Seminars and Colloquia by Series

Uniformly random colourings of sparse graphs

Series
Graph Theory Seminar
Time
Tuesday, April 25, 2023 - 15:45 for 1 hour (actually 50 minutes)
Location
Skiles 005
Speaker
Eoin Hurley

We will discuss proper q-colourings of sparse, bounded degree graphs when the maximum degree is near the so-called shattering threshold. This threshold, first identified in the statistical physics literature, coincides with the point at which all known efficient colouring algorithms fail and it has been hypothesized that the geometry of the solution space (the space of proper colourings) is responsible. This hypothesis is a cousin of the Overlap-Gap property of Gamarnik ‘21. Significant evidence for this picture was provided by Achlioptos and Coja-Oghlan ‘08, who drew inspiration from statistical physics, but their work only explains the performance of algorithms on random graphs (average-case complexity). We extend their work beyond the random setting by proving that the geometry of the solution space is well behaved for all graphs below the “shattering threshold”. This follows from an original result about the structure of uniformly random colourings of fixed graphs. Joint work with François Pirot.

Optimal blowup stability for wave maps

Series
PDE Seminar
Time
Tuesday, April 25, 2023 - 15:00 for 1 hour (actually 50 minutes)
Location
Online: https://gatech.zoom.us/j/95574359880?pwd=cGpCa3J1MFRkY0RUeU1xVFJRV0x3dz09
Speaker
Roland DonningerUniversity of Vienna

I discuss some recent results, obtained jointly with David Wallauch, on the stability of self-similar wave maps under minimal regularity assumptions on the perturbation. More precisely, we prove the asymptotic stability of an explicitly known self-similar wave map in corotational symmetry. The key tool are Strichartz estimates for the linearized equation in similarity coordinates.

A Mechano-Diffusion Model of Morphogenesis

Series
Mathematical Biology Seminar
Time
Monday, April 24, 2023 - 15:15 for 1 hour (actually 50 minutes)
Location
Skiles 005
Speaker
Benjamin VaughanUniversity of Cincinnati - Department of Mathematical Sciences

Please Note: Hybrid version is available at: https://gatech.zoom.us/j/98003867540

Morphogenesis is the biological process that causes cells, tissues, or organisms to develop their shape. The theory of morphogenesis, proposed by Alan Turning, is a chemical model where biological cells differentiate and form patterns through intercellular reaction-diffusion mechanisms. Various reaction-diffusion models can produce a chemical pattern that mimics natural patterns. However, while they provide a plausible prepattern, they do not describe a mechanism in which the pattern is expressed. An alternative model is a mechanical model of the skin, initially described by Murray, Oster, and Harris. This model used mechanical interactions between cells without a chemical prepattern to produce structures like those observed in a Turing model. In this talk, we derive a modified version of the Murray, Oster, and Harris model incorporating nonlinear deformation effects. Since it is observed in some experiments that chemicals present in developing skin can cause or disrupt pattern formation, the mechanical model is coupled with a single diffusing chemical. Furthermore, it is observed that the interaction between tissue deformations with a diffusing chemical can cause a previously undescribed instability. This instability could describe both the pattern’s chemical patterning and mechanical expression without the need for a reaction-diffusion system.

Quantum invariants of surface diffeomorphisms and 3-dimensional hyperbolic geometry

Series
Geometry Topology Seminar
Time
Monday, April 24, 2023 - 14:00 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Francis BonahonUniversity of Southern California

Please Note: There will be a pretalk 1-1:40pm in Skiles 006.

This talk is motivated by surprising connections between two very different approaches to 3-dimensional topology, and more precisely by the  Kashaev-Murakami-Murakami Volume Conjecture, which relates the growth of colored Jones polynomials of a knot to the hyperbolic volume of its complement. I will discuss a closely related conjecture for diffeomorphisms of surfaces, based on the representation theory of the Kauffman bracket skein algebra of the surface, a quantum topology object closely related to the Jones polynomial of a knot. I will describe partial results obtained in joint work with Helen Wong and Tian Yang.

Lorentzian polynomials on cones

Series
Algebra Seminar
Time
Monday, April 24, 2023 - 10:20 for 1.5 hours (actually 80 minutes)
Location
Skiles 005
Speaker
Jonathan LeakeUniversity of Waterloo

We show how the theory of Lorentzian polynomials extends to cones other than the positive orthant, and how this may be used to prove Hodge-Riemann relations of degree one for Chow rings. If time permits, we will show explicitly how the theory applies to volume polynomials of matroids and/or polytopes. Joint work with Petter Brändén.

Bifurcations in patterns of human sleep under variation in homeostatic dynamics

Series
CDSNS Colloquium
Time
Friday, April 21, 2023 - 15:30 for 1 hour (actually 50 minutes)
Location
Skiles 006 and online
Speaker
Christina AthanasouliGeorgia Tech

Link: https://gatech.zoom.us/j/91390791493?pwd=QnpaWHNEOHZTVXlZSXFkYTJ0b0Q0UT09

Abstract: The timing of human sleep is strongly modulated by the 24 hour circadian rhythm, our internal biological clock, and the homeostatic sleep drive, one’s need for sleep which depends on prior awakening. The parameters dictating the evolution of the homeostatic sleep drive may vary with development and have been identified as important parameters for generating the transition from multiple sleeps to a single sleep episode per day. We employ piecewise-smooth ODE-based mathematical models to analyze developmentally-mediated transitions of sleep-wake patterns, including napping and non-napping behaviors. Our framework includes the construction of a circle map that captures the timing of sleep onsets on successive days. Analysis of the structure and bifurcations in the map reveals changes in the average number of sleep episodes per day in a period-adding-like structure. In two-state models of sleep-wake regulation, namely models that generate sleep and wake states, we observe saddle-node and border collision bifurcations in the maps. However, in our three-state model of sleep-wake regulation, which captures wake, rapid eye movement (REM) sleep, and non-REM sleep, these sequences are disrupted by period-doubling bifurcations and can exhibit bistability.

Shortest closed curve to inspect a sphere

Series
Combinatorics Seminar
Time
Friday, April 21, 2023 - 15:00 for 1 hour (actually 50 minutes)
Location
Skiles 249
Speaker
Mohammad GhomiGeorgia Tech

We show that in Euclidean 3-space any closed curve which contains the unit sphere in its convex hull has length at least $4\pi$, and characterize the case of equality, which settles a conjecture of Zalgaller. Furthermore, we establish an estimate for the higher dimensional version of this problem by Nazarov, which is sharp up to a multiplicative constant, and is based on Gaussian correlation inequality. Finally we discuss connections with sphere packing problems, and other optimization questions for convex hull of space curves. This is joint work with James Wenk.

Constructing Exotic 4-manifolds

Series
Geometry Topology Working Seminar
Time
Friday, April 21, 2023 - 14:00 for 1.5 hours (actually 80 minutes)
Location
Skiles 006
Speaker
Jon SimoneGeorgia Tech

This week, we'll continue discussing the rational blowdown and use it to construct small exotic 4-manifolds. We will see how we can view the rational blowdown as a "monodromy substitution." Finally, if time allows, we will discuss knot surgery on 4-manifolds. 

Beyond Moments: Robustly Learning Affine Transformations with Asymptotically Optimal Error

Series
ACO Student Seminar
Time
Friday, April 21, 2023 - 13:00 for 1 hour (actually 50 minutes)
Location
Skiles 005
Speaker
He JiaGeorgia Tech CS

We present a polynomial-time algorithm for robustly learning an unknown affine transformation of the standard hypercube from samples, an important and well-studied setting for independent component analysis (ICA). Total variation distance is the information-theoretically strongest possible notion of distance in our setting and our recovery guarantees in this distance are optimal up to the absolute constant factor multiplying the fraction of corruption. Our key innovation is a new approach to ICA (even to outlier-free ICA) that circumvents the difficulties in the classical method of moments and instead relies on a new geometric certificate of correctness of an affine transformation. Our algorithm is based on a new method that iteratively improves an estimate of the unknown affine transformation whenever the requirements of the certificate are not met.

Anderson Localization in dimension two for singular noise, part eight

Series
Mathematical Physics and Analysis Working Seminar
Time
Friday, April 21, 2023 - 12:00 for 1 hour (actually 50 minutes)
Location
Skiles 006 and https://uci.zoom.us/j/93130067385
Speaker
Omar HurtadoUC Irvine

We will finish the proof of the unique continuation theorem, starting with a brief discussion of the growth lemma discussed at our previous talk. After this, we will reduce unique continuation for untitled squares to unique continuation for tilted squares, and using the tilted square growth lemma prove such unique continuation result.

Pages