2, ..., Uκ′ be the sets obtained by
applying Lemma 6.2 by taking hi = h∗ for every i, ρ = ρ6.5, θ′′ = (dh∗+h∗+
1)(θ5.8 + 1), G = G− Z, G′ = G∗ and (S1,Ω1), (S2,Ω2), ... as the vortices in
S∗2 containing d-free vertices with respect to T − Z. Define S∗2 ′ ⊆ S∗2 to be
consisting of the members in which Ui 6= ∅. We replace Z by Z ∪

⋃
1≤i≤κ′ Zi.

Note that |Z| ≤ ξ. If |S∗2 ′| = 0, then there do not exist d-free vertices of
G − Z with respect to T − Z, so Statement 1 holds. If mf(H,Σ) ≥ 2 and
|S∗2 ′| ≤ mf(H,Σ) − 1, then Statement 2(b) holds. So we may assume that
|S∗2 ′| ≥ mf(H,Σ).

Let G′′ be the graph and T ′′ the tangle in G′′ of order at least (dh∗ +
h∗ + 1)(θ5.8 + 6) conformal with T ∗ mentioned in the conclusion of Lemma
6.2. For 1 ≤ i ≤ |S∗2 ′| and 1 ≤ j ≤ h∗, let Yi and Ai,j be the sets mentioned
in Conclusion 2(b) of Lemma 6.2. Since T ′′ is obtained from T − Z by
deleting at most κ6.2β6.2 vertices and clearing at most κ6.2 f6.2(d, h∗, ρ6.5, κ6.2)-
zones, for every 1 ≤ i < i′ ≤ |S∗2 ′|, j, j′ ∈ {1, 2, ..., h∗}, x ∈ Ai,j, y ∈ Ai′,j′ ,
we have that mT ′′(x, y) ≥ mT −Z(x, y) − κ6.2(4β6.2 + 2 + β6.2) ≥ φ∗(ρ6.6) −
2f6.2(d, h∗, ρ6.5, κ6.2)− 4− κ6.2(5β6.2 + 2) ≥ θ5.8 + (dh∗ + h∗ + 1)(θ5.8 + 6).

Let x ∈ A1,1. By Lemma 5.4, there exists an edge e∗ ofG′′ withmT ′′(e
∗, x) ≥

(dh∗ + h∗ + 1)(θ5.8 + 6). As in the proof of Theorem 4.3 in [12], there ex-
ist edges e1, e2, ..., edh∗+h∗ in that path such that (θ5.8 + 6)i ≤ mT ′′(x, ei) ≤
(θ5.8 + 6)i + 3 for 1 ≤ i ≤ dh∗ + h∗. Therefore, mT ′′(ei, ej) ≥ θ5.8 + 3 for
every 1 ≤ i < j ≤ dh∗ + h∗, and the set of the ends of each ei is free
for 1 ≤ i ≤ dh∗ + h∗. Note that mT ′′(x, y) ≤ 2 for y ∈

⋃h∗

j=1A1,j and

mT ′′(x, y) ≥ θ5.8 + (dh∗ + h∗ + 1)(θ5.8 + 6) for y ∈
⋃|S∗2 ′|
i=2

⋃h∗

j=1 Ai,j. Hence,

mT ′′(y, e`) ≥ θ5.8 + 1 for every y ∈
⋃|S∗2 ′|
i=1

⋃h∗

j=1Ai,j and 1 ≤ ` ≤ dh∗ + h∗.

For 1 ≤ i ≤ |S∗2 ′|, define ∆i to be a disk in Σ contained in the disk bounded
by Yi such that ∆i ∩ G′′ =

⋃h∗

j=1Ai,j. For 1 ≤ i ≤ dh∗ + h∗, define ∆|S∗2 ′|+i
to be a disk in Σ such that ∆i ∩ G′′ is the set of the ends of ei. Since H ′

has a nice embedding in Σ, we can embed H ′ into Σ such that the vertices
of degree at least 4 of H ′ are incident with mf(H ′,Σ) regions. Let G′′′ be
the graph obtained from G′′ by adding disjoint d-spiders in G from some
vertices in

⋃
(S,Ω)∈S∗2

′ S to Ai,j mentioned in Lemma 6.2 for each 1 ≤ i ≤ |S∗2 ′|
and 1 ≤ j ≤ h∗. Consequently, G′′′ admits an H ′-subdivision (πV , πE) by
concatenating pairwise disjoint d-spiders from some vertices in some mem-
bers of S∗2 ′ to

⋃mf(H′,Σ)
i=1

⋃h∗

j=1Ai,j and a disjoint union of 3-spiders and a
linear forest obtained by applying Theorem 5.8 by appropriately partition-
ing

⋃mf(H′,Σ)
i=1

⋃h∗

j=1Ai,j ∪
⋃|E(H′)|+|V (H′)|
i=1 {ai, bi}, where ai, bi are the ends of
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ei.
Finally, we shall prove that G admits an H-subdivision and lead to a

contradiction. Recall that S∗ is maximal, so for every (S,Ω) ∈ S∗1 and for
every a ∈ Ω̄, there exist |Ω̄|−1 paths in S from a to Ω̄−{a} intersecting in a
and otherwise disjoint. Since H ′ is triangle-free, one edge the triangle in G′′′

on Ω̄ is not contained in the image of πE for each (S,Ω) ∈ S∗1 with |Ω̄| = 3.
Therefore, G admits an H-subdivision.
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