## Seminars and Colloquia by Series

Friday, March 27, 2009 - 15:00 , Location: Skiles 255 , Graeme Kemkes , UCSD , Organizer: Prasad Tetali
Choose a graph uniformly at random from all d-regular graphs on n vertices. We determine the chromatic number of the graph for about half of all values of d, asymptotically almost surely (a.a.s.) as n grows large. Letting k be the smallest integer satisfying d < 2(k-1)\log(k-1), we show that a random d-regular graph is k-colorable a.a.s. Together with previous results of Molloy and Reed, this establishes the chromatic number as a.a.s. k-1 or k. If furthermore d>(2k-3)\log(k-1) then the chromatic number is a.a.s. k. This is an improvement upon results recently announced by Achlioptas and Moore. The method used is "small subgraph conditioning'' of Robinson and Wormald, applied to count colorings where all color classes have the same size. It is the first rigorously proved result about the chromatic number of random graphs that was proved by small subgraph conditioning. This is joint work with Xavier Perez-Gimenez and Nick Wormald.
Friday, March 27, 2009 - 12:30 , Location: Skiles 255 , Huy Huynh , School of Mathematics, Georgia Tech , Organizer:
This is due to the paper of Dr. Christian Houdre and Trevis Litherland. Let X_1, X_2,..., X_n be a sequence of iid random variables drawn uniformly from a finite ordered alphabets (a_1,...,a_m) where a_1 < a_2 < ...< a_m. Let LI_n be the length of the longest increasing subsequence of X_1,X_2,...,X_n. We'll express the limit distribution of LI_n as functionals of (m-1)-dimensional Brownian motion. This is an elementary case taken from this paper.
Thursday, March 26, 2009 - 11:00 , Location: Skiles 269 , Walter Craig , McMaster University , Organizer: Guillermo Goldsztein
A new estimate on weak solutions of the Navier-Stokes equations in three dimensions gives some information about the partial regularity of solutions. In particular, if energy concentration takes place, the dimension of the microlocal singular set cannot be too small. This estimate has a dynamical systems proof. These results are joint work with M. Arnold and A. Biryuk.
Series: Other Talks
Wednesday, March 25, 2009 - 15:00 , Location: Howey Physics Lecture Room 5 , Roger Penrose , Mathematical Institute, University of Oxford , Organizer: Stavros Garoufalidis
Twistor theory is now over 45 years old. In December 1963, I proposed the initial ideas of this scheme, based on complex-number geometry, which presents an alternative perspective to that of standard 4-dimensional space-time, for the basic arena in which (quantum) physics takes place. Over the succeeding years, there were numerous intriguing developments. But many of these were primarily mathematical, and there was little interest expressed by the physics community. Things changed rather dramatically, in December 2003, when E. Witten produced a 99-page article initiating the subject of “twistor-string theory” this providing a novel approach to high-energy scattering processes. In this talk, I shall provide an account of the original geometrical and physical ideas, and also outline various recent developments, some of which may help our understandings of the seeming paradoxes of quantum mechanics.
Wednesday, March 25, 2009 - 13:30 , Location: ISyE Executive Classroom , Dana Randall , Computer Science, Georgia Tech , Organizer: Annette Rohrs
We will survey some old, some new, and some open problems in the area of efficient sampling. We will focus on sampling combinatorial structures (such as perfect matchings and independent sets) on regular lattices. These problems arise in statistical physics, where sampling objects on lattices can be used to determine many thermodynamic properties of simple physical systems. For example, perfect matchings on the Cartesian lattice, more commonly referred to as domino tilings of the chessboard, correspond to systems of diatomic molecules. But most importantly they are just cool problems with some beautiful solutions and a surprising number of unsolved challenges!
Wednesday, March 25, 2009 - 13:00 , Location: Skiles 255 , Junping Wang , NSF , Organizer: Haomin Zhou
This talk will first review domain decomposition methods for second order elliptic equations, which should be accessible to graduate students. The second part of the talk will deal with possible extensions to the Stokes equation when discretized by finite element methods. In particular, we shall point out the difficulties in such a generalization, and then discuss ways to overcome the difficulties.
Wednesday, March 25, 2009 - 11:00 , Location: Skiles 255 , Ruslan Rafikov , Medical College of Georgia , Organizer:
The stress condition calls for an adequate activity of key enzymatic systems of cellular defense. Massive protein destabilization and degradation is occurring in stressed cells. The rate of protein re-synthesis (DNA->RNA->protein) is inadequate to adapt to rapidly changing environment. Therefore, an alternative mechanism should exist maintaining sufficient activity of defense enzymes. Interestingly, more than 50% of enzymes consist of identical subunits which are forming multimeric interface. Stabilization of multimers is important for enzymatic activity. We found that it can be achieved by the formation of inter-subunit covalent bridges in response to stress conditions. It shows an elegance of the structure design that directs selective subunits linkage and increases enzyme's robustness and chances of cell survival during the stress. In contrast, modification of aminoacids involved in linkage leads to protein destabilization, unfolding and degradation. These results describe a new instantaneous mechanism of structural adaptation that controls enzymatic system under stress condition.
Series: Other Talks
Tuesday, March 24, 2009 - 17:30 , Location: LeCraw Auditorium, Room 100 , Roger Penrose , Mathematical Institute, University of Oxford , Organizer:
There is much impressive observational evidence, mainly from the cosmic microwave background (CMB), for an enormously hot and dense early stage of the universe --- referred to as the Big Bang. Observations of the CMB are now very detailed, but this very detail presents new puzzles of various kinds, one of the most blatant being an apparent paradox in relation to the second law of thermodynamics. The hypothesis of inflationary cosmology has long been argued to explain away some of these puzzles, but it does not resolve some key issues, including that raised by the second law. In this talk, I describe a quite different proposal, which posits a succession of universe aeons prior to our own. The expansion of the universe never reverses in this scheme, but the space-time geometry is nevertheless made consistent through a novel geometrical conception. Some very recent analysis of the CMB data, obtained with the WMAP satellite, will be described, this having a profound but tantalizing bearing on these issues.
Series: PDE Seminar
Tuesday, March 24, 2009 - 15:05 , Location: Skiles 255 , Thomas Sideris , University of California, Santa Barbara , Organizer:
We will give an overview of results on the global existence of solutions to the initial value problem for nonlinear elastic and viscoelastic materials in 3d without boundary. Materials will be assumed to be isotropic, but both compressible and incompressible cases will be discussed. In the compressible case, a key null condition must be imposed to control nonlinear interactions of pressure waves. This necessary assumption is consistent with the physical model. Initial conditions are small perturbations of a stress free reference state. Existence is proven using a fixed point argument which combines energy estimates and with some new dispersive estimates.
Monday, March 23, 2009 - 16:30 , Location: Skiles 255 , Xiangdong Ye , University of Science and Technology of China , Organizer: Yingfei Yi
In this talk we will review results on local entropy theory for the past 15 years, introduce the current development and post some open questions for the further study.