Seminars and Colloquia by Series

Quantitative Generalized CLT with Self-Decomposable Limiting Laws by Spectral Methods

Series
Stochastics Seminar
Time
Thursday, May 18, 2023 - 15:30 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Benjamin ArrasUniversité de Lille

In this talk, I will present new stability results for non-degenerate centered self-decomposable laws with finite second moment and for non-degenerate symmetric alpha-stable laws with alpha in (1,2). These stability results are based on Stein's method and closed forms techniques. As an application, explicit rates of convergence are obtained for several instances of the generalized CLTs. Finally, I will discuss the standard Cauchy case.

Dynamics of excitable cells: neurons and cardiomyocytes

Series
Other Talks
Time
Wednesday, May 10, 2023 - 11:00 for 1 hour (actually 50 minutes)
Location
PLOS (second floor of Howey)
Speaker
Roberto BarrioUniv. of Zaragoza
In recent years, much attention has been paid to the description of excitable media,
such as the dynamics of the brain and heart.
In both cases, the building blocks are excitable cells, neurons, and cardiomyocytes,
and a detailed look at the mathematics behind some of their mathematical models provides
a good starting point for answering some observed phenomena.
In this talk we show how some apparently  simple phenomena,
such as the spike-adding process,
have important consequences in the models and how various elements intervene behind their formation,
such as homoclinic bifurcations, fast-slow decompositions, "canards",
the completion of the Smale topological template, the formation of Morse surfaces
creating geometric bifurcations, etc.
Finally, we will illustrate its relevance in insect gait patterns and in the formation of cardiac arrhythmias.
 

Some Global Relaxation Methods for Quadratic and Semidefinite Programming

Series
Dissertation Defense
Time
Tuesday, May 9, 2023 - 11:00 for 1.5 hours (actually 80 minutes)
Location
Skiles 005 and ONLINE
Speaker
Shengding SunGeorgia Tech

Zoom link: https://gatech.zoom.us/meeting/96948840253

Quadratic programming and semidefinite programming are vital tools in discrete and continuous optimization, with broad applications. A major challenge is to develop methodologies and algorithms to solve instances with special structures. For this purpose, we study some global relaxation techniques to quadratic and semidefinite programming, and prove theoretical properties about their qualities. In the first half we study the negative eigenvalues of $k$-locally positive semidefinite matrices, which are closely related to the sparse relaxation of semidefinite programming. In the second half we study aggregations of quadratic inequalities, a tool that can be leveraged to obtain tighter relaxation to quadratic programming than the standard Shor relaxation. In particular, our results on finiteness of aggregations can potentially lead to efficient algorithms for certain classes of quadratic programming instances with two constraints.

A deter-mean-istic description of Stochastic Oscillators

Series
CDSNS Colloquium
Time
Friday, May 5, 2023 - 15:30 for 1 hour (actually 50 minutes)
Location
Online
Speaker
Alberto Pérez-CerveraUniversidad Complutense de Madrid, Spain

Link: https://gatech.zoom.us/j/91390791493?pwd=QnpaWHNEOHZTVXlZSXFkYTJ0b0Q0UT09

Abstract: The Parameterisation Method is a powerful body of theory to compute the invariant manifolds of a dynamical system by looking for a parameterization of them in such a way that the dynamics on this manifold expressed in the coordinates of such parameterization writes as simply as possible. This methodology was foreseen by Guillamon and Huguet [SIADS, 2009 & J. Math. Neurosci, 2013] as a possible way of extending the domain of accuracy of the phase-reduction of periodic orbits. This fruitful approach, known as phase-amplitude reduction, has been fully developed during the last decade and provides an essentially complete understanding of deterministic oscillatory dynamics.
In this talk, we pursue the "simpler as possible" philosophy underlying the Parameterisation Method to develop an analogous phase-amplitude approach to stochastic oscillators. Main idea of our approach is to find a change of variables such that the system, when transformed to these variables, expresses in the mean as the deterministic phase-amplitude description. Then, we take advantage of the simplicity of this approach, to develop interesting objects with the aim of further clarifying the stochastic oscillation.

Extension of homeomorphisms and vector fields of the circle: From Anti-de Sitter to Minkowski geometry.

Series
Geometry Topology Seminar
Time
Monday, May 1, 2023 - 14:00 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Farid DiafUniversité Grenoble Alpes

In 1990, Mess gave a proof of Thurston's earthquake theorem using the Anti-de Sitter geometry. Since then, several of Mess's ideas have been used to investigate the correspondence between surfaces in 3-dimensional Anti de Sitter space and Teichmüller theory.

In this spirit, we investigate the problem of the existence of vector fields giving infinitesimal earthquakes on the hyperbolic plane, using the so-called Half-pipe geometry which is the dual of Minkowski geometry in a suitable sense. In particular, we recover Gardiner's theorem, which states that any Zygmund vector field on the circle can be represented as an infinitesimal earthquake. Our findings suggest a connection between vector fields on the hyperbolic plane and surfaces in 3-dimensional Half-pipe space, which may be suggestive of a bigger picture.

 

Free energy and uniqueness in 1D spin systems with random Hamiltonians

Series
CDSNS Colloquium
Time
Friday, April 28, 2023 - 15:30 for 1 hour (actually 50 minutes)
Location
Online
Speaker
Cesar Octavio Maldonado AhumadaIPICYT


Link: https://gatech.zoom.us/j/91390791493?pwd=QnpaWHNEOHZTVXlZSXFkYTJ0b0Q0UT09

Abstract: In this talk, I will discuss problems and results in the rigorous statistical mechanics of particle systems in a one-dimensional lattice.
I will briefly describe the classical examples, such as the Ising model and its various generalizations concerning the
existence of the free energy, thermodynamic limit and the phase transition phenomenon.
Towards the end of the talk, I will talk about a recent work in collaboration with Jorge Littin, on a generalization of the
Khanin and Sinai model with random interactions for which one can prove that there exists a critical behavior in the free
energy for some parameters of the model and on the other side one can also have uniqueness of the equilibrium state.


 

Frames via Unilateral Iterations of Bounded Operators

Series
Dissertation Defense
Time
Thursday, April 27, 2023 - 13:00 for 1 hour (actually 50 minutes)
Location
ONLINE
Speaker
Victor BaileyGeorgia Tech

Dynamical Sampling is, in a sense, a hypernym classifying the set of inverse problems arising from considering samples of a signal and its future states under the action of a bounded linear operator. Recent works in this area consider questions such as when can a given frame for a separable Hilbert Space, $\{f_k\}_{k \in I} \subset H$, be represented by iterations of an operator on a single vector and what are necessary and sufficient conditions for a system, $\{T^n \varphi\}_{n=0}^{\infty} \subset H$, to be a frame? In this talk, we will discuss the connection between frames given by iterations of a bounded operator and the theory of model spaces in the Hardy-Hilbert Space as well as necessary and sufficient conditions for a system generated by the orbit of a pair of commuting bounded operators to be a frame. This is joint work with Carlos Cabrelli.

Join Zoom meeting:  https://gatech.zoom.us/j/96113517745

An approach to universality using canonical systems

Series
Math Physics Seminar
Time
Thursday, April 27, 2023 - 13:00 for 1 hour (actually 50 minutes)
Location
Skiles 005
Speaker
Milivoje LukicRice University

 It is often expected that the local statistical behavior of eigenvalues of some system depends only on its local properties; for instance, the local distribution of zeros of orthogonal polynomials should depend only on the local properties of the measure of orthogonality. This phenomenon is studied using an object called the Christoffel-Darboux kernel. The most commonly studied case is known as bulk universality, where the rescaled limit of Christoffel-Darboux kernels converges to the sine kernel. We will present a new approach which gives for the first time a completely local sufficient condition for bulk universality. This approach is based on a matrix version of the Christoffel-Darboux kernel and the de Branges theory of canonical systems, and it applies to other self-adjoint systems with 2x2 transfer matrices such as continuum Schrodinger and Dirac operators. The talk is based on joint work with Benjamin Eichinger (Technical University Wien) and Brian Simanek (Baylor University).

On the domain of convergence of spherical harmonic expansions

Series
Math Physics Seminar
Time
Thursday, April 27, 2023 - 12:00 for 1 hour (actually 50 minutes)
Location
Skiles 005 and online at https://gatech.zoom.us/j/94065877775
Speaker
Ovidiu CostinOhio State University
We settle a 60 year old question in mathematical physics, namely finding the exact domain of convergence of the spherical harmonic expansions (SHE, expansions at infinity in Legendre polynomials) of the gravitational potential of a planet. These expansions are the main tool in processing satellite data to find information about planet Earth in locations that are inaccessible, as well as the subsurface mass distribution and other quantities, with innumerable practical applications.
Despite many decades of investigation it was not known whether SHE converge all the way to the topography or only in the complement of the so called Brillouin sphere, the smallest sphere enclosing our planet. We show that regardless of the smoothness of the density and topography, short of outright analyticity, the spherical harmonic expansion of the gravitational potential converges exactly in the closure of the exterior of the Brillouin sphere, and convergence below the Brillouin sphere occurs with probability zero. We go further by finding a necessary and sufficient condition for convergence below the Brillouin sphere, which requires a form of analyticity at the highest peak on the planet, which would not hold for any realistic celestial body. Due to power-law corrections to the geometric growth of the coefficients, that we calculate for the first time in this paper, there is some amount of compensation of this divergence. However, with the increased accuracy of modern measurements divergence is bound to result in unacceptably large errors. The SHE can be made convergent though, and used optimally.
These questions turn out to be very delicate and challenging asymptotic analysis ones, which we solve using asymptotic techniques combined with elements of microlocal analysis and resurgence.
-----
Work in collaboration with R.D. Costin, C. Ogle and M. Bevis

Egyptian fractions: problems and progress

Series
School of Mathematics Colloquium
Time
Thursday, April 27, 2023 - 11:00 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Thomas BloomUniversity of Oxford

The study of Egyptian fractions, representing rational numbers as the sum of distinct unit fractions, is one of the oldest areas of number theory. In this talk we will discuss some fascinating problems in the area, including both open problems and some recent progress, such as the solution to the Erdos-Graham conjecture: 1 can be written as the sum of unit fractions with denominators drawn from an arbitrary set of integers of positive density.

Pages