## Seminars and Colloquia by Series

Friday, April 7, 2017 - 15:05 , Location: Skiles 254 , Prof. Rafael de la Llave , School of Math, Georgia Tech , Organizer: Jiaqi Yang
It is well known  that periodic orbits give all the information about dynamical systems, at least for expanding maps, for which the periodic orbits are dense. This turns out to be true in dimensions 1 and 2, and false in dimension 4 or higher.We will present a proof  that  two $C^\infty$ expanding maps of the circle, which are topologically equivalent are $C^\infty$ conjugate if and only if the derivatives or the return map at periodic orbits are the same.
Friday, April 7, 2017 - 15:05 , Location: Skiles 005 , Lionel Levine , Cornell University , Organizer: Megan Bernstein
The theme of this talk is walks in a random environment of "signposts" altered by the walker. I'll focus on three related examples: 1. Rotor walk on Z^2. Your initial signposts are independent with the uniform distribution on {North,East,South,West}. At each step you rotate the signpost at your current location clockwise 90 degrees and then follow it to a nearest neighbor. Priezzhev et al. conjectured that in n such steps you will visit order n^{2/3} distinct sites. I'll outline an elementary proof of a lower bound of this order. The upper bound, which is still open, is related to a famous question about the path of a light ray in a grid of randomly oriented mirrors. This part is joint work with Laura Florescu and Yuval Peres. 2. p-rotor walk on Z. In this walk you flip the signpost at your current location with probability 1-p and then follow it. I'll explain why your scaling limit will be a Brownian motion perturbed at its extrema. This part is joint work with Wilfried Huss and Ecaterina Sava-Huss. 3. p-rotor walk on Z^2. Rotate the signpost at your current location clockwise with probability p and counterclockwise with probability 1-p, and then follow it. This walk “organizes” its environment of signposts. The stationary environment is an orientation of the uniform spanning forest, plus one additional edge. This part is joint work with Swee Hong Chan, Lila Greco and Boyao Li.
Friday, April 7, 2017 - 13:05 , Location: Skiles 270 , , Iowa State University , , Organizer: Michael Damron
We discuss scaling methods which can be used to solve low mode control problems for nonlinear partial differential equations.  These methods lead naturally to a infinite-dimensional generalization of the notion of saturation, originally due to Jurdjevic and Kupka in the finite-dimensional setting of ODEs.  The methods will be highlighted by applying them to specific equations, including reaction-diffusion equations, the 2d/3d Euler/Navier-Stokes equations and the 2d Boussinesq equations.  Applications to support properties of the laws solving randomly-forced versions of each of these equations will be noted.
Friday, April 7, 2017 - 13:05 , Location: Skiles 005 , James Bailey , Georgia Tech , Organizer: Marcel Celaya
We study stable marriage where individuals strategically submit private preference information to a publicly known stable marriage algorithm. We prove that no stable marriage algorithm ensures actual stability at every Nash equilibrium when individuals are strategic. More specifically, we show that any rational marriage, stable or otherwise, can be obtained at a Nash equilibrium. Thus the set of Nash equilibria provides no predictive value nor guidance for mechanism design. We propose the following new minimal dishonesty equilibrium refinement, supported by experimental economics results: an individual will not strategically submit preference list L if there exists a more honest L' that yields as preferred an outcome. Then for all marriage algorithms satisfying monotonicity and IIA, every minimally dishonest equilibrium yields a sincerely stable marriage. This result supports the use of algorithms less biased than the (Gale-Shapley) man-optimal, which we prove yields the woman-optimal marriage in every minimally dishonest equilibrium. However, bias cannot be totally eliminated, in the sense that no monotonic IIA stable marriage algorithm is certain to yield the egalitarian-optimal marriage in a minimally dishonest equilibrium – thus answering a 28-year old open question of Gusfield and Irving's in the negative. Finally, we show that these results extend to student placement problems, where women are polygamous and honest, but not to admissions problems, where women are both polygamous and strategic. Based on joint work with Craig Tovey at Georgia Tech.
Thursday, April 6, 2017 - 15:05 , Location: Skiles 006 , Zhou Fan , Stanford University , Organizer: Christian Houdre
Spectral algorithms are a powerful method for detecting low-rank structure in dense random matrices and random graphs. However, in certain problems involving sparse random graphs with bounded average vertex degree, a naive spectral analysis of the graph adjacency matrix fails to detect this structure. In this talk, I will discuss a semidefinite programming (SDP) approach to address this problem, which may be viewed both as imposing a delocalization constraint on the maximum eigenvalue problem and as a natural convex relaxation of minimum graph bisection. I will discuss probabilistic results that bound the value of this SDP for sparse Erdos-Renyi random graphs with fixed average vertex degree, as well as an extension of the lower bound to the two-group stochastic block model. Our upper bound uses a dual witness construction that is related to the non-backtracking matrix of the graph. Our lower bounds analyze the behavior of local algorithms, and in particular imply that such algorithms can approximately solve the SDP in the Erdos-Renyi setting. This is joint work with Andrea Montanari.
Wednesday, April 5, 2017 - 14:05 , Location: Skiles 006 , Sudipta Kolay , Georgia Tech , Organizer: Justin Lanier
Continuing from last time, we will discuss Hilden and Montesinos' result that every smooth closed oriented three manifold is a three fold branched cover over the three sphere, and also there is a representation by bands.
Wednesday, April 5, 2017 - 14:05 , Location: Skiles 005 , Galyna Livshyts , Georgia Tech , Organizer: Shahaf Nitzan
It was shown by Keith Ball that the maximal section of an n-dimensional cube is \sqrt{2}. We show the analogous sharp bound for a maximal marginal of a product measure with bounded density. We also show an optimal bound for all k-codimensional marginals in this setting, conjectured by Rudelson and Vershynin. This bound yields a sharp small ball inequality for the length of a projection of a random vector. This talk is based on the joint work with G. Paouris and P. Pivovarov.
Wednesday, April 5, 2017 - 12:05 , Location: Skiles 006 , Chi Ho Yuen , Georgia Tech , Organizer: Justin Lanier
I will continue the discussion on the group actions of the graph Jacobian on the set of spanning trees. After reviewing the basic definitions, I will explain how polyhedral geometry leads to a new family of such actions. These actions can be described combinatorially, but proving that they are simply transitive uses geometry in an essential way. If time permits, I will also explain the following surprising connection: the canonical group action for a plane graph (via rotor-routing or Bernardi process) is related to the canonical tropical geometric structure of its dual graph. This is joint work with Spencer Backman and Matt Baker.
Tuesday, April 4, 2017 - 14:00 , Location: Skiles 005 , , Georgia Tech School of Math , , Organizer: Joseph Walsh