Chemotaxis in active suspensions

Applied and Computational Mathematics Seminar
Monday, February 21, 2011 - 14:00
1 hour (actually 50 minutes)
Skiles 005
NYU Math Dept.
Micro-organisms are known to respond to certain dissolved chemicalsubstances in their environment by moving preferentially away or towardtheir source in a process called chemotaxis. We study such chemotacticresponses at the population level when the micro-swimmers arehydrodynamically coupled to each-other as well as the chemicalconcentration. We include a chemotactic bias based on the known bacteriarun-and-tumble phenomenon in a kinetic model of motile suspension dynamicsdeveloped recently to study hydrodynamic interactions. The chemicalsubstance can be produced or consumed by the swimmers themselves, as wellas be advected by the fluid flows created by their movement. The linearstability analysis of the system will be discussed, as well as the entropyanalysis. Nonlinear dynamics are investigated using numerical simulationin two dimensions of the full system of equations. We show examples ofaggregation in suspensions of pullers (front-actuated swimmers) anddiscuss how chemotaxis affects the mixing flows in suspensions of pushers(rear-actuated swimmers). Last, I will discuss recent work on numericalsimulations of discrete particle/swimmer suspensions that have achemotactic bias.