Logarithmic Sobolev inequalities and strong data processing theorems for discrete channels

Other Talks
Monday, April 29, 2013 - 15:05
1 hour (actually 50 minutes)
Klaus 1116W
University of Illinois, Urbana-Champaign
The problem of quantifying the amount of information loss due to a random transformation (or a noisy channel) arises in a variety of contexts, such as machine learning, stochastic simulation, error-correcting codes, or computation in circuits with noisy gates, to name just a few. This talk will focus on discrete channels, where both the input and output sets are finite.  The noisiness of a discrete channel can be measured by comparing suitable functionals of the input and output distributions. For instance, if we fix a reference input distribution, then the worst-case ratio of output relative entropy (Kullback-Leibler divergence) to input relative entropy for any other input distribution is bounded by one, by the data processing theorem. However, for a fixed reference input distribution, this quantity may be strictly smaller than one, giving so-called strong data processing inequalities (SDPIs). I will show that the problem of determining both the best constant in an SDPI and any input distributions that achieve it can be addressed using logarithmic Sobolev inequalities, which relate input relative entropy to certain measures of input-output correlation. I will also show that SDPIs for Kullback-Leibler divergence arises as a limiting case of a family of SDPIs for Renyi divergence, and discuss the relationship to hypercontraction of Markov operators.