Seminars and Colloquia by Series

Monday, January 22, 2018 - 14:30 , Location: UGA , TBA , TBA , Organizer: Caitlin Leverson
Monday, January 22, 2018 - 14:30 , Location: UGA , TBA , TBA , Organizer: Caitlin Leverson
Monday, January 22, 2018 - 13:55 , Location: Skiles 005 , Dr. Lee, Kiryung , GT ECE , Organizer: Sung Ha Kang
There are numerous modern applications in data science that involve inference from incomplete data. Various geometric prior models such as sparse vectors or low-rank matrices have been employed to address the ill-posed inverse problems arising in these applications. Recently, similar ideas were adopted to tackle more challenging nonlinear inverse problems such as phase retrieval and blind deconvolution. In this talk, we consider the blind deconvolution problem where the desired information as a time series is accessed as indirect observations through a time-invariant system with uncertainty. The measurements in this case is given in the form of the convolution with an unknown kernel. Particularly, we study the mathematical theory of multichannel blind deconvolution where we observe the output of multiple channels that are all excited with the same unknown input source. From these observations, we wish to estimate the source and the impulse responses of each of the channels simultaneously. We show that this problem is well-posed if the channel impulse responses follow a simple geometric model.  Under these models, we show how the channel estimates can be found by solving corresponding non-convex optimization problems. We analyze methods for solving these non-convex programs, and provide performance guarantees for each.
Monday, January 22, 2018 - 13:55 , Location: Skiles 005 , Dr. Lee, Kiryung , GT ECE , Organizer: Sung Ha Kang
There are numerous modern applications in data science that involve inference from incomplete data. Various geometric prior models such as sparse vectors or low-rank matrices have been employed to address the ill-posed inverse problems arising in these applications. Recently, similar ideas were adopted to tackle more challenging nonlinear inverse problems such as phase retrieval and blind deconvolution. In this talk, we consider the blind deconvolution problem where the desired information as a time series is accessed as indirect observations through a time-invariant system with uncertainty. The measurements in this case is given in the form of the convolution with an unknown kernel. Particularly, we study the mathematical theory of multichannel blind deconvolution where we observe the output of multiple channels that are all excited with the same unknown input source. From these observations, we wish to estimate the source and the impulse responses of each of the channels simultaneously. We show that this problem is well-posed if the channel impulse responses follow a simple geometric model.  Under these models, we show how the channel estimates can be found by solving corresponding non-convex optimization problems. We analyze methods for solving these non-convex programs, and provide performance guarantees for each.
Monday, January 22, 2018 - 11:15 , Location: skiles 005 , Alex Haro , University of Barcelona , Organizer: Livia Corsi
Some relevant Hamiltonian systems in Celestial Mechanics have first integrals in involution. A classic technique to study such systems, known as symplectic reduction, is based in reducing the number of degrees of freedom by using the first integrals. In this talk we present two a posteriori KAM theorems for Hamiltonian systems with first integrals in involution, including the isoenergetic case, without using symplectic reduction. The approach leads to efficient numerical methods and validating techniques.This is a joint work with Alejandro Luque.
Monday, January 22, 2018 - 11:15 , Location: skiles 005 , Alex Haro , University of Barcelona , Organizer: Livia Corsi
Some relevant Hamiltonian systems in Celestial Mechanics have first integrals in involution. A classic technique to study such systems, known as symplectic reduction, is based in reducing the number of degrees of freedom by using the first integrals. In this talk we present two a posteriori KAM theorems for Hamiltonian systems with first integrals in involution, including the isoenergetic case, without using symplectic reduction. The approach leads to efficient numerical methods and validating techniques.This is a joint work with Alejandro Luque.
Friday, January 19, 2018 - 13:05 , Location: Skiles 005 , Sarah Cannon , CS, Georgia Tech , sarah.cannon@gatech.edu , Organizer: He Guo
Studying random samples drawn from large, complex sets is one way to begin to learn about typical properties and behaviors. However, it is important that the samples examined are random enough: studying samples that are unexpectedly correlated or drawn from the wrong distribution can produce misleading conclusions. Sampling processes using Markov chains have been utilized in physics, chemistry, and computer science, among other fields, but they are often applied without careful analysis of their reliability. Making sure widely-used sampling processes produce reliably representative samples is a main focus of my research, and in this talk I'll touch on two specific applications from statistical physics and combinatorics.I'll also discuss work applying these same  Markov chain processes used for sampling in a novel way to address research questions in programmable matter and swarm robotics, where a main goal is to understand how simple computational elements can accomplish  complicated system-level goals. In a constrained setting, we've answered this question by showing that groups of abstract particles executing our simple processes (which are derived from Markov chains) can provably accomplish remarkable global objectives. In the long run, one goal is to understand the minimum computational abilities elements need in order to exhibit complex global behavior, with an eye towards developing systems where individual components are  as simple as possible.This talk includes joint work with Marta Andrés Arroyo, Joshua J. Daymude, Daniel I. Goldman, David A. Levin, Shengkai Li, Dana Randall, Andréa Richa, William Savoie, Alexandre Stauffer, and Ross Warkentin. 
Friday, January 19, 2018 - 13:05 , Location: Skiles 005 , Sarah Cannon , CS, Georgia Tech , sarah.cannon@gatech.edu , Organizer: He Guo
Studying random samples drawn from large, complex sets is one way to begin to learn about typical properties and behaviors. However, it is important that the samples examined are random enough: studying samples that are unexpectedly correlated or drawn from the wrong distribution can produce misleading conclusions. Sampling processes using Markov chains have been utilized in physics, chemistry, and computer science, among other fields, but they are often applied without careful analysis of their reliability. Making sure widely-used sampling processes produce reliably representative samples is a main focus of my research, and in this talk I'll touch on two specific applications from statistical physics and combinatorics.I'll also discuss work applying these same  Markov chain processes used for sampling in a novel way to address research questions in programmable matter and swarm robotics, where a main goal is to understand how simple computational elements can accomplish  complicated system-level goals. In a constrained setting, we've answered this question by showing that groups of abstract particles executing our simple processes (which are derived from Markov chains) can provably accomplish remarkable global objectives. In the long run, one goal is to understand the minimum computational abilities elements need in order to exhibit complex global behavior, with an eye towards developing systems where individual components are  as simple as possible.This talk includes joint work with Marta Andrés Arroyo, Joshua J. Daymude, Daniel I. Goldman, David A. Levin, Shengkai Li, Dana Randall, Andréa Richa, William Savoie, Alexandre Stauffer, and Ross Warkentin. 
Series: Other Talks
Friday, January 19, 2018 - 09:05 , Location: Skiles 005 , Several Speakers , Several affiliations. , Organizer: Rafael de la Llave
This is a workshop designed to provide an introduction to the use of modern tools from Dynamical Systems in the design of space exploration missions.   More details and a detailed schedule is found in  http://people.math.gatech.edu/~rll6/JPL/jpl.html
Series: Other Talks
Friday, January 19, 2018 - 09:05 , Location: Skiles 005 , Several Speakers , Several affiliations. , Organizer: Rafael de la Llave
This is a workshop designed to provide an introduction to the use of modern tools from Dynamical Systems in the design of space exploration missions.   More details and a detailed schedule is found in  http://people.math.gatech.edu/~rll6/JPL/jpl.html

Pages