From stochastic calculus to geometric inequalities

School of Mathematics Colloquium
Thursday, December 1, 2016 - 11:05
1 hour (actually 50 minutes)
Skiles 006
Weizmann Institute of Science
The probabilistic method, pioneered by P. Erdös, has been key in many proofs from asymptotic geometric analysis. This method allows one to take advantage of numerous tools and concepts from probability theory to prove theorems which are not necessarily a-priori related to probability. The objective of this talk is to demonstrate several recent results which take advantage of stochastic calculus to prove results of a geometric nature. We will mainly focus on a specific construction of a moment-generating process, which can be thought of as a stochastic version of the logarithmic Laplace transform. The method we introduce allows us to attain a different viewpoint on the method of semigroup proofs, namely a path-wise point of view. We will first discuss an application of this method to concentration inequalities on high dimensional convex sets. Then, we will briefly discuss an application to two new functional inequalities on Gaussian space; an L1 version of hypercontractivity of the convolution operator related to a conjecture of Talagrand (joint with J. Lee) and a robustness estimate for the Gaussian noise-stability inequality of C.Borell (improving a result of Mossel and Neeman).