Interacting particles, series Jackson networks, and non-crossing probabilities

Stochastics Seminar
Thursday, October 22, 2009 - 15:00
1 hour (actually 50 minutes)
Skiles 269
(ISyE, Georgia Tech)
In this talk, we study an interacting particle system arising in the context of series Jackson queueing networks. Using effectively nothing more than the Cauchy-Binet identity, which is a standard tool in random-matrix theory, we show that its transition probabilities can be written as a signed sum of non-crossing probabilities. Thus, questions on time-dependent queueing behavior are translated to questions on non-crossing probabilities. To illustrate the use of this connection, we prove that the relaxation time (i.e., the reciprocal of the ’spectral gap’) of a positive recurrent system equals the relaxation time of a single M/M/1 queue with the same arrival and service rates as the network’s bottleneck station. This resolves a 1985 conjecture from Blanc on series Jackson networks. Joint work with Jon Warren, University of Warwick.