- You are here:
- GT Home
- Home
- News & Events

Series: High Dimensional Seminar

TBA

TBA

Series: Geometry Topology Seminar

Series: Geometry Topology Seminar

Series: Geometry Topology Seminar

Series: Geometry Topology Seminar

We prove that every rational homology cobordism class in the subgroup generated by lens spaces contains a unique connected sum of lens spaces whose first homology embeds in any other element in the same class. As a consequence we show that several natural maps to the rational homology cobordism group have infinite rank cokernels, and obtain a divisibility condition between the determinants of certain 2-bridge knots and other knots in the same concordance class. This is joint work with Daniele Celoria and JungHwan Park.

Series: Geometry Topology Seminar

In this talk, I will discuss progress in our understanding of Legendrian surfaces. First, I will present a new construction of Legendrian surfaces and a direct description for their moduli space of microlocal sheaves. This Legendrian invariant will connect to classical incidence problems in algebraic geometry and the study of flag varieties, which we will study in detail. There will be several examples during the talk and, in the end, I will indicate the relation of this theory to the study of framed local systems on a surface. This talk is based on my work with E. Zaslow.

Series: Geometry Topology Seminar

One of the classical problems in scissors congruence is

this: given two polytopes in $n$-dimensional Euclidean space, when is

it possible to decompose them into finitely many pieces which are

pairwise congruent via translations? A complete set of invariants is

provided by the Hadwiger invariants, which measure "how much area is

pointing in each direction." Proving that these give a complete set

of invariants is relatively straightforward, but determining the

relations between them is much more difficult. This was done by

Dupont, in a 1982 paper. Unfortunately, this result is difficult to

describe and work with: it uses group homological techniques which

produce a highly opaque formula involving twisted coefficients and

relations in terms of uncountable sums. In this talk we will discuss

a new perspective on Dupont's proof which, together with more

topological simplicial techniques, simplifies and clarifies the

classical results. This talk is partially intended to be an

advertisement for simplicial techniques, and will be suitable for

graduate students and others unfamiliar with the approach.

Series: ACO Student Seminar

In network routing users often tradeoff different objectives in selecting their best route. An example is transportation networks, where due to uncertainty of travel times, drivers may tradeoff the average travel time versus the variance of a route. Or they might tradeoff time and cost, such as the cost paid in tolls.

We wish to understand the effect of two conflicting criteria in route selection, by studying the resulting traffic assignment (equilibrium) in the network. We investigate two perspectives of this topic: (1) How does the equilibrium cost of a risk-averse population compare to that of a risk-neutral population? (i.e., how much longer do we spend in traffic due to being risk-averse) (2) How does the equilibrium cost of a heterogeneous population compare to that of a comparable homogeneous user population?

We provide characterizations to both questions above.

Based on joint work with Richard Cole, Thanasis Lianeas and Nicolas Stier-Moses.

At the end I will mention current work of my research group on algorithms and mechanism design for power systems.

**Biography: ** Evdokia Nikolova is an Assistant Professor in the Department of Electrical and Computer Engineering at the University of Texas at Austin, where she is a member of the Wireless Networking & Communications Group. Previously she was an Assistant Professor in Computer Science and Engineering at Texas A&M University. She graduated with a BA in Applied Mathematics with Economics from Harvard University, MS in Mathematics from Cambridge University, U.K. and Ph.D. in Computer Science from MIT.

Nikolova's research aims to improve the design and efficiency of complex systems (such as networks and electronic markets), by integrating stochastic, dynamic and economic analysis. Her recent work examines how human risk aversion transforms traditional computational models and solutions. One of her algorithms has been adapted in the MIT CarTel project for traffic-aware routing. She currently focuses on developing algorithms for risk mitigation in networks, with applications to transportation and energy. She is a recipient of an NSF CAREER award and a Google Faculty Research Award. Her research group has been recognized with a best student paper award and a best paper award runner-up. She currently serves on the editorial board of the journal Mathematics of Operations Research.

Series: Dissertation Defense

For a first order (deterministic) mean-field game with non-local running and initial couplings, a classical solution is constructed for the associated, so-called master equation, a partial differential equation in infinite-dimensional space with a non-local term, assuming the time horizon is sufficiently small and the coefficients are smooth enough, without convexity conditions on the Hamiltonian.