Seminars and Colloquia by Series

ACO/Theory Seminar: A Polynomial Time Algorithm for Rank-1 Bimatrix Games (Despite Disconnected Solutions)

Series
Other Talks
Time
Wednesday, April 24, 2013 - 15:00 for 1 hour (actually 50 minutes)
Location
Klaus 1456
Speaker
Ruta MehtaIndian Institute of Technology, Bombay
The rank of a bimatrix game (A, B) is defined as the rank of (A+B). For zero-sum games, i.e., rank 0, Nash equilibrium computation reduces to solving a linear program. We solve the open question of Kannan and Theobald (2005) of designing an efficient algorithm for rank-1 games. The main difficulty is that the set of equilibria can be disconnected. We circumvent this by moving to a space of rank-1 games which contains our game (A, B), and defining a quadratic program whose optimal solutions are Nash equilibria of all games in this space. We then isolate the Nash equilibrium of (A, B) as the fixed point of a single variable function which can be found in polynomial time via an easy binary search. Based on a joint work with Bharat Adsul, Jugal Garg and Milind Sohoni.

Using semigroups to study coupled cell networks

Series
Mathematical Biology Seminar
Time
Wednesday, April 24, 2013 - 11:05 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
B.W. RinkVrije Univ. Amsterdam
Abstract: Dynamical systems with a coupled cell network structure arise in applications that range from statistical mechanics and electrical circuits to neural networks, systems biology, power grids and the world wide web. A network structure can have a strong impact on the behaviour of a dynamical system. For example, it has been observed that networks can robustly exhibit (partial) synchronisation, multiple eigenvalues and degenerate bifurcations. In this talk I will explain how semigroups and their representations can be used to understand and predict these phenomena. As an application of our theory, I will discuss how a simple feed-forward motif can act as an amplifier. This is joint work with Jan Sanders.

On well-posedness for a class of first order Hamilton-Jacobi equation in metric spaces

Series
PDE Seminar
Time
Tuesday, April 23, 2013 - 15:05 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Jin FengUniversity of Kansas
Using metric derivative and local Lipschitz constant, we define action integral and Hamiltonian operator for a class of optimal control problem on curves in metric spaces. Main requirement on the space is a geodesic property (or more generally, length space property). Examples of such space includes space of probability measures in R^d, general Banach spaces, among others. A well-posedness theory is developed for first order Hamilton-Jacobi equation in this context. The main motivation for considering the above problem comes from variational formulation of compressible Euler type equations. Value function of the variation problem is described through a Hamilton-Jacobi equation in space of probability measures. Through the use of geometric tangent cone and other properties of mass transportation theory, we illustrate how the current approach uniquely describes the problem (and also why previous approaches missed). This is joint work with Luigi Ambrosio at Scuola Normale Superiore di Pisa.

Riemann, Boltzmann and Kantorovich go to a party

Series
Stelson Lecture Series
Time
Monday, April 22, 2013 - 16:00 for 1.5 hours (actually 80 minutes)
Location
Klaus 1116
Speaker
Cedric VillaniInstitut Henri Poincare, CNRS/UPMC

Please Note: General Audience Lecture. Reception to follow in Klaus Atrium.

This talk is the story of an encounter of three distinct fields: non-Euclidean geometry, gas dynamics and economics. Some of the most fundamental mathematical tools behind these theories appear to have a close connection, which was revealed around the turn of the 21st century, and has developed strikingly since then.

p-adic heights and integral points on hyperelliptic curves

Series
Algebra Seminar
Time
Monday, April 22, 2013 - 15:05 for 1 hour (actually 50 minutes)
Location
Skiles 005
Speaker
Jennifer BalakrishnanHarvard University
We give a Chabauty-like method for finding p-adic approximations to integral points on hyperelliptic curves when the Mordell-Weil rank of the Jacobian equals the genus. The method uses an interpretation ofthe component at p of the p-adic height pairing in terms of iterated Coleman integrals. This is joint work with Amnon Besser and Steffen Mueller.

Shifting Paradigm: Agent-Based Modelling and its Application to Disease Dynamics

Series
Applied and Computational Mathematics Seminar
Time
Monday, April 22, 2013 - 14:00 for 1 hour (actually 50 minutes)
Location
Skiles 005
Speaker
Prof. Seyed MoghadasYork University
Modelling and computational approaches provide powerful tools in the study of disease dynamics at both the micro- and macro-levels. Recent advances in information and communications technologies have opened up novel vistas and presented new challenges in mathematical epidemiology. These challenges are central to the understanding of the collective dynamics of heterogeneous ensembles of individuals, and analyzing pertinent data that are less coarse and more complex. The evolution of dynamic modelling is typified by the agent-based modelling (ABM) as a shifting paradigm, a lattice-distributed collection of autonomous decision-making entities (i.e., agents), the interactions of which unveil the dynamics and emergent properties of a real-life problem, such as an infectious disease outbreak. In this talk, we show a general framework for developing an ABM that can be used to computationally optimize intervention strategies for novel influenza viruses with pandemic potential. Our findings contrast previous results !

Bounds on the eigenvalues of Laplace-Beltrami operators and Witten Laplacians on Riemannian manifolds

Series
Math Physics Seminar
Time
Friday, April 19, 2013 - 15:00 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Ahmad El SoufiUniversité François Rabelais, Tours, France

Please Note: El Soufi will be visiting Harrell for the week leading up to this seminar

We shall survey some of the classical and recent results giving upper bounds of the eigenvalues of the Laplace-Beltrami operator on a compact Riemannian manifold (Yang-Yau, Korevaar, Grigor'yan-Netrusov-Yau, etc.). Then we discuss extensions of these results to the eigenvalues of Witten Laplacians associated to weighted volume measures and investigate bounds of these eigenvalues in terms of suitable norms of the weights.

Stochastic Representation of Solutions to Degenerate Elliptic Boundary Value and Obstacle Problems with Dirichlet Boundary Conditions

Series
Mathematical Finance/Financial Engineering Seminar
Time
Friday, April 19, 2013 - 14:05 for 1 hour (actually 50 minutes)
Location
Skiles 005
Speaker
Ruoting GongRutgers University

Please Note: Hosts: Christian Houdre and Liang Peng

We prove stochastic representation formulae for solutions to elliptic boundary value and obstacle problems associated with a degenerate Markov diffusion process on the half-plane. The degeneracy in the diffusion coefficient is proportional to the \alpha-power of the distance to the boundary of the half-plane, where 0 < \alpha < 1 . This generalizes the well-known Heston stochastic volatility process, which is widely used as an asset price model in mathematical finance and a paradigm for a degenerate diffusion process. The generator of this degenerate diffusion process with killing, is a second-order, degenerate-elliptic partial differential operator where the degeneracy in the operator symbol is proportional to the 2\alpha-power of the distance to the boundary of the half-plane. Our stochastic representation formulae provides the unique solution to the degenerate partial differential equation with partial Dirichlet condition, when we seek solutions which are suitably smooth up to the boundary portion \Gamma_0 contained in the boundary of the half-plane. In the case when the full Dirichlet condition is given, our stochastic representation formulae provides the solutions which are not guaranteed to be any more than continuous up to the boundary portion \Gamma_0 .

Role of chemotaxis in enhancement of biological reactions

Series
PDE Seminar
Time
Friday, April 19, 2013 - 14:00 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Prof. Alexandaer KiselevUnivrsity of Wisconsin,-Madison
We discuss a system of two equations involving two diffusing densities, one of which is chemotactic on the other, and absorbing reaction. The problem is motivated by modeling of coral life cycle and in particular breeding process, but the set up is relevant to many other situations in biology and ecology. The models built on diffusion and advection alone seem to dramatically under predict the success rate in coral reproduction. We show that presence of chemotaxis can significantly increase reproduction rates. On mathematical level, the first step in understanding the problem involves derivation of sharp estimates on rate of convergence to bound state for Fokker-Planck equation with logarithmic potential in two dimensions.

Pages