Seminars and Colloquia by Series

Wednesday, April 22, 2009 - 14:00 , Location: Skiles 255 , Peter D. Miller , University of Michigan , Organizer: Jeff Geronimo
We will discuss a new method of asymptotic analysis of matrix-valued Riemann-Hilbert problems that involves dispensing with analyticity in favor of measured deviation therefrom. This method allows the large-degree analysis of orthogonal polynomials on the real line with respect to varying nonanalytic weights with external fields having two Lipschitz-continuous derivatives, as long as the corresponding equilibrium measure has typical support properties. Universality of local eigenvalue statistics of unitary-invariant ensembles in random matrix theory follows under the same conditions. This is joint work with Ken McLaughlin.
Monday, April 20, 2009 - 15:00 , Location: Skiles 255 , Svitlana Mayboroda , Purdue University , Organizer: Michael Lacey

Note special time

In 1908 Hadamard conjectured that the biharmonic Green function must be positive. Later on, several counterexamples to Hadamard's conjecture have been found and a variety of upper estimates were obtained in sufficiently smooth domains. However, the behavior of the Green function in general domains was not well-understood until recently. In a joint work with V. Maz'ya we derive sharp pointwise estimates for the biharmonic and, more generally, polyharmonic Green function in arbitrary domains. Furthermore, we introduce the higher order capacity and establish an analogue of the Wiener criterion describing the precise correlation between the geometry of the domain and the regularity of the solutions to the polyharmonic equation.
Monday, April 13, 2009 - 14:00 , Location: Skiles 255 , Doron Lubinsky , School of Mathematics, Georgia Tech , Organizer: Plamen Iliev
It turns out that the sinc kernel is not the only kernel that arises as a universality limit coming from random matrices associated with measures with compact support. Any reproducing kernel for a de Branges space that is equivalent to a Paley-Winer space may arise. We discuss this and some other results involving de Branges spaces, universality, and orthogonal polynomials.
Tuesday, April 7, 2009 - 16:00 , Location: Skiles 269 , Andrei Kapaev , Indiana University-Purdue University Indianapolis , Organizer: Stavros Garoufalidis
Solutions of the simplest of the Painleve equations, PI, y'' = 6y^2+x, exhibit surprisingly rich asymptotic properties as x is large. Using the Riemann-Hilbert problem approach, we find an exponentially small addition to an algebraically large background admitting a power series asymptotic expansion and explain how this "beyond of all orders" term helps us to compute the coefficient asymptotics in the preceding series.
Monday, March 30, 2009 - 15:00 , Location: Skiles 255 , Jeff Geronimo , School of Mathematics, Georgia Tech , Organizer: Jeff Geronimo
The contracted asymptotics for orthogonal polynomials whose recurrence coefficients tend to infinity will be discussed. The connection between the equilibrium measure for potential problems with external fields will be exhibited. Applications will be presented which include the Wilson polynomials.
Monday, February 23, 2009 - 14:00 , Location: Skiles 255 , Eric Rains , Caltech , Organizer: Plamen Iliev
Euler's beta (and gamma) integral and the associated orthogonal polynomials lie at the core of much of the theory of special functions, and many generalizations have been studied, including multivariate analogues (the Selberg integral; also work of Dixon and Varchenko), q-analogues (Askey-Wilson, Nasrallah-Rahman), and both (work of Milne-Lilly and Gustafson; Macdonald and Koornwinder for orthgonal polynomials). (Among these are the more tractable sums arising in random matrices/tilings/etc.) In 2000, van Diejen and Spiridonov conjectured a further generalization of the Selberg integral, going beyond $q$ to the elliptic level (replacing q by a point on an elliptic curve). I'll discuss two proofs of their conjecture, and the corresponding elliptic analogue of the Macdonald and Koornwinder orthogonal polynomials. In addition, I'll discuss a further generalization of the elliptic Selberg integral with a (partial) symmetry under the exceptional Weyl group E_8, and its relation to Sakai's elliptic Painlev equation.
Wednesday, February 11, 2009 - 14:00 , Location: Skiles 255 , Giuseppe Mastroianni , Universita della Basilcata, Potenza, Italy , Organizer: Doron Lubinsky
Monday, February 2, 2009 - 14:00 , Location: Skiles 255 , Chris Heil , School of Mathematics, Georgia Tech , Organizer: Plamen Iliev
The Balian-Low Theorem is a strong form of the uncertainty principle for Gabor systems that form orthonormal or Riesz bases for L^2(R). In this talk we will discuss the Balian-Low Theorem in the setting of Schauder bases. We prove that new weak versions of the Balian-Low Theorem hold for Gabor Schauder bases, but we constructively demonstrate that several variants of the BLT can fail for Gabor Schauder bases that are not Riesz bases. We characterize a class of Gabor Schauder bases in terms of the Zak transform and product A_2 weights; the Riesz bases correspond to the special case of weights that are bounded away from zero and infinity. This is joint work with Alex Powell (Vanderbilt University).
Monday, December 1, 2008 - 14:00 , Location: Skiles 255 , Sergey Tikhonov , ICREA and CRM, Barcelona , Organizer: Michael Lacey
In this talk we will discuss a generalization of monotone sequences/functions as well as of those of bounded variation. Some applications to various problems of analysis (the Lp-convergence of trigonometric series, the Boas-type problem for the Fourier transforms, the Jackson and Bernstein inequalities in approximation, etc.) will be considered.
Wednesday, November 26, 2008 - 14:00 , Location: Skiles 255 , Yoshihiro Sawano , Gakushuin University, Japan , Organizer: Michael Lacey

Note time change.

Let I_\alpha be the fractional integral operator. The Olsen inequality, useful in certain PDEs, concerns multiplication operators and fractional integrals in the L^p-norm, or more generally, the Morrey norm. We strenghten this inequality from the one given by Olsen.