- You are here:
- GT Home
- Home
- News & Events

Series: Research Horizons Seminar

Hosts: Yao Li and Ricardo Restrepo

We consider compressible fluid flows in Lagrangian coordinates in one space dimension. We assume that the fluid self-interacts through a force field generated by the fluid. We explain how this flow can be described by a differential inclusion on the space of transport maps, when the sticky particle dynamics is assumed. We prove a stability result for solutions of this system. Global existence then follows from a discrete particle approximation.

Series: Research Horizons Seminar

Hosts: Yao Li and Ricardo Restrepo

This will be an expository talk on the study of orthogonal polynomials on the real line and on the unit circle. Topics include recurrence relations, recurrence coefficients and simple examples. The talk will conclude with applications of orthogonal polynomials to other areas of research.

Series: Research Horizons Seminar

Hosts: Yao and Ricardo

Consider self-adjoint operators $A, B, C : \mathcal{H} \to \mathcal{H}$ on a finite-dimensional Hilbert space such that $A + B + C = 0$. Let $\{\lambda_j (A)\}$, $\{\lambda_j (B)\}$, and $\{\lambda_j (C)\}$ be sequences of eigenvalues of $A, B$, and $C$ counting multiplicity, arranged in decreasing order. In 1962, A. Horn conjectured that the relations of $\{\lambda_j (A)\}$,$\{\lambda_j (B)\}$, and $\{\lambda_j (C)\}$ can be characterized by a set of inequalities defined inductively. This problem was eventually solved by A. Klyachko and Knutson-Tao in the late 1990s. Recently together with H. Bercovici, Collins, Dykema, and Timotin, we are able to find a proof to show that the inequalities are valid for self-adjoint elements that satisfies the relation $A+B+C=0$, and the proof can be applied to finite von Neumann algebra. The major difficulty in our argument is to show that certain generalized Schubert cells have nonempty intersection. In the finite dimensional case, it follows from the classical intersection theory. However, there is no readily available intersection theory for von Neumann algebras. Our argument requiresa good understanding of the combinatorial structure of honeycombs, and produces an actual element in the intersection algorithmically, and it seems to be new even in finite dimensions.

Series: Research Horizons Seminar

Hosts: Yao Li and Ricardo Restrepo

The Research Horizons seminar this week will be a panel discussion on the job market for mathematicians. Professor Doug Ulmer and Luca Dieci will give a presentation with general information on the academic job market and the experience of our recent students, in and out of academia. The panel will then take questions from the audience.

Series: Research Horizons Seminar

Hosts: Yao Li and Ricardo Restrepo

I will consider mathematical models of decision making based on dynamics in the neighborhood of unstable equilibria and involving random perturbations due to small noise. I will report results on the vanishing noise limit for these systems, providing precise predictions about the statistics of decision making times and sequences of unstable equilibria visited by the process. Mathematically, the results are based on the analysis of random Poincare maps in the neighborhood of each equilibrium point. I will discuss applications to neuroscience and psychology along with some experimental data.

Series: Research Horizons Seminar

Hosts: Yao Li and Ricardo Restrepo

When an object is small enough that quantum mechanics matters, many of its physical properties, such as energy levels, are determined by the eigenvalues of some linear operators. For quantum wires, waveguides, and graphs, geometry and topology show up in the operators and affect the set of eigenvalues, known as the spectrum. It turns out that the spectrum can't be just any sequence of numbers, both because of some general theorems about the eigenvalues and because of inequalities involving the shape. I'll discuss some of the extreme cases that test the theorems and inequalities and connect them to the shapes of the structures and to algebraic properties of the operators.To understand this lecture it would be helpful to know a little about PDEs and eigenvalues, but no knowledge of quantum mechanics will be needed.

Series: Research Horizons Seminar

Hosted by Yao Li and Ricardo Restrepo.

Deciding how to unknot a knotted piece of string (with its ends glued together) is not only a difficult problem in the real world, it is also a difficult and long studied problem in mathematics. (There are several notions of what one might mean by "unknotting" and I will leave the exact meaning a bit vague in this abstract.) In the past mathematicians have used a vast array of techniques --- from geometry to algebra, and even PDEs --- to study this question. I will discuss this question and (partially) recast it in terms of 4 dimensional topology. This new perspective will allow us to use a powerful new knot invariant called Khovanov Homology to study the problem. I will give an overview of Khovanov Homology and indicate how to study our unknotting question using it.

Series: Research Horizons Seminar

Hosted by: Yao Li and Ricardo Restrepo

Combinatorial mathematics exhibits a number of elegant, simply stated problems that turn out to be surprisingly challenging. In this talk, I report on a problem of this type on which I have been working with Noah Streib, Stephen Young and Ruidong Wang from Georgia Tech, as well as Piotr Micek, Bartek Walczak and Tomek Krawczyk, all computer scientists from Poland. Given positive integers $k$ and $w$, what is the largest integer $t = f(k,w)$ for which there exists a family $\mathcal{F}$ of $t$ vectors in $N^{w}$ so that: \begin{enumerate} \item Any two vectors in the family $\mathcal{F}$ are incomparable in the product ordering; and \item There do not exist two vectors $A$ and $B$ in the family for which there are distinct $i$ and $j$ so that $a_i\ge k +b_i$ and $b_j \ge k + a_j$. \end{enumerate} The Polish group posed the problem to us at the SIAM Discrete Mathematics held in Austin, Texas, this summer. They were able to establish the following bounds: \[ k^{w-1} \le t \le k^w \] We were able to show that the lower bound is essentially correct by showing that there is a constant $c_w$ so that $t \l c_w k^{w-1}$. But recent work suggests that the lower bound might actually be tight.

Series: Research Horizons Seminar

Orthogonal Polynomials play a key role in analysis of random matrices. We discuss universality limits in the so-called unitary case, showing how the universality limit reduces to an asymptotic involving reproducing kernels associated with orthogonal polynomials. As a consequence, we show that universality holds in measure for any compactly supported measure.

Series: Research Horizons Seminar

Hosted by: Huy Huynh and Yao Li

A starting point of geometric group theory is thinking of a group
as a geometric object, by giving it a metric induced from the
Cayley graph of the group. Gromov initiated a program of studying
groups up to quasi-isometries, which are ``bilipschitz maps up to bounded additive error". Quasi-isometries ignore local
structure and preserve asymptotic properties of a metric space. In the talk I will give a sample of results, examples, and open
questions in this area.