- You are here:
- GT Home
- Home
- News & Events

Series: Analysis Seminar

In
this talk, I will discuss some polynomials that are best approximants
(in some sense!) to reciprocals of functions in some analytic function
spaces of the unit disk. I will examine the extremal
problem of finding a zero of minimal modulus, and will show how that
extremal problem is related to the spectrum of a certain Jacobi matrix
and real orthogonal polynomials on the real line.

Series: Analysis Seminar

t-Haar multipliers are examples of Haar multipliers were the symbol depends both on the frequency variable (dyadic intervals) and on the space variable, akin to pseudo differential operators. They were introduced more than 20 years ago, the corresponding multiplier when $t=1$ appeared first in connection to the resolvent of the dyadic paraproduct, the cases $t=\pm 1/2$ is intimately connected to direct and reverse inequalities for the dyadic square function in $L^2$, the case $t=1/p$ naturally appears in the study of weighted inequalities in $L^p$. Much has happened in the theory of weighted inequalities in the last two decades, highlights are the resolution of the $A_2$ conjecture (now theorem) by Hyt\"onen in 2012 and the resolution of the two weight problem for the Hilbert transform by Lacey, Sawyer, Shen and Uriarte Tuero in 2014. Among the competing methods used to prove these results were Bellman functions, corona decompositions, and domination by sparse operators. The later method has gained a lot of traction and is being widely used in contexts beyond what it was originally conceived for in work of Lerner, several of these new applications have originated here at Gatech. In this talk I would like to tell you what I know about t-Haar multipliers (some work goes back to my PhD thesis and joint work with Nets Katz and with my former students Daewon Chung, Jean Moraes, and Oleksandra Beznosova), and what we ought to know in terms of sparse domination.

Series: Analysis Seminar

In this talk I will introduce a Tb Theorem that characterizes all Calderón-Zygmund operators that extend compactly on L^p(R^n) by means of testing functions as general
as possible.
In the classical theory for boundedness, the testing functions satisfy a non-degeneracy property called accretivity, which essentially implies the existence of a positive lower bound
for the absolute value of the averages of the testing functions over all dyadic cubes. However, in the setting of compact operators, due to their better properties, the hypothesis of accretivity can be relaxed to a large extend.
As a by-product, the results also describe those Calderón-Zygmund operators whose boundedness can be checked with non-accretive testing functions.

Series: Analysis Seminar

The bispectral problem concerns the construction and the classification
of operators possessing a symmetry between the space and spectral
variables. Different versions of this problem can be solved using
techniques from integrable systems, algebraic geometry, representation
theory, classical orthogonal polynomials, etc. I will review the problem
and some of these connections and then discuss new results related to
the generic quantum superintegrable system on the sphere.

Series: Analysis Seminar

A general local result concerning L^p boundedness of maximal averages over 2D hypersurfaces is described, where p > 2. The surfaces are allowed to have either the traditional smooth density function or a singularity growing as |(x,y)|^{-t} for some 0 < t < 2. This result is a generalization of a theorem of Ikromov, Kempe, and Mueller. Similar methods can be used to show sharp L^p to L^p_a Sobolev estimates for associated Radon transform operators when p is in a certain interval containing 2.

Series: Analysis Seminar

We are going to prove that indicator functions of convex sets with a
smooth boundary cannot serve as window functions for orthogonal Gabor
bases.

Series: Analysis Seminar

Dynamical sampling is the problem of recovering an
unknown function from a set of space-time samples. This problem has many
connections to problems in frame theory, operator theory and functional
analysis. In this talk, we will state the problem and discuss its
relations to various areas of functional analysis and operator theory,
and we will give a brief review of previous results and present several
new ones.

Series: Analysis Seminar

We introduce a class of operators on abstract measurable spaces, which unifies variety of operators in Harmonic Analysis. We prove that such operators can be dominated by simple sparse operators. Those domination theorems imply some new estimations for Calderón-Zygmund operators, martingale transforms and Carleson operators.

Series: Analysis Seminar

The Gabor system of a function is the set
of all of its integer translations and modulations. The Balian-Low
Theorem states that the Gabor system of a function which is well
localized in both time and frequency cannot form an Riesz basis for
$L^2(\mathbb{R})$.
An important tool in the proof is a characterization of the Riesz basis
property in terms of the boundedness of the Zak transform of the
function. In this talk, we will discuss results showing that weaker
basis-type properties also correspond to boundedness
of the Zak transform, but in the sense of Fourier multipliers. We will
also discuss using these results to prove generalizations of the
Balian-Low theorem for Gabor systems with weaker basis properties, as
well as for shift-invariant spaces with multiple
generators and in higher dimensions.

Series: Analysis Seminar

It is a conjecture of Zygmund that the averages of a square integrable function over line segments oriented along a Lipschitz vector field on the plane converge pointwise almost everywhere. This statement is equivalent to the weak L^2 boundedness of the directional maximal operator along the vector field. A related conjecture, attributed to Stein, is the weak L^2 boundedness of the directional Hilbert transform taken along a Lipschitz vector field. In this talk, we will discuss recent partial progress towards Stein’s conjecture obtained in collaboration with I. Parissis, and separately with S. Guo, C. Thiele and P. Zorin-Kranich. In particular, I will discuss the recently obtained sharp bound for the Hilbert transform along finite order lacunary sets in two dimensions and possible higher dimensional generalization