Seminars and Colloquia by Series

Thursday, February 25, 2010 - 15:00 , Location: Skiles 269 , Stanislav Molchanov , UNC Charlotte , Organizer:
The talk will present several limit theorems for the supercritical colony of the particles with masses. Reaction-diffusion equations responsible for the spatial distribution of the species contain the usual random death, birth and migration processes. The evolution of the mass of the individual particle includes (together with the diffusion) the mitosis: the splitting of the mass between the two offspring.  The last process leads to the new effects. The limit theorems give the detailed picture of the space –mass distribution of the particles in the bulk of the moving front of the population.
Thursday, January 28, 2010 - 15:00 , Location: Skiles 269 , Stefan Boettcher , Emory Physics , Organizer:
Finding ground states of spin glasses, a model of disordered materials, has a deep connection to many hard combinatorial optimization problems, such as satisfiability, maxcut, graph-bipartitioning, and coloring. Much insight has been gained for the combinatorial problems from the intuitive approaches developed in physics (such as replica theory and the cavity method), some of which have been proven rigorously recently. I present  a treasure trove of numerical data obtained with heuristic methods that suggest a number conjectures, such as an equivalence between maxcut and bipartitioning for r-regular graphs, a simple relation for their optimal configurations as a function of degree r, and anomalous extreme-value fluctuations in a variety of models, hotly debated in physics currently. For some, such as those related to finite-size effects, not even a physics theory exists, for others theory exists that calls for rigorous methods.
Thursday, November 19, 2009 - 15:00 , Location: Skiles 269 , Lijian Yang , Michigan State University , Organizer:
Recently functional data analysis has received considerable attention in statistics research and a number of successful applications have been reported, but there has been no results on the inference of the global shape of the mean regression curve. In this paper, asymptotically simultaneous confidence band is obtained for the mean trajectory curve based on sparse longitudinal data, using piecewise constant spline estimation. Simulation experiments corroborate the asymptotic theory.
Thursday, November 12, 2009 - 15:00 , Location: Skiles 269 , Gauri Data , University of Georgia , Organizer: Liang Peng
We consider two problems: (1) estimate a normal mean under a general divergence loss introduced in Amari (1982) and Cressie and Read (1984) and (2) find a predictive density of a new observation drawn independently of the sampled observations from a normal distribution with the same mean but possibly with a different variance under the same loss. The general divergence loss includes as special cases both the Kullback-Leibler and Bhattacharyya-Hellinger losses. The sample mean, which is a Bayes estimator of the population mean under this loss and the improper uniform prior, is shown to be minimax in any arbitrary dimension. A counterpart of this result for predictive density is also proved in any arbitrary dimension. The admissibility of these rules holds in one dimension, and we conjecture that the result is true in two dimensions as well. However, the general Baranchik (1970) class of estimators, which includes the James-Stein estimator and the Strawderman (1971) class of estimators, dominates the sample mean in three or higher dimensions for the estimation problem. An analogous class of predictive densities is defined and any member of this class is shown to dominate the predictive density corresponding to a uniform prior in three or higher dimensions. For the prediction problem, in the special case of Kullback-Leibler loss, our results complement to a certain extent some of the recent important work of Komaki (2001) and George, Liang and Xu (2006). While our proposed approach produces a general class of predictive densities (not necessarily Bayes) dominating the predictive density under a uniform prior, George et al. (2006) produced a class of Bayes predictors achieving a similar dominance. We show also that various modifications of the James-Stein estimator continue to dominate the sample mean, and by the duality of the estimation and predictive density results which we will show, similar results continue to hold for the prediction problem as well. This is a joint research with Professor Malay Ghosh and Dr. Victor Mergel.
Thursday, November 5, 2009 - 15:00 , Location: Skiles 269 , Vlad Vysotsky , University of Delaware , Organizer:
Let $S_n$ be a centered random walk with a finite variance, and define the new sequence $\sum_{i=1}^n S_i$, which we call the {\it integrated random walk}. We are interested in the asymptotics of $$p_N:=\P \Bigl \{ \min \limits_{1 \le k \le N} \sum_{i=1}^k S_i  \ge 0 \Bigr \}$$ as $N \to \infty$. Sinai (1992) proved that $p_N \asymp N^{-1/4}$ if $S_n$ is a simple random walk. We show that $p_N \asymp N^{-1/4}$ for some other types of random walks that include double-sided exponential and double-sided geometric walks (not necessarily symmetric). We also prove that $p_N \le c N^{-1/4}$ for lattice walks and upper exponential walks, i.e., walks such that $\mbox{Law} (S_1 | S_1>0)$ is an exponential distribution.
Tuesday, November 3, 2009 - 16:00 , Location: Skiles 255 (Note unusual time and location) , Ivan NOURDIN , Paris VI , Organizer:
My aim is to explain how to prove multi-dimensional central limit theorems for the spectral moments (of arbitrary degrees) associated with random matrices with real-valued i.i.d. entries, satisfying some appropriate moment conditions. The techniques I will use rely on a universality principle for the Gaussian Wiener chaos as well as some combinatorial estimates. Unlike other related results in the probabilistic literature, I will not require that the law of the entries has a density with respect to the Lebesgue measure. The talk is based on a joint work with Giovanni Peccati, and use an invariance principle obtained in a joint work with G. P. and Gesine Reinert
Thursday, October 22, 2009 - 15:00 , Location: Skiles 269 , Ton Dieker , (ISyE, Georgia Tech) , Organizer:
In this talk, we study an interacting particle system arising in the context of series Jackson queueing networks. Using effectively nothing more than the Cauchy-Binet identity, which is a standard tool in random-matrix theory, we show that its transition probabilities can be written as a signed sum of non-crossing probabilities. Thus, questions on time-dependent queueing behavior are translated to questions on non-crossing probabilities. To illustrate the use of this connection, we prove that the relaxation time (i.e., the reciprocal of the ’spectral gap’) of a positive recurrent system equals the relaxation time of a single M/M/1 queue with the same arrival and service rates as the network’s bottleneck station. This resolves a 1985 conjecture from Blanc on series Jackson networks. Joint work with Jon Warren, University of Warwick.
Friday, October 9, 2009 - 15:00 , Location: Skiles 154 (Unusual time and room) , Carl Mueller , University of Rochester , Organizer:
One of the most important stochastic partial differential equations, known as the superprocess, arises as a limit in population dynamics. There are several notions of uniqueness, but for many years only weak uniqueness was known.  For a certain range of parameters, Mytnik and Perkins recently proved strong uniqueness.  I will describe joint work with Barlow, Mytnik and Perkins which proves nonuniqueness for the parameters not included in Mytnik and Perkins' result.  This completely settles the question for strong uniqueness, but I will end by giving some problems which are still open.
Thursday, October 1, 2009 - 15:00 , Location: Skiles 269 , Denis Bell , University of North Florida , Organizer:
The Black‐Scholes model for stock price as geometric Brownian motion, and the corresponding European option pricing formula, are standard tools in mathematical finance. In the late seventies, Cox and Ross developed a model for stock price based on a stochastic differential equation with fractional diffusion coefficient. Unlike the Black‐Scholes model, the model of Cox and Ross is not solvable in closed form, hence there is no analogue of the Black‐Scholes formula in this context. In this talk, we discuss a new method, based on Stratonovich integration, which yields explicitly solvable arbitrage‐free models analogous to that of Cox and Ross. This method gives rise to a generalized version of the Black‐Scholes partial differential equation. We study solutions of this equation and a related ordinary differential equation.
Thursday, September 24, 2009 - 15:00 , Location: Skiles 269 , Jim Nolen , Duke University , Organizer:
I will describe recent work on the behavior of solutions to reaction diffusion equations (PDEs) when the coefficients in the equation are random.  The solutions behave like traveling waves moving in a randomly varying environment.  I will explain how one can obtain limit theorems (Law of Large Numbers and CLT) for the motion of the interface.  The talk will be accessible to people without much knowledge of PDE.

Pages