Seminars and Colloquia by Series

A Non-convex Approach for Signal and Image Processing

Series
Applied and Computational Mathematics Seminar
Time
Tuesday, March 24, 2015 - 11:00 for 1 hour (actually 50 minutes)
Location
Skiles 005
Speaker
Prof. Yifei LouUT Dallas
A fundamental problem in compressed sensing (CS) is to reconstruct a sparsesignal under a few linear measurements far less than the physical dimensionof the signal. Currently, CS favors incoherent systems, in which any twomeasurements are as little correlated as possible. In reality, however, manyproblems are coherent, in which case conventional methods, such as L1minimization, do not work well. In this talk, I will present a novelnon-convex approach, which is to minimize the difference of L1 and L2 norms(L1-L2) in order to promote sparsity. Efficient minimization algorithms areconstructed and analyzed based on the difference of convex functionmethodology. The resulting DC algorithms (DCA) can be viewed as convergentand stable iterations on top of L1 minimization, hence improving L1 consistently. Through experiments, we discover that both L1 and L1-L2 obtain betterrecovery results from more coherent matrices, which appears unknown intheoretical analysis of exact sparse recovery. In addition, numericalstudies motivate us to consider a weighted difference model L1-aL2 (a>1) todeal with ill-conditioned matrices when L1-L2 fails to obtain a goodsolution. An extension of this model to image processing will be alsodiscussed, which turns out to be a weighted difference of anisotropic andisotropic total variation (TV), based on the well-known TV model and naturalimage statistics. Numerical experiments on image denoising, imagedeblurring, and magnetic resonance imaging (MRI) reconstruction demonstratethat our method improves on the classical TV model consistently, and is onpar with representative start-of-the-art methods.

Numerical schemes for stochastic backscatter in the inverse cascade of quasi-geostrophic turbulence

Series
Applied and Computational Mathematics Seminar
Time
Monday, March 23, 2015 - 14:05 for 1 hour (actually 50 minutes)
Location
Skiles 005
Speaker
Yoonsang LeeCourant Institute of Mathematical Sciences
Backscatter is the process of energy transfer from small to large scales in turbulence; it is crucially important in the inverse energy cascades of two-dimensional and quasi-geostrophic turbulence, where the net transfer of energy is from small to large scales. A numerical scheme for stochastic backscatter in the two-dimensional and quasi-geostrophic inverse kinetic energy cascades is developed and analyzed. Its essential properties include a local formulation amenable to implementation in finite difference codes and non-periodic domains, smooth behavior at the coarse grid scale, and realistic temporal correlations, which allows detailed numerical analysis, focusing on the spatial and temporal correlation structure of the modeled backscatter. The method is demonstrated in an idealized setting of quasi-geostrophic turbulence using a low-order finite difference code, where it produces a good approximation to the results of a spectral code with more than 5 times higher nominal resolution. This is joint work with I. Grooms and A. J. Majda

Lagrangian concordance and contact invariants in sutured Floer theories

Series
Geometry Topology Seminar
Time
Monday, March 23, 2015 - 14:00 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
John BaldwinBoston College
In 2007, Honda, Kazez, and Matic defined an invariant of contact 3-manifolds with convex boundaries using sutured Heegaard Floer homology (SHF). Last year, Steven Sivek and I defined an analogous contact invariant using sutured Monopole Floer homology (SMF). In this talk, I will describe work with Sivek to prove that these two contact invariants are identified by an isomorphism relating the two sutured theories. This has several interesting consequences. First, it gives a proof of invariance for the contact invariant in SHF which does not rely on the relative Giroux correspondence between contact structures and open books (something whose proof has not yet been written down in full). Second, it gives a proof that the combinatorially computable invariants of Legendrian knots in Heegaard Floer homology can obstruct Lagrangian concordance.

Dynamics of the Standard Map under Atypical Forcing

Series
CDSNS Colloquium
Time
Monday, March 23, 2015 - 11:00 for 1 hour (actually 50 minutes)
Location
Skiles 005
Speaker
Adam FoxWestern New England Univ.
The Standard Map is a discrete time area-preserving dynamical system and is one of the simplest of such systems to exhibit chaotic dynamics. Traditional studies of the Standard Map have employed symmetric forcing functions that do not induce a net flux. Although the dynamics of these maps is rich there are many systems which cannot be modeled with these restrictions. In this talk we will explore the dynamics of the Standard Map when the forcing is asymmetric and induces a positive flux on the system. We will introduce new numerical methods to study these dynamics and give an overview of how transport in the system changes under these new forces.

Implicit interface boundary integral methods

Series
Applied and Computational Mathematics Seminar
Time
Friday, March 13, 2015 - 14:00 for 1 hour (actually 50 minutes)
Location
Skiles 168
Speaker
Richard TsaiUniversity of Texas at Austin
I will present a new approach for computing boundary integrals that are defined on implicit interfaces, without the need of explicit parameterization. A key component of this approach is a volume integral which is identical to the integral over the interface. I will show results applying this approach to simulate interfaces that evolve according to Mullins-Sekerka dynamics used in certain phase transition problems. I will also discuss our latest results in generalization of this approach to summation of unstructured point clouds and regularization of hyper-singular integrals.

Birational Models of Moduli of Sheaves on Surfaces via the Derived Category

Series
Algebra Seminar
Time
Wednesday, March 11, 2015 - 15:05 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Aaron BertramUniversity of Utah
Jacobians aren't particularly interesting from the point of view of the minimal model program, and neither are the moduli spaces of vector bundles on curves. But once we pass to vector bundles of higher rank (or torsion-free sheaves) on surfaces, then the birational geometry becomes very interesting. In this talk, I want to describe some recent results that rely on "tilting" the category of coherent sheaves on a surface to produce birational models of moduli that are themselves moduli spaces that come up naturally in the minimal model program.

Pages