Seminars and Colloquia by Series

Thursday, February 16, 2012 - 12:05 , Location: Skiles 006 , Arkadiusz Pawlik , Jagiellonian University, Krakow, Poland , Organizer: Robin Thomas
We consider intersection graphs of families of straight line segments in the euclidean plane and show that for every integer k, there is a family S of line segments so that the intersection graph G of the family S is triangle-free and has chromatic number at least k. This result settles a conjecture of Erdos and has a number of applications to other classes of intersection graphs.
Thursday, November 17, 2011 - 12:05 , Location: Skiles 005 , Iain Moffatt , University of South Alabama , Organizer: Robin Thomas
A classical result in graph theory states that, if G is a plane graph, then G is Eulerian if and only if its dual, G*, is bipartite. I will talk about an extension of this well-known result to partial duality. (Where, loosely speaking, a partial dual of an embedded graph G is a graph obtained by forming the dual with respect to only a subset of edges of G.) I will extend the above classical connection between bipartite and Eulerian plane graphs, by providing a necessary and sufficient condition for the partial dual of a plane graph to be Eulerian or bipartite. I will then go on to describe how the bipartite partial duals of a plane graph G are completely characterized by circuits in its medial graph G_m. This is joint work with Stephen Huggett.
Tuesday, October 25, 2011 - 12:05 , Location: Skiles 006 , Andrew King , Simon Fraser University , Organizer: Robin Thomas
Chudnovsky and Seymour's structure theorem for quasi-line graphs has led to a multitude of recent results that exploit two structural operations: compositions of strips and thickenings. In this paper we prove that compositions of linear interval strips have a unique optimal strip decomposition in the absence of a specific degeneracy, and that every claw-free graph has a unique optimal antithickening, where our two definitions of optimal are chosen carefully to respect the structural foundation of the graph. Furthermore, we give algorithms to find the optimal strip decomposition in O(nm) time and find the optimal antithickening in O(m2) time. For the sake of both completeness and ease of proof, we prove stronger results in the more general setting of trigraphs. This gives a comprehensive "black box" for decomposing quasi-line graphs that is not only useful for future work but also improves the complexity of some previous algorithmic results. Joint work with Maria Chudnovsky.
Friday, September 23, 2011 - 15:05 , Location: Skiles 005 , Zdenek Dvorak , Charles University, Prague, Czech Republic , Organizer: Robin Thomas
A graph G is k-crossing-critical if it cannot be drawn in plane with fewer than k crossings, but every proper subgraph of G has such a drawing. We aim to describe the structure of crossing-critical graphs. In this talk, we review some of their known properties and combine them to obtain new information regarding e.g. large faces in the optimal drawings of crossing-critical graphs. Based on joint work with P. Hlineny and L. Postle.
Friday, September 16, 2011 - 15:05 , Location: Skiles 005 , Daniel Kral , Charles University, Prague, Czech Republic , Organizer: Robin Thomas
Boros and Furedi (for d=2) and Barany (for arbitrary d) proved that there exists a constant c_d>0 such that for every set P of n points in R^d in general position, there exists a point of R^d contained in at least c_d n!/(d+1)!(n-d-1)! (d+1)-simplices with vertices at the points of P. Gromov [Geom. Funct. Anal. 20 (2010), 416-526] improved the lower bound on c_d by topological means. Using methods from extremal combinatorics, we improve one of the quantities appearing in Gromov's approach and thereby provide a new stronger lower bound on c_d for arbitrary d. In particular, we improve the lower bound on c_3 from 0.06332 due to Matousek and Wagner to more than 0.07509 (the known upper bound on c_3 is 0.09375). Joint work with Lukas Mach and Jean-Sebastien Sereni.
Thursday, April 28, 2011 - 12:05 , Location: Skiles 006 , Chun-Hung Liu , Math, GT , Organizer: Robin Thomas
A Roman dominating function of a graph G is a function f which maps V(G) to {0, 1, 2} such that whenever f(v)=0, there exists a vertex u adjacent to v such that f(u)=2. The weight of f is w(f) = \sum_{v \in V(G)} f(v). The Roman domination number \gamma_R(G) of G is the minimum weight of a Roman dominating function of G. Chambers, Kinnersley, Prince and West conjectured that \gamma_R(G) is at most the ceiling 2n/3 for any 2-connected graph G of n vertices. In this talk, we will give counter-examples to the conjecture, and proves that \gamma_R(G) is at most the maximum among the ceiling of 2n/3 and 23n/34 for any 2-connected graph G of n vertices. This is joint work with Gerard Jennhwa Chang.
Thursday, April 21, 2011 - 12:05 , Location: Skiles 006 , Magnus Egerstedt , ECE, GT , Organizer: Robin Thomas
Arguably, the overarching scientific challenge facing the area of networked robot systems is that of going from local rules to global behaviors in a predefined and stable manner. In particular, issues stemming from the network topology imply that not only must the individual agents satisfy some performance constraints in terms of their geometry, but also in terms of the combinatorial description of the network. Moreover, a multi-agent robotic network is only useful inasmuch as the agents can be redeployed and reprogrammed with relative ease, and we address these two issues (local interactions and programmability) from a controllability point-of-view. In particular, the problem of driving a collection of mobile robots to a given target destination is studied, and necessary conditions are given for this to be possible, based on tools from algebraic graph theory. The main result will be a necessary condition for an interaction topology to be controllable given in terms of the network's external, equitable partitions.
Thursday, April 14, 2011 - 12:05 , Location: Skiles 006 , Peter Whalen , Math, GT , Organizer: Robin Thomas
Steinberg's Conjecture states that any planar graph without cycles of length four or five is three colorable. Borodin, Glebov, Montassier, and Raspaud showed that planar graphs without cycles of length four, five, or seven are three colorable and Borodin and Glebov showed that planar graphs without five cycles or triangles at distance at most two apart are three colorable. We prove a statement similar to both of these results: that any planar graph with no cycles of length four through six or cycles of length seven with incident triangles distance exactly two apart are three colorable. Special thanks to Robin Thomas for substantial contributions in the development of the proof.
Thursday, March 31, 2011 - 11:05 , Location: Skiles 006 , Kenta Ozeki , National Institute of Informatics, Japan , Organizer: Xingxing Yu
A characterization of graphs without an odd cycle is easy, of course,it is exactly bipartite. However, graphs without two vertex disjoint oddcycles are not so simple. Lovasz is the first to give a proof of the twodisjoint odd cycles theorem which characterizes internally 4-connectedgraphs without two vertex disjoint odd cycles. Note that a graph $G$ iscalled internally 4-connected if $G$ is 3-connected, and all 3-cutseparates only one vertex from the other.However, his proof heavily depends on the seminal result by Seymour fordecomposing regular matroids. In this talk, we give a new proof to thetheorem which only depends on the two paths theorem, which characterizesgraphs without two disjoint paths with specified ends (i.e., 2-linkedgraphs). In addition, our proof is simpler and shorter.This is a joint work with K. Kawarabayashi (National Institute ofInformatics).
Thursday, March 17, 2011 - 12:05 , Location: Skiles 006 , Arash Asadi , Math, GT , Organizer: Robin Thomas
The property that a graph has an embedding in projective plane is closed under taking minors. So by the well known theorem of Robertson and Seymour, there exists a finite list of minor-minimal graphs, call it L, such that a given graph G is projective planar if and only if G does not contain any graph isomorphic to a member of L as a minor. Glover, Huneke and Wang found 35 graphs in L, and Archdeacon proved that those are all the members of L. In this talk we show a new strategy for finding the list L. Our approach is based on conditioning on the connectivity of a member of L. Assume G is a member of L. If G is not 3-connected then the structure of G is well understood. In the case that G is 3-connected, the problem breaks down into two main cases, either G has an internal separation of order three or G is internally 4-connected . In this talk we find the set of all 3-connected minor minimal non-projective planar graphs with an internal 3-separation. This is joint work with Luke Postle and Robin Thomas.