Seminars and Colloquia by Series

Cellular Binomial Ideals

Series
Algebra Seminar
Time
Friday, April 3, 2015 - 15:05 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Laura Felicia MatusevichTexas A&M
Primary decomposition is a fundamental operation in commutative algebra. Although there are several algorithms to perform it, this remains a very difficult undertaking in general. In cases with additional combinatorial structure, it may be possible to do primary decomposition "by hand". The goal of this talk is to explain in detail one such example. This is joint work with Zekiye Eser; no prerequisites are assumed beyond knowing the definitions of "polynomial ring" and "ideal".

Limit theorems for composition of functions

Series
Stochastics Seminar
Time
Thursday, April 2, 2015 - 15:05 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Michael AnshelevichTexas A&M
I will discuss the limit theorems for composition of analytic functions on the upper-half-plane, and the analogies and differences with the limit theorems for sums of independent random variables. The analogies are enhanced by recalling that the probabilistic limit theorems are really results about convolution of probability measures, and by introducing a new binary operation on probability measures, the monotone convolution.This is joint work with John D. Williams.

The Filippov moments solution on the intersection of two and three manifolds

Series
Dissertation Defense
Time
Thursday, April 2, 2015 - 12:05 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Fabio DifonzoSchool of Mathematics, Georgia Tech
We consider several possibilities on how to select a Filippov sliding vector field on a co-dimension 2 singularity manifold, intersection of two co-dimension 1 manifolds, under the assumption of general attractivity. Of specific interest is the selection of a smoothly varying Filippov sliding vector field. As a result of our analysis and experiments, the best candidates of the many possibilities explored are based on so-called barycentric coordinates: in particular, we choose what we call the moments solution. We then examine the behavior of the moments vector field at the first order exit points, and show that it aligns smoothly with the exit vector field. Numerical experiments illustrate our results and contrast the present method with other choices of Filippov sliding vector field. We further generalize this construction to co-dimension 3 and higher.

Two Lax systems for the Painleve II equation

Series
Analysis Seminar
Time
Thursday, April 2, 2015 - 11:05 for 1 hour (actually 50 minutes)
Location
rm 005
Speaker
Karl LiechtyDePaul University

Please Note: Karl Liechty is the winner of the 2015 Szego prize in orthogonal polynomials and special functions.

I will discuss two different Lax systems for the Painleve II equation. One is of size 2\times 2 and was first studied by Flaschka and Newell in 1980. The other is of size 4\times 4, and was introduced by Delvaux, Kuijlaars, and Zhang in 2010. Both of these objects appear in problems in random matrix theory and closely related fields. I will describe how they are related, and discuss the applications of this relation to random matrix theory.

Concrete Chern classes, the cyclic quantum dilogarithm and the Bloch group

Series
Algebra Seminar
Time
Wednesday, April 1, 2015 - 15:05 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Stavros GaroufalidisGatech
The talk involves an explicit formula for the Chern class on K_3(F), F=number field, givenin terms of the cyclic quantum dilogarithm on the Bloch group of F. Such a formula constructsexcplicitly units in number fields, given a complete hyperbolic 3-manifold, and a complex root ofunity, and those units fit in the asymptotic expansion of quantum knot invariants. The existence ofsuch a formula was conjectured 4 years ago by Zagier (and abstractly follows from Voevodsky's work),and the final solution to the problem was given in recent joint work of the speaker with FrankCalegari and Don Zagier. The key ingredient to the concrete formula is a special function, thecyclic quantum dilogarithm, from a physics 1993 paper of Kashaev and others. The connection of thisformula with physics, and with the Quantum Modular Form Conjecture of Zagier continues with jointwork with Tudor Dimofte. But this is the topic of another talk.

Representability of Cohomology

Series
Geometry Topology Student Seminar
Time
Wednesday, April 1, 2015 - 14:05 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Benjamin IdeGeorgia Tech
In this talk, I prove that there is a bijection between [X, K(\pi, n)] and H^n(X; \pi). The proof is a good introduction to obstruction theory.

On an endpoint mapping property for certain bilinear pseudodifferential operators

Series
Analysis Seminar
Time
Wednesday, April 1, 2015 - 14:00 for 1 hour (actually 50 minutes)
Location
Skiles 005
Speaker
Virginia NaiboKansas State University
The main result to be discussed will be the boundedness from $L^\infty \times L^\infty$ into $BMO$ of bilinear pseudodifferential operators with symbols in a range of bilinear H\"ormander classes of critical order. Such boundedness property is achieved by means of new continuity results for bilinear operators with symbols in certain classes and a new pointwise inequality relating bilinear operators and maximal functions. The role played by these estimates within the general theory will be addressed.

Stability of periodic waves for 1D NLS

Series
PDE Seminar
Time
Tuesday, March 31, 2015 - 15:05 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Stephen GustafsonUBC
Cubic focusing and defocusing Nonlinear Schroedinger Equations admit spatially (and temporally) periodic standing wave solutions given explicitly by elliptic functions. A natural question to ask is: are they stable in some sense (spectrally/linearly, orbitally, asymptotically,...), against some class of perturbations (same-period, multiple-period, general...)? Recent efforts have slightly enlarged our understanding of such issues. I'll give a short survey, and describe an elementary proof of the linear stability of some of these waves. Partly joint work in progress with S. Le Coz and T.-P. Tsai.

Proof of the middle levels conjecture

Series
Combinatorics Seminar
Time
Tuesday, March 31, 2015 - 12:05 for 1 hour (actually 50 minutes)
Location
Skiles 005
Speaker
Torsten MuetzeETH (Zurich) and Georgia Tech
Define the middle layer graph as the graph whose vertex set consists of all bitstrings of length 2n+1 that have exactly n or n+1 entries equal to 1, with an edge between any two vertices for which the corresponding bitstrings differ in exactly one bit. The middle levels conjecture asserts that this graph has a Hamilton cycle for every n>=1. This conjecture originated probably with Havel, Buck and Wiedemann, but has also been (mis)attributed to Dejter, Erdos, Trotter and various others, and despite considerable efforts it remained open during the last 30 years. In this talk I present a proof of the middle levels conjecture. In fact, I show that the middle layer graph has 2^{2^{\Omega(n)}} different Hamilton cycles, which is best possible. http://www.openproblemgarden.org/op/middle_levels_problem and http://www.math.uiuc.edu/~west/openp/revolving.html

Do polynomials dream of symmetric curves?

Series
Job Candidate Talk
Time
Tuesday, March 31, 2015 - 11:05 for 1 hour (actually 50 minutes)
Location
Skiles 005
Speaker
Andrei Martinez-FinkelshteinUniversidad de Almeria, Spain
Polynomials defined either by some type of orthogonality or satisfying differential equations are pervasive in approximation theory, random matrix theory, special functions, harmonic analysis, scientific computing and applications. Numerical simulations show that their zeros exhibit a common feature: they align themselves along certain curves on the plane. What are these curves? In some cases we can answer this question, at least asymptotically. The answer connects fascinating mathematical objects, such as extremal problems in electrostatics, Riemann surfaces, trajectories of quadratic differentials, algebraic functions; this list is not complete. This talk is a brief survey of some ideas related to this problem, from the breakthrough developments in the 1980-ies to nowadays, finishing with some recent results and open problems.

Pages