Integrated random walks: the probability to stay positive

Series: 
Stochastics Seminar
Thursday, November 5, 2009 - 15:00
1 hour (actually 50 minutes)
Location: 
Skiles 269
,  
University of Delaware
Let $S_n$ be a centered random walk with a finite variance, and define the new sequence $\sum_{i=1}^n S_i$, which we call the {\it integrated random walk}. We are interested in the asymptotics of $$p_N:=\P \Bigl \{ \min \limits_{1 \le k \le N} \sum_{i=1}^k S_i  \ge 0 \Bigr \}$$ as $N \to \infty$. Sinai (1992) proved that $p_N \asymp N^{-1/4}$ if $S_n$ is a simple random walk. We show that $p_N \asymp N^{-1/4}$ for some other types of random walks that include double-sided exponential and double-sided geometric walks (not necessarily symmetric). We also prove that $p_N \le c N^{-1/4}$ for lattice walks and upper exponential walks, i.e., walks such that $\mbox{Law} (S_1 | S_1>0)$ is an exponential distribution.