Seminars and Colloquia by Series

Reaching L^1 via Extrapolation Theory

Series
Analysis Seminar
Time
Wednesday, April 8, 2015 - 14:05 for 1 hour (actually 50 minutes)
Location
Skiles 005
Speaker
Carlos DomingoUniversity of Barcelona
The classical Rubio de Francia extrapolation allows you to obtain strong-type estimates for weights in A_p (and every p>1) if you can show that it holds for some p_0>1. However, the endpoint p=1 has to be treated separately. In this talk we will explain how to deduce weak-type (1,1) estimates for A_1 weights if we have a certain restricted weak-type inequality at some level p_0>1. We will then show how this approach can be applied to the Bochner-Riesz operator at the critical index and Fourier multipliers.

Complex-oriented cohomology theories and Quillen's theorem Part I

Series
Geometry Topology Student Seminar
Time
Wednesday, April 8, 2015 - 14:05 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Xander FloodGeorgia Tech
Complex-oriented cohomology theories are a class of generalized cohomology theories with special properties with respect to orientations of complex vector bundles. Examples include all ordinary cohomology theories, complex K-theory, and (our main theory of interest) complex cobordism.In two talks on these cohomology theories, we'll construct and discuss some examples and study their properties. Our ultimate goal will be to state and understand Quillen's theorem, which at first glance describes a close relationship between complex cobordism and formal group laws. Upon closer inspection, we'll see that this is really a relationship between C-oriented cohomology theories and algebraic geometry.

The Euler-Maxwell system in 2D

Series
PDE Seminar
Time
Tuesday, April 7, 2015 - 15:05 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Benoit PausaderPrinceton University
The Euler-Maxwell system describes the interaction between a compressible fluid of electrons over a background of fixed ions and the self-consistent electromagnetic field created by the motion.We show that small irrotational perturbations of a constant equilibrium lead to solutions which remain globally smooth and return to equilibrium. This is in sharp contrast with the case of neutral fluids where shock creation happens even for very nice initial data.Mathematically, this is a quasilinear dispersive system and we show a small data-global solution result. The main challenge comes from the low dimension which leads to slow decay and from the fact that the nonlinearity has some badly resonant interactions which force a correction to the linear decay. This is joint work with Yu Deng and Alex Ionescu.

A new variational principle for integrable systems

Series
Analysis Seminar
Time
Tuesday, April 7, 2015 - 13:00 for 1 hour (actually 50 minutes)
Location
Skiles 005
Speaker
Sarah LobbUniversity of Sidney
The conventional point of view is that the Lagrangian is a scalar object, which through the Euler-Lagrange equations provides us with one single equation. However, there is a key integrability property of certain discrete systems called multidimensional consistency, which implies that we are dealing with infinite hierarchies of compatible equations. Wanting this property to be reflected in the Lagrangian formulation, we arrive naturally at the construction of Lagrangian multiforms, i.e., Lagrangians which are the components of a form and satisfy a closure relation. Then we can propose a new variational principle for discrete integrable systems which brings in the geometry of the space of independent variables, and from this principle derive any equation in the hierarchy.

Geometric Bijections Between Spanning Trees and Break Divisors

Series
Combinatorics Seminar
Time
Tuesday, April 7, 2015 - 12:05 for 1 hour (actually 50 minutes)
Location
Skiles 005
Speaker
Chi Ho YuenGeorgia Tech
The Jacobian group Jac(G) of a finite graph G is a group whose cardinality is the number of spanning trees of G. G also has a tropical Jacobian which has the structure of a real torus; using the notion of break divisors, one can obtain a polyhedral decomposition of the tropical Jacobian where vertices and cells correspond to the elements of Jac(G) and the spanning trees of G respectively. In this talk I will give a combinatorial description to bijections coming from this geometric setting, I will also show some previously known bijections can be related to these geometric bijections. This is joint work with Matthew Baker.

Autonomous and Intelligent Systems at United Technologies Research Center

Series
Other Talks
Time
Tuesday, April 7, 2015 - 09:00 for 1 hour (actually 50 minutes)
Location
TSRB Auditorium
Speaker
Andrzej Banaszuk United Technologies Research Center
We will present a broad overview of UTRC’s research initiative in Autonomous and Intelligent Systems (AIS) that was created to conceive, develop and mature a broad range of intelligent mobile robotic systems and capabilities to enhance and support the diverse array of businesses that comprise the United Technologies Corporation. While initial efforts have been focused on Sikorsky Aircraft unmanned rotorcraft, the initiative is now expanding to include other aerospace and commercial applications, as well. The research, conducted by a diverse team of researchers in robotics, dynamical systems, control, applied mathematics, computer vision, and computer science (in partnership with several leading universities including CMU, MIT, UPenn, and UCB) includes: • Real-time algorithms for dynamic collision avoidance in an obstacle-rich environment using probabilistic roadmaps. • Navigation with imperfect and intermittent sensors in GPS degraded environments. • Multi-vehicle missions including efficient robotic search algorithms based on ergodic theory methods. • Collaborative motion planning for multiple aerial and ground robots in large, cluttered environments, trading off mission objectives while satisfying logical/spatial/temporal constraints. • Intelligent system design methodology including architectures for autonomy, human-machine systems, and formal verification. We will conclude with research problems of interest to UTRC and discuss existing and future career and internship opportunities in the broad area of autonomy and robotics.

Control of Oscillators, Temporal Homogenization, and Energy Harvest by Super-Parametric Resonance

Series
Applied and Computational Mathematics Seminar
Time
Monday, April 6, 2015 - 14:00 for 1 hour (actually 50 minutes)
Location
Skiles 005
Speaker
Prof. Molei TaoGeorgia Tech School of Math.
We show how to control an oscillator by periodically perturbing its stiffness, such that its amplitude follows an arbitrary positive smooth function. This also motivates the design of circuits that harvest energies contained in infinitesimal oscillations of ambient electromagnetic fields. To overcome a key obstacle, which is to compensate the dissipative effects due to finite resistances, we propose a theory that quantifies how small/fast periodic perturbations affect multidimensional systems. This results in the discovery of a mechanism that reduces the resistance threshold needed for energy extraction, based on coupling a large number of RLC circuits.

Tightness of positive rational surgeries

Series
Geometry Topology Seminar
Time
Monday, April 6, 2015 - 14:00 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Bulent TosunUniversity of Virginia
Existence of a tight contact structure on a closed oriented three manifold is still widely open problem. In this talk we will present some work in progress to answer this problem for manifolds that are obtained by Dehn surgery on a knot in three sphere. Our method involves on one side generalizing certain geometric methods due to Baldwin, on the other unfolds certain homological algebra methods due to Ozsvath and Szabo.

Computer assisted proofs in KAM theory

Series
CDSNS Colloquium
Time
Monday, April 6, 2015 - 11:00 for 1 hour (actually 50 minutes)
Location
Skiles 005
Speaker
Alex HaroUniv. of Barcelona
We present a methodology to rigorously validate a given approximation of a quasi-periodic Lagrangian torus of a symplectic map. The approach consists in verifying the hypotheses of a-posteriori KAM theory based of the parameterization method (following Rafael de la Llave and collaborators). A crucial point of our imprementation is an analytic Lemma that allows us to control the norm of periodic functions using their discrete Fourier transform. An outstanding consequence of this approach it that the computational cost of the validation is assymptotically equivalent of the cost of the numerical computation of invariant tori using the parametererization method. We pretend to describe some technical aspects of our implementation. This is a work in progress joint with Jordi-Lluis Figueras and Alejandro Luque.

Cellular Binomial Ideals

Series
Algebra Seminar
Time
Friday, April 3, 2015 - 15:05 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Laura Felicia MatusevichTexas A&M
Primary decomposition is a fundamental operation in commutative algebra. Although there are several algorithms to perform it, this remains a very difficult undertaking in general. In cases with additional combinatorial structure, it may be possible to do primary decomposition "by hand". The goal of this talk is to explain in detail one such example. This is joint work with Zekiye Eser; no prerequisites are assumed beyond knowing the definitions of "polynomial ring" and "ideal".

Pages