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Abstract .  The dimension of a poset (partially ordered set) P = (X,  P )  is the minimum number of linear 
extensions of P whose intersection is P. It is also the minimum number of extensions of P needed to 
reverse all critical pairs. Since any critical pair is reversed by some extension, the dimension t never 
exceeds the number of critical pairs ra. This paper analyzes the relationship between t and ra, when 
3 ~ t ~ m ~ t + 2, in terms of induced subposet containment. If m ~ t + 1 then the poset must 
contain S t, the standard example of a t-dimensional poset. The analysis for ra = t + 2 leads to dimension 
products and David Kelly's concept of a split. When t = 3 and m = 5, the poset must contain either 
S3, or the 6-point poser called a chevron, or the chevron's dual. When t i> 4 and m = t + 2, the poset 
must contain St, or the dimension product of the Kelly split of a chevron and St_3, or the dual of this 
product. 
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1. I n t r o d u c t i o n  

A poset (partially ordered set) P = (X,  P )  consists of  a finite set X and a reflexive, 
antisymmetric and transitive binary relation P on X.  A nonempty family 7~ of  linear 
extensions L of P is a realizer of P if P = A n  L. When R is a realizer of P and 
]7~[ = t, ~ is a t-realizer of P.  Dushnik and Miller [1] defines dim(P), the dimension 
of P, as the least positive integer t for which P has a t-realizer. 

In this paper we study another defimtion of  dim(P) that is based on incomparable 
pairs. Given a poset P = (X,  P) ,  z ~< V in P means that (z, V) E P,  and z It V in P ,  
the relation of  incomparability for x, V E X,  means that neither (x, V) nor (V, z) is in 
P.  We often omit 'in P'  when this is clear from the context. The symmetric set of  
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ordered incomparable pairs is 

inc(P) = ((x,  v) x × x :x  II v}. 

A member (x, V) of  inc(P) is critical if 

(1) for a l l u E X ,  u < x ~ u < s t ,  
(2) for a l l v E X ,  s t < v ~ z < v ,  

where x < y when z ~< St in P and z # V. The set of all critical ordered pairs in 
inc(P) is denoted by crit(P). 

Critical pairs were introduced in Rabinovitch and Rival [8] which shows that a 
family T¢ of  linear extensions of  P is a realizer of P if, and only if, for every 
(x, St) E c~t(P), there is an L E ~ with st < x in L. This is an easy consequence of  
the following observation. 

PROPOSITION 1.1. I f P  = (X, P)  is a poser and (a, b) E inc(P), then some (z, Y) E 
crit(P) has z <<. a in P and b <~ Y in P. 

We say that a linear order L on X reverses a subset S of inc(P) if Y < x in L for 
every (x, y) E S. Since every singleton subset of  inc(P) is reversed by some linear 
extension of  P ,  we note the following. Here and later a poset is nonlinear if it is 
not a linear order. 

PROPOSITION 1.2. I f  P = (X, P) is a nonlinear poset, then 

dim(P) ~< Icrit(v)l. 

Our primary goal in this paper is to solve the following extremat problem. 

CHARACTERIZATION PROBLEM 1.3. For integers t and m with 3 <~ t <<. m <<. 
t + 2, find the minimum set 7~(t, rn) so that i f P  = (X, P)  is a poset with dim(P) = t 
and Icrit(P)l = m ,  then P contains a poser in "P(t, m) as an induced subposet. 

The main analysis of the problem is in Section 4. Prior to that we develop background 
for the factors that contribute to the solution. We complete this introduction with 
remarks on cycles in inc(P) and related hypergraphs. Section 2 discusses the standard 
examples, and Section 3 introduces splits and dimension products. In Section 5, 
we give a brief discussion of the motivation for investigating our characterization 
problem. Throughout, the notation and terminology adhere to [9], which along with 
[10] offers general background on dimension theory and combinatorial problems for 
posers. 

For poset P = ( g ,  P )  and k >/2, an alternating cycle (o f  length k) is a sequence 
(Xl, Yl), (X2, Y2),' '  ', (Zk, Yk) of pairs of inc(P) such that yi ~ Zi+X for i = 1, 2 , . . . ,  k 
(Zk+l = Xl). The alternating cycle is strict if for all i and j ,  Vl ~< xj ~ j = i +  1. 
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The dual S d of S C_ X x X is defined by S a = {(V, x): (x, V) E S}. The dual 
of poset P = (X, P)  is pa = (X, pa). Clearly, dim(P) = dim(pa). The following is 
noted in [1]. 

LEMMA 1.4. Suppose P = (X, P) is a poser and o # S C_ inc(P). Then (1), (2) 
and (3) are equivalent: 

(1) some linear extension o f  P reverses S; 
(2) no sequence o f  pairs from S a is an alternating cycle; 
(3) no sequence of  pairs from S a is a strict alternating cycle. 

The approach to dimension by reversing critical pairs suggests a reformation in terms 
of hypergraph coloring. Recall that the chromatic number X(7-l) of a hypergraph 7-[ is 
the least positive integer t for which the vertex set can be partitioned into t subsets, 
called color classes, such that no edge of 7/ is  contained in one color class. 

For any poset P = (X, P), we define Ep, the hypergraph of  critical pairs, as 
follows. The vertex set of/(;p is crit(P), and S C_ crit(P) is an edge of/~p if S d 
contains an alternating cycle whose terms exhaust S d. The strict hypergraph of 
critical pairs E~ is defined similarly with S C crit(P) an edge if S d contains a strict 
alternating cycle whose terms exhaust S d. 

For any hypergraph 9[ = (X, £) let graph(7/) = (X, {E E g: IEI = 2}).  Note that 
graph(/Cp) = graph(/C~,) for poset P. A restatement of preceding observations gives 
the following result. 

PROPOSITION 1.5. I f  P = (X, P) is a nonlinear poset, then 

dim(P) = X(J(~p) = X ( ] ~ ) / >  x(graph(/Cp)). 

Although dim(P) > x(graph(g;p)) is possible, the following exception (which is 
implicit in the work of Ghoul~-Houri [2]) is noteworthy. 

THEOREM 1.6. A nonlinear poset P has dim(P) = 2 if  and only if  

= 2 .  

The proof of Theorem 1.6 actually yields the following slightly stronger result that 
will be used later. 

COROLLARY 1.7. Let P = (X, P) be a poset, and let S be a nonempty subset of  
crit(P). Then there is a partition {$1, $2) of  S such that for each Si some linear 
extension o f  P reverses Si if, and only if, the subgraph of  graph(If, p) induced by S 
is bipartite. 
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2. The  S t a n d a r d  Examples  

A poset P = (X, P)  is t-irreducible for t >t 2 if dim(P) = t and the removal of 
any point in X leaves a poset having dimension less than t. We say that P is 
irreducible if it is t-irreducible for some t i> 2. The only 2-irreducible poset is 
obviously a 2-element antichain. All 3-irreducible posers are identified in Kelly [4] 
and, independently, in Trotter and Moore [11]. 

For each n /> 2 let Sn denote the bipartite poset on 2n points with n minimal 
elements a b . . . ,  an, n maximal elements bt , . . . ,  bn, and ai < bj in Sn for all i and 
j if and only if i # j. Evidently, crit(Sn) = {(al, bi): i = 1 . . . .  ,n) ,  so dim(Sn) <~ n. 
It is also clear that no linear extension reverses more than one critical pair; in fact, 
S,~'s hypergraph of critical pairs is an ordinary graph, namely the complete graph 
Kn. Therefore dim(Sn) = n. We call S~ the standard example of an n-dimensional 
poset. For n >i 3, Sn is n-irreducible. 

The standard examples, introduced in [1], have played a key role in many combina- 
torial problems in dimension theory. An example is Hiraguchi's inequality [3] which 
says that dim(P) ~< IXI/2 if poset P = (X, P) has IXl >t 4. And if dim(P) i> n t> 4 
and IxI ~ 2n + 1 then P contains Sn as a subposet ([6], [8, p. 94]). The standard 
examples also belong to more general classes of posets studied in [6], [9]. 

There are exactly three 3-irreducible posets on six points. They are $3, the chevron 
C of Figure 1, and C a. Note t h a t / ~  is an ordinary graph cycle on five vertices. 

6 (1,5) . ~ 1 )  

I 2 (3,6) v u(4,3 ) (1,0)O" "-'-" "0(2,0) 

diagram of C 
Fig. 1. 

graph(/C~) = (/C~) diagram of split of C 

3. Splits and Dimension Products 

In this section we introduce splits and dimension products as defined in Kelly [5] 
(see [9], Chapter 2, for a more extensive discussion). Let P = (X, P) be a nonlinear 

poset. Let 

A(P)=  {x E X: (x,y) E crit(P) for some y E X}, 

B(P) = {y E X: (x,y) E crit(P) for some z E X}. 
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We define the split of P as the poset Q = (Y, Q) with 

r = (A(P) x {0}) U (B(P) x {1}) 

and with order Q defined in three parts as follows: 

(1) for all a, a' E A(P), (a, 0) x< (a', 0) in Q if a x< a' in P; 
(2) for all b, b' E B(P), (b, 1) ~< (b', 1) in Q if b ~< b' in P; 
(3) for all (a, b) E A(P) x B(P), (a, 0) < (b, 1) in Q if a x< b in P. 

See Figure 1 for the split of C. 
The dimension product P 1 ®P2 of nonlinear posers P1 = (X1, P1) and Pz = (X2, P2) 

is the poset Q = (Y, Q) which consists of the disjoint union of the splits of P1 and 
P2 plus the following additional comparabilities on Y = [(A(P1) x {0}) U (B(PI) x 
{1})] U [(A(P2) x {0}) U (B(P2) x {1})]: 

(4) for all (a, b) E A(P1) x B(P2), (a, 0) < (b, 1) in Q; 
(5) for all (a, b) e A(P2) × B(PI), (a, 0) < (b, 1) in Q. 

Kelly [5] proves the following result for dimension products. 

THEOREM 3.1. Let P1 and P2 be nonlinear posets. Then 

dim(P1 ® P2) = dim(Px) + dim(P2). 

We find it useful to extend the definition of Sn for n I> 2 by defining S1 = 
({al, bl}, {(al, al), (hi, bl)}), the 2-point antichain. When n /> 2, note that the split 
of Sn is isomorphic to Sn. This is not true for Sl. However, when P is a nonlinear 
poset, we define $1 ® P so that it is consistent with the definition of Sn ® P for n i> 2. 
Accordingly, for all n/> 1, we take Sn ® P as the union of disjoint copies of Sn and 
the split of P with the additional comparabilities 

(4') as < (b, 1) in S,~ N P for all i E {1, . . . ,  n} and all b E B(P), 
(5') (a, 0) < bi in S,~ ® P  for all i E {1 , . . . , n}  and all a E A(P). 

With C the chevron of Figure 1, note that for all t /> 4, the dimension product 
S,-3 ® C is a t-dimensional poset (see Theorem 3.1) with exactly t + 2 critical pairs. 

4. Character izat ion Theorems  

This section establishes a complete characterization of posets for which the number 
of critical pairs exceeds the dimension by at most two. We assume throughout that 

dim(P) = t/> 3, 

fcrit(P)l = m ~< t + 2. 
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The ra critical pairs are labelled so that 

cfit(P) = {(zi, Vi): i = 1 , . . . ,  m}, 

and we often identify (zi, Vi) simply by i. Thus {1, 2 , . . . ,  rn} identifies the vertex set 
of hypergraphs/Cp a n d / q , .  For brevity, we denote graph(/Cp) by G and speak of  i 
in the vertex set of  G as the critical pair (i.e. (xi, Vi)) thus identified. We say also 
that poset P = (X, P) contains Q = (Y, Q) when P contains an induced subposet 
isomorphic to Q. 

We begin the characterization process with the following elementary result. 

LEMMA 4.1. / f G  contains K, then P contains St. 
Proof  Suppose the subgraph of G induced by {1, 2 , . . . , 4}  is a complete graph 

K,. For all distinct i , j  E {1 ,2 , . . . ,4}  we know that xi ~< Vj and xj x< Vi in P .  The 
conclusion of the lemma follows if zi # Vj for all distinct i , j  E {1, 2 , . . . , t ) .  

To the contrary, suppose for definiteness that Zl =//2.  Since 4/> 3, we conclude 
that x3 ~< V2 = z l  ~< Y3- Then zs ~< V3, thus contradicting (z3, V3) E crit(P). [] 

Note that the conclusion of  Lemma 4.1 fails if G contains/(2.  

THEOREM 4.2. I f  m <~ 4 + 1, then P contains St. 
Proof. If G contains a K~, the desired result follows from Lemma 4.1. Assume 

henceforth without loss of generality that {1, 2} is not an edge of G. Then a single 
linear extension reverses critical pairs 1 and 2. Hence dim(P) ~< m - 1, so m = 4 + 1. 
Moreover, G is complete on the 4 - 1  vertices in {3 ,4 , . . .  , t +  1}, else dim(P) ~< 4 - 1 .  

For i E { 1, 2} let 

Ni = {j: 3 ~< j ~< 4 + 1 and {i , j}  is not an edge of G}. 

If either Ni is empty, Lemma 4.1 shows that P contains St. Assume henceforth 

that X 1 ¢ O ~k N2. 
Suppose j E N1, k E N2, and j # k. Then some one linear extension of P 

reverses 1 and j, and another reverses 2 and k. To avoid the resulting contradiction 
that dim(P) < t, assume henceforth without loss of generality that N1 = N2 = {3}. 

Then {1, 2, 3} is an edge of/Or,, since otherwise a single linear extension reverses 
all three critical pairs in violation of dim(P) = t. Suppose for definiteness that the 
alternating cycle for {1, 2, 3} is (Yl, Zl), (Y2, X2), (Y3, ZS). Then Zl ~< Y2, Z2 ~ Y3 
and z3 ~< Vl, and it follows that {Zl, z3, x4 , . . . ,  Xt+l} U {Vl, V2, V4, . . . .  V,+l} yields a 
copy of St. [] 

Throughout the rest of this section, [n] = {1, 2 , . . . ,  n).  
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THEOREM 4.3. I f  m <<. 5, then P contains S3, C, or C d. 

THEOREM 4.4. I f  t >>. 4, then P contains St, St-3 @ C, or St-3 ® C a. 

The proofs consume the rest of the section. 

Proof of  Theorem 4.3. We argue by contradiction. Assume that (t, m) = (3, 5), 
since otherwise the conclusion of Theorem 4.3 follows from Theorem 4.2. We know 
also that the chromatic number of G is 3. If G contains a triangle then P contains 
$3. Assume that P doesn't contain Ss. Then G is a cycle on five vertices: see 
Corollary 1.7. Relabelling if necessary, assume for each i ~< 5 that xi <<. Vi+l and 
xi <~ Yi-1 (Y6 = Yl, Y0 = YS)- We proceed by cases through a series of claims. 
Indices are interpreted cyclically in all cases. 

CLAIM 1. For all i <~ 5, either zi 11 Yi+2 or xi < Yi+2, and either xi ]1 yi-2 or 
xi < Yl-2. 

Proof If Yi+2 <~ zi, then xi+l <~ Yi+2 <~ xi <~ Yi+l, so Xi+l ~< Yi+l, a contradiction 
to (xi+l, Yi+i) E crit(P). Hence either xl H Yi+2 or xi < Yi+2- A symmetric proof 
applies to xi and Yi-2. [] 

CLAIM 2. For all i <<. 5, either xi tl Yi+2 or ~i+2 II y¢. 
Proof Else, by Claim 1, xi < Yi+2 and zi+2 < yi, so {zi,  xi+1, xi+2, Yi, Yi+l, Yi+2} 

is a copy of $3. [] 

CLAIM 3. For all i <~ 5, xi l[ Xi+l and Yi 11 Yi+l. 
Proof Otherwise our labelling scheme for G gives xi <<. yi. [] 

CLAIM 4. For all i <~ 5, 

JJ v +2) <. or v +2 <<. 

and 

Proof Suppose xi ]] Yi+2. By Proposition 1.1, let (xj, yj) in crit(P) have xj ~< xi 
and Yi+2 ~< Yj. I f j  = i + 1  then xi+l <. xi << Yi+l, so Xi+l <~ Yi+I. This contradiction 
shows that j # i + 1. If  j = i - 1, a similar contradiction obtains, so j # i - 1. If 
j = i - 2, then xi+3 <<. Yi+2 <~ Yi-2 = Yi+3, another contradiction. So j # i - 2. If 
j = i then Yi+2 <~ yi; if j = i + 2 then xi+2 <~ xi. The argument for xi+2 and yi is 
similar. [] 

Now for each i E [5] let 

U(xi) = { j  e [5]: xi <~ yj }, 

D(yi) = { j  e [5]: xj < y,}. 
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CLAIM 5. For all i, j ~ [5], 

V(x 0 _C V(xj) ==~ (xj, xl) ¢ inc(P) 

and 

D(y~) D_ D(yi) ==~ (yj, y~) f~ inc(P). 

Proof. Suppose otherwise for the first implication that 

U(xi) C_ U(a:j) and (a:j, x~) E inc(P). 

Since U(zl) ~ U(~i+I) and U(xi) ~ U(xi-1), we may assume that j = i + 2 .  Choose 
(xk, y~) E crit(P) so that xk <~ xj = xi+2 and xi <~ yk. Inequality zk <~ zi+2 implies 
t h a t k ¢ i + l  and k ~ i + 3 = i - 2 ;  xi ~< yk implies k ¢  i. I f k = i + 2 t h e n  
U(xi) C__ U(xi+2) implies xi+2 ~< Yi+2, which is false. Finally, if k = i -  1 then 
U(zi) C_ U(xi+2) and hence xi+2 ~< Yi-1. However, xk = zi-1 ~ zi+2 then gives 
xi-1 ~< Yi-t, a contradiction. We conclude that U(zi) C__ U(xj) ~ (xj, zi) ~ inc(P). 
The proof of the D implication is similar. [] 

CLAIM 6. For some i E [5], either 

(1) xi <~ Xi+2 and xi ~ Xi-2 ,  

or  

(2) Yi+2 <. Yi and Yi-2 <. Yi. 

Proof. Suppose to the contrary that (1) and (2) fail for every i. By Claim 1 and 
symmetry, we may assume that Xl H Ys. By Claim 4, x3 ~< Xl or Ys ~< Yl. Using 
duality, we may assume that x3 x< Xl. Then x3 x< Ys, so Y3 H x5 by Claim 2. 
Therefore x3 ~< x5 or Y3 x < Ys. However, x3 ~< x5 satisfies (1), so we have x3 ~ x5 
and Y3 x< Ys. It follows that zz <<. Y5 and x5 t1 Yz. This in turn requires Y2 g Y5 and 
X 2 ~ X 5. Then Z 2 ~ Y4 and Y2 [1 X4, SO •2 ~ X4 and Y2 ~ Y4. Thus  x I ~ Y4 and 
x4 [[ Yl. Claim 4 applied to x4 [[ Yl gives xl ~< x4 or Yl x < Y4- However, xl ~< x4 
and x3 ~< Zl imply x3 <~ x4, contrary to Claim 3, and Yl x< Y4 and Y2 ~< Ya violate 
our supposition that (2) fails. [5 

In view of Claim 6, assume henceforth without loss of generality that Y3 <~ Yl 
and Y4 <x Yl. We show that P contains C or C d. In anticipation of the proof of 
Theorem 4.4, we prove that either 

(I) P contains a copy of C with A(C) C_ { z l , . . . ,  xs} and B(C) C_ {Yl, . . . ,  Ys), 
or 

(II) P contains a copy of C d with A(C) C_ { x l , . . . ,  xs} and B(C) C_ {y l , . . . ,  ys}. 

Since xt  I[ Yl by our initial labelling of crit(P) in this section, we require xl ~ Y3, 
and xl  ~ Y4, so U(xl) = {2, 5). We divide further arguments into two cases. 
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Case 1. HYPOTHESIS: either V2 1[ z4 or z3 II us. 

Assume without loss of generality that Y2 ]l x4. By Claim 4, x2 <~ x4 or V2 ~ Y4. 
Since Yz <~ Y4 along with z l  ~< Yz and Y4 <. Yx yields z l  <~ Yl, which is false, we 

have Y2 ~ Y4 and x2 x< x4. Then ;g2 ~ Y5 and Y2 II xs. Therefore O(y2) = {1, 3}. 

If z 3 [[ V5 then {aZl, Z3,z4, Yl, Y2,Y5 } yields $3, so we have z3 ~< V5 and V3 I] xs. 
At this point we know that D(Vs) = {1, 2, 3,4} and D(V3) = {2,4}, so Claim 5 
gives (Vs, V3) ~ inc(P). It follows that V3 ~< Vs. We also have U(Zl) = {2, 5}, 
U(x3) = {2,4,5}, U(x4) = {1,3,5} and U(xs) = {1,4}. Recalling that x2 ~< x4, 
Case 1 now splits into two subcases. 

Subcase la. HYPOTHESIS: x2 < x4. 

Since (z4, v4) is a critical pair, Z 2 < Y4. Therefore U(x2) = {1, 3, 4, 5}, and we know 
U(zi) and D(Vi) for every i E [5]. Furthermore, it follows from Claim 5 that the 
subposets of P determined by the W and by the xi are as shown in Figure 2. 

x I x 5 x4 
Y5 Yl 

x 3 x2 
Y2 Y3 Y4 

Fig. 2. 

However, we do not know whether <x in each of z l  x< gz, x5 x< Va and x 4 ~ Y3 is 
= or <. Figure 3 gives a pseudo-diagram of P that encloses these three ,< in ovals. 

It follows easily that both (I) and (II) hold. 

Y5 Yl 

x 3 x2 

Fig. 3. 
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Subcase lb. HYPOTHESIS: x2 = z4. 

In this subcase, we know that the subposet of P determined by the Vi is the same as 
shown in Figure 2. Figure 4 shows the new subposet on the xl. 

X 1 X 5 

V 
x 3 

O 

X 2 = X  4 

Fig. 4. 

We do not know whether ~ in each of z2 ~< Y3, ;gl ~ Y'2 and x5 <~ V4 is = or <. 
Figure 5 represents this in a manner similar to Figure 3. Regardless of whether any 
or all of  the oval pairs are distinct, we observe that (II) holds for P. 

Y5 Yl 

xll 
X 3 

Fig. 5. 

Case 2. HYPOTHESIS: x 4 <~ Y2 and z3 < Vs. 

By Claim 2, z2 ft Y4 and z5 II Y3. Moreover, either x 2 II y5 or V2 1I zs. By 
symmetry, we may assume that z2 II Ys. Then U(z l )  = {2,5),  U(z2) = {1,3),  
U(z3) = {1 ,2 ,4 ,5) ,  and U(z4) = {1 ,2 ,3 ,5) .  If z5 < V2, relabelling yields the 

situation of  Subcase la, where both (I) and (II) hold. If z5 II v2, then V2 = V5 and 
we get the dual of  Subcase lb  where (I) holds for P. 

Proof of Theorem 4.4. We again argue by contradiction under the assumption 
that P does not contain S~. We know by Theorem 4.2 that m = t + 2. Moreover, 
for each n with 4 <x n ~< t + 2, no set of n critical pairs can be reversed by only 
n - 3 linear extensions. Also, by Lemma 4.1, G does not contain Kt. We may 
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therefore assume that {1, 3} is not an edge of G. Since the subgraph of G induced 
by {2, 4, 5 , . . . ,  t + 2} is not complete, we may assume also that {2, 4} is not an edge 
of G. For each i E {1,2,3,4} let 

Ni = {j: 5 <~ j ~< t + 2 and {i,j} is not an edge of G}. 

We continue with a series of claims. 

CLAIM 1. N 1 N N 3 = o = N 2 n N 4 .  
Proof. Suppose to the contrary of N1 n N3 ¢ o that j E N1 n N3. Consider the 

subgraph of G induced by {1, 2, 3, 4, j}. It contains no triangle and is not induced by 
a cycle on five vertices. It follows that two linear extensions reverse the five critical 
pairs in {1,2,3,4,j}, a contradiction. Thus N1 n N3 = 0. Similarly, Nz n N4 = 0. 

[] 

CLAIM 2. Either N1 = 0 or N3 = 0. Either Nz = 0 or N4 = 0.  
Proof. Suppose both N1 and N3 are nonempty. By Claim 1 we have j E N1, 

k E N3 and j # k. It follows that three linear extensions (one each for {t , j},  {3, k}, 
{2, 4}) reverse the six critical pairs in {1, 2, 3, 4, j,  k}, a contradiction. The argument 
for N2 and N4 is symmetric. [] 

We assume henceforth without loss of generality that N 1 = N4 = 0 .  Then {1,4} is 
not an edge of G, since otherwise P contains St. 

CLAIM 3. There is a unique j E {5, 6 , . . . ,  t + 2} for which N2 = N3 = {j}. 
Proof. Suppose N2 = 0. If {1, 2} is an edge of G, we get St. Hence {1, 2} is 

not an edge of G. Take j E {5 ,6 , . . . , t  + 2} and consider the five critical pairs 
in {1, 2, 3,4, j}. Since we need three linear extensions to reverse these five pairs, 
{3,4,j} induces a triangle in G, contrary to an hypothesis since it implies that P 
contains S~. We conclude that Nz 7 ~ 0.  Similarly, N3 ¢ 0.  If j E N2, k E N3 and 
j # k, we get a set of six critical pairs which are reversed by three linear extensions, 
a contradiction. Hence N2 = N3 = {j} for some j. [] 

Assume without loss of generality that Nz = N3 = {5}. It follows that {1, 2, 3, 4, 5} 
induces a 5-cycle in G and that {i, i + 1} (cyclically) is an edge of G for i = 
1, 2, 3, 4, 5. 

CLAIM 4. For all i E {1, . . . ,5} a n d j  E {6, . . . , t  + 2}, {i,j} is an edge of  G. 
Proof. Otherwise three linear extensions reverse the six critical pairs in { 1, 2, 3, 4, 5, 

j}. [] 

CLAIM 5. P contains St_ 3 @ C or St-3 ® C d. 
Proof. It is routine to see that all six claims in the proof of Theorem 4.3 are valid 

in the present setting. The proof of Claim 5 and hence of Theorem 4.4 is completed 
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by the following observations. First, for all i, j E [5], zi ~ yj. This follows from the 
fact that xi ~< ?/6 and a:6 <~ yj for all i, j E [5]. Second, if the hypothesis of Case 1 
near the end of the proof of Theorem 4.3 holds, then P contains St-3 ® C a, and if 
the hypothesis of Case 2 holds then P contains S,_3 ® C. [] 

5. Motivation: A Conjecture Concerning Incomparable  Pairs 

The original motivation for investigating the characterization problem discussed in 
this paper is the following conjecture made by the first author. 

CONJECTURE 5.1. For  each n >>. 4, any poset  P with dimension at least n contains 

at least n 2 incomparable pairs. Furthermore, if dim(P) = n and P contains exactly 

n 2 incomparable pairs, then P contains the standard example Sn as a subposet. 

In [7], Jun Qin verifies this conjecture when n = 4. He also shows that any 5- 
dimensional poset has at least 24 incomparable pairs. The argument for this partial 
result is quite complicated and seems to suggest that a more complete understanding 
of the relationship between dimension and the number of incomparable pairs (and 
for that matter, the number of critical pairs) remains to be discovered. 
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