- You are here:
- GT Home
- Home
- News & Events

Series: School of Mathematics Colloquium

Real life networks are usually large and have a very complicated
structure. It is tempting therefore to simplify or reduce the associated
graph of interactions in a network while maintaining its basic structure
as well
as some characteristic(s) of the original graph. A key question is which
characteristic(s) to conserve while reducing a graph. Studies of
dynamical networks reveal that an important characteristic of a
network's structure is a spectrum of its adjacency matrix.
In this talk we present an approach which allows for the reduction of
a general
weighted graph in such a way that the spectrum of the graph's (weighted)
adjacency matrix is maintained up to some finite set that is known in
advance. (Here, the possible weights belong to the set of complex
rational functions, i.e. to a very general class of weights).
A graph can be isospectrally reduced to a graph on any subset of its
nodes, which could be an important property for various applications. It
is also possible to introduce a new equivalence relation in the set of
all networks. Namely, two networks are spectrally equivalent if each of
them can be isospectrally reduced onto one and the same (smaller) graph.
This result should also be useful for analysis of real networks.
As the first application of the isospectral graph reduction we
considered a problem of estimation of spectra of matrices. It happens
that our procedure allows for improvements of the estimates obtained by
all three classical methods given by Gershgorin, Brauer and Brualdi.
(Joint work with B.Webb)
A talk will be readily accessible to undergraduates familiar with
matrices and complex functions.

Series: School of Mathematics Colloquium

After a brief account of some of
the history of this classical subject,
we indicate how such models are derived.
Rigorous theory justifying the models
will be discussed and the conversation
will then turn to some applications.
These will be drawn from questions
arising in geophysics and coastal
engineering, as time permits.

Series: School of Mathematics Colloquium

A classification of the dynamics of polynomials in one complex variable has remained elusive, even when considering only the simpler "structurally stable" polynomials. In this talk, I will describe the basics of polynomial iteration, leading up to recent results in the direction of a complete classification. In particular, I will describe a (singular) metric on the complex plane induced by the iteration of a polynomial. I will explain how this geometric structure relates to topological conjugacy classes within the moduli space of polynomials.

Series: School of Mathematics Colloquium

The asymmetric simple exclusion process (ASEP) is a continuous time Markov process of interacting particles on a lattice \Gamma. ASEP is defined by two rules: (1) A particle at x \in \Gamma waits an exponential time with parameter one, and then chooses y \in \Gamma with probability p(x, y); (2) If y is vacant at that time it moves to y, while if y is occupied it remains at x. The main interest lies in infinite particle systems. In this lecture we consider the ASEP on the integer lattice {\mathbb Z} with nearest neighbor jump rule: p(x, x+1) = p, p(x, x-1) = 1-p and p \ne 1/2. The integrable structure is that of Bethe Ansatz. We discuss various limit theorems which in certain cases establishes KPZ universality.

Series: School of Mathematics Colloquium

Pre-reception at 2:30 in Room N201. If you would like to meet with Prof. Ashtekar while he is on campus (at the Center for Relativistic Astrophysics - Boggs building), please contact <A class="moz-txt-link-abbreviated" href="mailto:lori.federico@physics.gatech.edu">lori.federico@physics.gatech.edu</a>.

General relativity is based on a deep interplay between physics and mathematics: Gravity is encoded in geometry. It has had spectacular observational success and has also pushed forward the frontier of geometric analysis. But the theory is incomplete because it ignores quantum physics. It predicts that the space-time ends at singularities such as the big-bang. Physics then comes to a halt. Recent developments in loop quantum gravity show that these predictions arise because the theory has been pushed beyond the domain of its validity. With new inputs from mathematics, one can extend cosmology beyond the big-bang. The talk will provide an overview of this new and rich interplay between physics and mathematics.

Series: School of Mathematics Colloquium

Archimedes principle may be used to predict if and how certain solid objects float in a liquid bath. The principle, however, neglects to consider capillary forces which can sometimes play an important role. We describe a recent generalization of the principle and how the standard textbook presentation of Archimedes' work may have played a role in delaying the discovery of such generalizations to this late date.

Series: School of Mathematics Colloquium

In this talk I will outline recent results of G-Q Chen, Dehua Wang, and me on the problem of isometric embedding a two dimensional Riemannian manifold with negative Gauss curvature into three dimensional Euclidean space. Remarkably there is very pretty duality between this problem and the equations of steady 2-D gas dynamics. Compensated compactness (L.Tartar and F.Murat) yields proof of existence of solutions to an initial value problem when the prescribed metric is the one associated with the catenoid.

Series: School of Mathematics Colloquium

A new estimate on weak solutions of the Navier-Stokes equations in three dimensions gives some information about the partial regularity of solutions. In particular, if energy concentration takes place, the dimension of the microlocal singular set cannot be too small. This estimate has a dynamical systems proof. These results are joint work with M. Arnold and A. Biryuk.

Series: School of Mathematics Colloquium

This is joint work with Andrei Okounkov. The ``honeycomb dimer model'' is a natural model of discrete random surfaces in R^3. It is possible to write down a ``Law of Large Numbers" for such surfaces which describes the typical shape of a random surface when the mesh size tends to zero. Surprisingly, one can parameterize these limit shapes in a very simple way using analytic functions, somewhat reminiscent of the Weierstrass parameterization of minimal surfaces. This is even more surprising since the limit shapes tend to be facetted, that is, only piecewise analytic. There is a large family of boundary conditions for which we can obtain exact solutions to the limit shape problem using algebraic geometry techniques. This family includes the (well-known) solution to the limit shape of a ``boxed plane partition'' and has many generalizations.

Series: School of Mathematics Colloquium

The study of partition identities has a long history going back to Euler, with applications ranging from Analysis to Number Theory, from Enumerative Combina- torics to Probability. Partition bijections is a combinatorial approach which often gives the shortest and the most elegant proofs of these identities. These bijections are then often used to generalize the identities, find "hidden symmetries", etc. In the talk I will present a modern approach to partition bijections based on the geometry of random partitions and complexity ideas.