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INTRODUCTION AND NOTATION

In this paper, we continue the investigation initiated in [5] into the problem of
representing an ordered set as the intersection of a family of linear extensions where
restrictions are placed on the methods by which the linear extensions can be con-
structed. Our primary purpose is to introduce a dimension theoretic parameter and
to develop a number of inequalities relating this parameter to other more familiar
parameters of ordered sets. To understand our results requires some familiarity with
the basic combinatorial properties of ordered sets, especially those involving the
concept of dimension. The experienced reader should proceed immediately to the
next section. The remainder of this section is for the benefit of those who are rela-
tively new to this subject.

Throughout this paper, we consider finite (partially) ordered sets. When P is an
ordered set, and x and y are distinct points in P, we write x| y in P when x and y are
comparable, that is, either x > y in P or y > x in P, We say x covers y and write
x:>y(also y<:x)in Pif x>y in P and there is no point z so that x > z and
z > yin P. When x and y are incomparable, we write x|y in P. A chain in an ordered
set P is a subset C with x|y in P for every distinct pair x, y € C. An antichain is a
subset A with x|y in P for every distinct pair x, y € A. A chain (antichain) is
maximal if no other chain (antichain) contains it as a proper subset. When Q < P, an
element x € Q is called a I (maximal) el t of Q when there is no point
y € Q satisfying y < x (y>x) in Q. For a subset Q < P, we let min(Q) (max(Q))
denote the set of minimal (maximal) elements of Q.

The width of an ordered set P, denoted width (P), is the maximum number of
points in an antichain of P. A well-known theorem of R. P. Dilworth asserts that if
width (P) = ¢, then there exists a partiton P=C, U C, U -~ U C,, where each C;
is a chain.
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Let X = {x,, x,, ..., X,} be a finite set. To indicate that L is a linear order on X
with x; < x, <-'- < x, in L, we will write L: [x,, x,, ..., x,]. Now let P be an
ordered set and let X denote the underlying point set of P. A linear order L on X is
called a linear extension of P if x < y in L whenever x < yin P forevery x, y € X. A
family {L,, L,, ..., L,} of linear extensions of an ordered set P is called a realizer of

PifP=L nLyn---nL,thatis,x<yinPifandonlyifx<yinL;fori=1, °

2, ..., t. The dimension of P, denoted dim(P), is the least positive integer ¢ for which
P has a realizer containing ¢ linear extensions.

When L is a linear extension of P and 4 and B are subsets of P, we write A/B in
L when a > b in L for every a € A, b € B for which a||b in P. If C is a chain in P,
then there exist linear extensions L, and L, of P so that C/Pin L, and P/CinL,. If
P is an ordered set with width (P) =, P=C, U C; U *-* U C, is a partition, and

" Ljisa linéar exfension of P with C/Pin L, for each i=1, 2, ..., t, then the family

{L, L, ..., L} is a realizer of P. Thus dimension is well defined and, in fact,
dim(P) < width (P) for every ordered set P.

For an ordered set P, we let P? denote the dual of P, that is, x < y in P? if and
only if x > y in P. A linear order L is a linear extension of P if and only if I is a
linear extension of P It is obvious that dim(P) = dim(P%). We refer the reader to
the survey articles [4] and [10] for additional background material on the concept
of dimension and other combinatorial parameters for ordered sets.

ALGORITHMIC CONSTRUCTIONS OF
LINEAR EXTENSIONS
In this paper, we investigate the problem of representing an ordered set P as the
intersection of a family {L,, L,, ..., L;} of linear extensions of P with the additional
restriction that each L, must be constructed according to a prescribed set of rules.
We begin with the following elementary scheme, which we call algorithm LIN.

Set M(0) = min(P) and choose x; € M(0). Suppose Xx,, X5, ..., X; have been
chosen for some i with 1 <i<|P|. Let M(i) = min(P — {x;, X3, ..., X;}).
Choose x;4, € M().

It is easy to see that every linear extension of P is obtained from algorithm LIN
by a suitable sequence of choices of the points x;,, € M(i)) for i=0, 1, 2, ...,
|P| — 1. In [5] we studied a restricted class of linear extensions obtained by adding
a tie-breaking condition for the selection of x;,,. We call the following algorithm
GREEDY.

Set G(0) = min(P) and choose x, € G(0). Suppose x,, X,, ..., X; have been
chosen for some i with 1 <i <|P}. Let M(i) = min(P — {x,, X5, ..., x;}). Then
set H{)={xeM;: x;<: x in P}. If H(j) # &, set G(i) = H(i). Else, set
G(i) = M(i). Choose x;,, € G(i).

Linear extensions obtained from this algorithm are called greedy linear exten-
sions. The original motivation for studying this class of linear extensions stemmed
from their connection with the jump number problem about which we will have
more to say in the section after the next one.

'
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GREEDY DIMENSION

In [2], Bouchitte et al. observed that every ordered set has a realizer {L,, L,,
.., L}, where each L; is a greedy linear extension of P. Such a family is called a
greedy realizer of P. The existence of greedy realizers follows immediately from the
following basic result [2], [5].

Lemma 1: If C is a chain in an ordered set P, then there exists a greedy linear
extension L so that C/P in L.

Examples are presented in [2] and [5] to show that there may not be a greedy
linear extension of P with P/C in L. However, Lemma 1 and Dilworth’s theorem are
enough to show that every ordered set is the intersection of a family of greedy linear
extensions. Accordingly, we may then define the greedy dimension of P, denoted
dimg(P), as the least integer ¢ for which P has a greedy realizer consisting of ¢t greedy
linear extensions. Evidently, greedy dimension is well defined. In fact, dim(P) <
dimg(P) < width (P) for every ordered set P.

In [5], the authors derived the inequalities given in the next two theorems. These
theorems bound the greedy dimension of an ordered set in terms of the cardinality
and width of the complement of a maximal antichain.

THEOREM 1: Let 4 be an antichain in an ordered set P. If |P — A| > 2, then
dimg(P) <|P — A].

THEOREM 2: Let A be an antichain in an ordered set P with width
(P — A) = n > 1. Then the following inequalities hold.

(a) dimg(P) < n® + nwhen n > 2, and dimg(P) < 3 whenn = 1.
(b) If A = min(P), dimg(P) < 2n — 1 when n > 2, and dimg(P) < 2 whenn = 1.
(c) If A = max(P), dimg(P) <n + 1.

Theorems 1 and 2 have analogues in ordinary dimension, and we refer the
reader to [8] and [9] for details.

SUPER-GREEDY LINEAR EXTENSIONS

In this paper, we study a more restrictive tie-breaking scheme. We call the fol-
lowing algorithm SUPER-GREEDY.

Set SG (0) = min(P) and choose x; € SG (0). Suppose x,, X5, ..., X; have been
chosen for some i with 1 <i <|P|. Let M(i) = min(P — {x,, x,, ..., x;}). Then
let J() = {j: 1 <j < i and there exists x € M(i) so that x; <: x in P}. If J(i) #
&, let k be the largest integer in J(i) and set SG (i) = {x € M(}): x, <: x in P}.
Else, set SG (i) = M(j). Choose x,,, € SG (i).

Linear extensions obtained from this algorithm are called super-greedy linear
extensions. We illustrate this definition with the ordered set shown in FIGURE 1,
which is also used as an example in [5]. For this ordered set, it is easy to see that

Ly:[ay, azy 005851, %, by, €1, b2, €25 oy by g,y Cayy ¥]
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is a linear extension but not a greedy linear extension of P;
Ly:[ay, bynas, byyeeis @y gy X, byys €15 €25 onny €y, V]
is a greedy linear extension but not a super-greedy linear extension; and
Ly:[ay, by, c4,85, b5, €54 000y @uegy X, b, y, €y V]

is a super-greedy linear extension.

The construction of a super-greedy linear extension by the SUPER-GREEDY
algorithm involves backtracking through the list of elements previously chosen to
find the first one covered by a minimal element among the remaining points. For
this reason, it would have been just as natural to call a super-greedy linear extension
a backtracking linear extension. We.have chosen the super-greedy terminology to
emphasize that the concept evolved from the notion of greedy linear extensions.

Greedy linear extensions were originally introduced as a method of attacking.the
following scheduling problem known as the jump number problem (see [7]). Suppose
an ordered set P represents a set of calculations to be performed on a single pro-
cessor where x < y in P means the output of calculation x is required for calculation
y. A feasible schedule for performing the calculations in P is then just a linear exten-
sion of P. Whenever x <: y in both P and L, some savings in the loading cost for
calculation y can be achieved by leaving the output of calculation x in the small
internal storage of the processor. The jump number problem asks for a schedule L
that maximizes the savings by maximizing the number of pairs of calculations (x, y)
so that x <:y in both L and P. The optimal schedule can always be realized by
some greedy linear extension, although Pulleyblank [6] has shown that the jump
number problem is NP-complete.

Now suppose we modify the problem by providing the processor with a large
stack to which data can be pushed and from which data can be popped at very low
cost. It is assumed that the transferal of data between the processor and other exter-
nal storage locations is much less efficient. The stack jump number problem is to
devise a schedule so that for as many calculations as possible, some input necessary
for the calculation can be popped from the top of the stack rather than loaded from
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an external storage location. We claim that any super-greedy linear extension pro-
vides an optimal solution to the stack jump number problem; in fact, using any
super-greedy linear extension, we can arrange to pop input off the top of the stack
for every calculation.

We argue as follows. Suppose L: [x,, X,, ..., x,] is an arbitrary super-greedy
linear extension of P and that ¥ = min(P). Denote the restriction of L to Y by [y,,
Y25 -++» Yml- For each j =1, 2, ..., m, we push the input for calculation y; onto the
stack so that the input for y, is on the top of the stack, the input for y, is in the
second highest position, etc. Note that x, = y, so that in performing the first calcu-
lation, the input data for x, is popped from the stack. Now suppose that for some
i > 0 we have just popped some necessary data from the stack. In the case that these
data are the output of some calculation x, and there exists an integer « > i so that «
is the largest integer in J(x), we push a copy of these data back on top of the stack.
All other data necessary for calculation x,,, are retrieved and the calculation is
made. The output from this calculation is sent to external storage. If there is an
integer B> i so that i + 1 is the largest integer in J(8), then we also push a copy of
the output data from calculation x;, , onto the top of the stack.

It is easy to see that this scheme has the property that for each i > 0, we can
always retrieve one item of the input data necessary for calculation x,,, from the
top of the stack, so that choosing L as a super-greedy linear extension of P was an
optimal schedule for processing the calculations. However, we should emphasize
that the savings gained from implementing this scheme comes from the efficient
transferral of data and not from reducing the storage space required.

There is another important observation to be made concerning super-greedy
linear extensions. The family of all super-greedy linear extensions of an ordered set
P is exactly the same as the family of all linear extensions of P that arise from a
depth-first search of P. Add an artificial least element to P and consider the ordered
set as a digraph in which there is a directed edge from x to y whenever x < : y in P.
Starting at the artificial element, a depth-first search of P is performed and the
elements of P are recorded in the order they are last visited in this search. The
resulting linear order is a super-greedy linear extension of P in reverse order. We
refer the reader to [1] for extensive background material on the concept of depth-
first search and to the article [3] by Bouchitte et al. for a discussion of depth-first
search in ordered sets. In their article, the term super-greedy is replaced by depth-
first greedy.

In the remainder of this paper, we let SG (P) denote the set of all super-greedy
linear extensions of an ordered set P. We will follow the convention of abbreviating
super-greedy to SG.

SUPER-GREEDY DIMENSION

At the Oberwolfach meeting on ordered sets, the authors presented the results
given in Theorems 1 and 2 for greedy dimension. In his lecture, Kierstead gave a
short proof of Lemma 1. Subsequently, O. Pretzel proposed the definition of a
super-greedy linear extension (which he good humoredly suggested should be called
an imperial linear extension) and remarked that Kierstead’s proof of Lemma 1 was
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still valid for super-greedy linear extensions. For the sake of completeness, we
include this proof below. The authors gratefully acknowledge Pretzel’s insightful
remarks and suggestions concerning super-greedy linear extensions.

LemMA 2: Let C be a chain in an ordered set P. Then there exists a super-greedy
linear extension L of P so that C/P in L.

Proof: Choose a maximal chain C; containing C. Then construct a SG linear
extension L of P by adding the following tie-breaking constraint to the SG algo-
rithm.

T: Avoid elements of C, if possible.

By this we mean that when selecting x,. , from SG (i), we always take a point from
SG () — C, if this set is nonempty. We only take x;., from C, when SG (i) = C,.
We claim that the addition of this simple tie-breaking rule to the SG algorithm
always yields an SG linear extension L with C,/P in L. Since C = C,, we would
then conclude that C/P in L.
Suppose our claim that C,/P in L is false. Choose the least nonnegative integer i
so that x;,, € C, and there exists y € P such that x,,,|ly in P but x;,, <y in L.
Choose z € M(i) so that z < y in P. Since x;,, € C;, we know that z does not belong
to SG (i). It follows that J(i) is nonempty. Let k be the largest integer in J(i). Then
X <! X4 in P, but x|z in P. Since k < i, we know that x, ¢ C,. Since x, < x;,, in
P and C, is a maximal chain, x;,, is not the least element of C,. Let x,, be the
element of C, that is immediately under x,, . Since x; # x,, < x;,, in P, the choice
of k as the largest element in J(i) requires m < k. However, since C, is maximal, we
must have x,[ix,, in P. But this contradicts the choice of i. This completes the proof.
[m]

Just as was the case with greedy dimension, the preceding lemma justifies the
definition of the super-greedy dimension of an ordered set P, denoted dimgg(P), as
the least ¢ for which P has a super-greedy realizer, which consists of ¢ super-greedy
linear extensions of P. It is clear that super-greedy dimension is well defined and
that dim(P) < dim(P) < dimgg(P) for every ordered set P.

In order for the reader to gain some experience in working with super-greedy
dimension, we prove an elementary result providing conditions under which the
super-greedy dimension of an ordered set is the same as its dimension. The condi-
tions are identical to those known to hold for greedy dimension [2]. Some prelimi-
nary remarks are necessary. Recall that a subset D of an ordered set Q is called a
down set when x € D and y < x in Q imply y € D for all x, y € Q. Up sets are defined
analogously. The ordered set P consisting of all down sets of an ordered set Q
ordered by set inclusion is a distributive lattice with dim(P) = width (Q). Further-
more, every distributive lattice arises from this process. For an element x € P, we let
D(x) denote the down set {y € P: y < x in P} and D[x] = D(x) U {x}.

THEOREM 3: Let P be an ordered set. Then
dim(P) = dimg(P) = dimgs(P)

if either of the following conditions is satisfied:
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(a) dim(P) < 2.
(b) P is a distributive lattice.

Proof: Suppose first that dim(P) = 2. Choose two linear extensions L, and L, so
that P = L, n L,. We show that L, and L, are SG. Suppose that one of them, say
Ly, is not SG. Let L, : [x,, X,, ..., X,]. Choose a nonnegative integer i for which the
selection of x;,, violates the SG algorithm. Clearly, we must have i > 0. Let M(i),
J(i), and SG (i) be defined by the SG algorithm. Then x,., belongs to M(i) but not
to SG (). This implies that J(i) is nonempty. Let k be the least integer in J(). Choose
z € SG (j); then x, <: z in P. It follows that x,,, is incomparable with both of x,
and z, but is between them in L,;. This would require that z < x;,; <X, in L,,
which is impossible.

Now let P be a distributive lattice. Choose an ordered set Q so that P is iso-
morphic to the set of all down sets of Q ordered by set inclusion. We observe that if
L: [%4, X3, ..., X,] is a super-greedy linear extension of P, then x; = (. Further-
more, for each integer i with 2 < i < n, it is easy to see that J(i) # (&, so that when a
down set x;,, = D is chosen from SG (i), there is a down set x; = E € J(i) with
E <: Din P. This implies that Ec Dand |[D — E| = 1.

Now let t = width (Q) = dim(P), and let Q = C; U C, U - U C,, where each
C,is a chain. For each j = 1,2, ...., ¢, form an SG linear extension L; of P by adding
the following tie-breaking rule to the SG algorithm.

T;: For each i with 2 <i < n, choose x;., as a down set D from SG (i) so that if
k is the largest integer in J(i), x, = E, and D — E = {x}, then | {ce C;: x <¢
in P}|is as small as possible.

We claim that the tie-breaking rule T} yields a SG linear extension L; so that
D>F in L; whenever D and F are down sets of Q and |D n C;|>|E n Fyl.
Suppose the claim is false. Choose the least nonnegative integer i for which x;,, =
D, and there exists a down set F so that |[D n C;|>|F n C;|, and D <F in L;.
Without loss of generality, F € M(i). Furthermore, D # (&, so that i > 0. Let ¢ be
the largest element of D n C;. Then ¢ ¢ F. The minimality of i requires that
D = D[c].

Let k be the largest integer in J(i) and let x, be the down set E. Then it is clear
that E = D(c). Let « be the largest integer so that k <« <i+ 1 and x; <x, in P.
Let G=x,. Then G is not a subsét of F. Choose fe min(F—G) and let
H =G U {f}. The choice of « requires D < H in L;. However, the SG algorithm
will always prefer H'to D since it is obvious that fis not less than cin P. O

We comment that there is a third condition that is known to guarantee that
dim(P) = dimg(P). The diagram of an ordered set P is said to be N-free if P does not
contain points a, b, ¢, d so that a <: b, a <: ¢, d <: ¢, and d is not covered by bin
P. If the diagram of P is N-free, then dim(P) = dimg(P) [2]. In fact, Zaguia [11] has
extended this result to W-free ordered sets. However, as observed by Bouchitte et al.
[3], the ordered set in FIGURE 2 is N-free, but it is easy to see that dim(P)=
dimg(P) = 3, while dimgg(P) = 4.

A full characterization of those ordered sets P satisfying dim(P) = dimgsg(P)
appears to be hopelessly difficult. We conjecture that the problem of deciding
whether an ordered set satisfies dim(P) = dimgg(P) is NP-complete. Nevertheless, it
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FIGURE 2.

would be of interest to determine nontrivial conditions that force dim(P)=
dimgg(P). It would also be of interest to produce inequalities that bound dimss(P) in
terms of various combinatorial properties of P. In the remainder of this paper, we
discuss some results of this general flavor.

INEQUALITIES FOR SUPER-GREEDY DIMENSION

Let P be an ordered set and let {Q,: x € P} be a family of ordered sets indexed
by the points in P. The ordinal sum of {Q,: x € P}, denoted Y {Q,: x € P}, is the
ordered set R whose points are the pairs (x, y) with x € P and y € Q... The ordering
in R is given by (x, ) < (4, v) in R if and only if either x <uin Porx =wu andy <v
in Q. The first part of the following result was given in [5].

THEOREM 4: Let P be an ordered set, and let {Q,: x € P} be a family of ordered
sets indexed by the points of P. Also let t, = max{dimgQ,): x € P} and t, =
max{dimsg(Q,): x € P}. Then the following inequalities hold:

(a) max{t,, dim(P)} < dimg(Z {Q,: x € P}) < max{t,, dimg(P)}.
(b) max{t,, dim(P)} < dimsG(Z {Q,: x € P}) < max{t,, dimss(P)}.

Proof of (b): The upper bound follows from the observation that if L is an S§G
linear extension of P and L, is an SG linear extension of 0, for each x € P, then
T {L,: x € L} is an SG linear extension of £ {Q,: x € P}. The lower bound follows
from two observations. First, for each x e P, the restriction of an SG linear exten-
sion of £ {0, x € P} to O, is an SG linear extension of 0, . Second, the ordered set
Z {Q,: x € P} contains an isomorphic copy of P so dim(P) < dim(Z {Q,: x € P} <
dimgg(Z {Q,:x € P}). O

The ordered set P, in FiGURE 1 illustrates many of the curious properties of
greedy and super-greedy dimension. Let Q, denote the ordered. set obtained from P,
by removing the points {c;, ¢;, ..., ¢,~}. Observe that P, is an ordinal sum Z {E.:
x € Q,)} where each R, is either a one- or two-element antichain. It is straightfor-
ward to verify that the following statements are valid for all n > 3:

1. dim(P,) = dim(Q,) = dimg(Q,) = dimgq(Py) = 3.
2. dimg(P,) = dimgg(P,) = dimsg(@,) = n.



270 ANNALS NEW YORK ACADEMY OF SCIENCES

3. dimgg(Q, — x) = 2.
4. There is no greedy linear extension L of P,, so that P,/{x} in L.

It follows from these remarks that the behavior of ordinal sums with respect to
greedy dimension is fairly well understood in the sense that both the upper and
lower bounds in the inequalities of part (a) of Theorem 4 are tight. For super-greedy
dimension, the situation is not clear, and we make the following conjecture.

CoNJECTURE: For every ordered set P and every family {Q,: x e P},
dimg(Z {Q,: x € P}) = max{dimg(P), max{dims5(Q,): x € P}}.

A chain C in an ordered set P is called an initial chain if D[x] is a chain for every
x € C. An initial chain is maximal if it is not a proper subset of another initial chain.
If C is a maximal initial chain of P and L is a greedy linear extension of P — C, then
it is easy to see that the linear extension M of P whose restriction to P — C is L with
(P—C)/Cin M is a greedy linear extension of P. When combined with Lemma 1,
we have proved the following result [5].

LemMa 3: If C is 2 maximal initial chain in an ordered set P, then dimg(P) <
1 + dimg(P — C).

As observed in [3], the example in FIGURE 2 shows that Lemma 3 does not hold
for super-greedy dimension. We believe a stronger conclusion can be made.

CoNJECTURE: For every positive integer ¢, there exists an ordered set P so that
dimgg(P) > t + dimgg(P — C) for every chain C.

Despite the implications of the preceding conjecture, super-greedy linear exten-
sions enjoy one particularly nice property with respect to subsets. By way of con-
trast, note that this property does not hold for greedy linear extensions.

Lemma 4: If U is an up set of an ordered set and L is a super-greedy linear
extension of P, then the restriction of L to P — U is a super-greedy linear extension
of P—U.

By far, the most complex research on super-greedy dimension we have been
involved in to date has been concentrated on finding the appropriate generalization
of Theorem 2. We announce our results in the next three theorems. The proofs,
which are lengthy, will appear elsewhere.

THEOREM 5: Let A be a maximal antichain in an ordered set P so that
|P—A|>2 Let D=D(A), U=U(4), m=|D|, and n=|U]|. Then each of the
following inequalities is valid.

(@) If mn > 1, then dimgg(P) < mn + 1.
(b) If A = min(P), then dim(P) < n.
(¢) If 4 = max(P), then dim(P) < m.

THEOREM 6: For every positive integer m, there exists an ordered set P that
contains a maximal antichain 4 so that width (P — 4) = 1 and dimgg(P)n.

THEOREM 7: Let A be a maximal antichain in an ordered set P with width
(P — A) = n = 1. Then each of the following inequalities is-valid.
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(a) If A = min(P), then dimgg(P) < 2n.
(b) If A = max(P), then dimgs(P) < n + 1.

We have also been able to construct examples to show that the inequalities in
these theorems are best possible.
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