Seminars and Colloquia by Series

Large solutions for compressible Euler equations in one space dimension

Series
PDE Seminar
Time
Tuesday, December 9, 2014 - 15:05 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Geng ChenGeorgia Tech
The existence of large BV (total variation) solution for compressible Euler equations in one space dimension is a major open problem in the hyperbolic conservation laws, where the small BV existence was first established by James Glimm in his celebrated paper in 1964. In this talk, I will discuss the recent progress toward this longstanding open problem joint with my collaborators. The singularity (shock) formation and behaviors of large data solutions will also be discussed.

On the uniqueness and properties of the Parisi measure

Series
Job Candidate Talk
Time
Tuesday, December 9, 2014 - 14:05 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Wei-Kuo ChenUniversity of Chicago
Spin glasses are disordered spin systems originated from the desire of understanding the strange magnetic behaviors of certain alloys in physics. As mathematical objects, they are often cited as examples of complex systems and have provided several fascinating structures and conjectures. This talk will be focused on one of the famous mean-field spin glasses, the Sherrington-Kirkpatrick model. We will present results on the conjectured properties of the Parisi measure including its uniqueness and quantitative behaviors. This is based on joint works with A. Auffinger.

First-order properties of Erdos-Renyi random graphs

Series
Combinatorics Seminar
Time
Tuesday, December 9, 2014 - 13:35 for 1 hour (actually 50 minutes)
Location
Skiles 005
Speaker
Maksim Zhukovskii MIPT, Moscow, Russia
In the talk, an asymptotic behaviour of first order properties of the Erdos-Renyi random graph G(n,p) will be considered. The random graph obeys the zero-one law if for each first-order property L either its probability tends to 0 or tends to 1. The random graph obeys the zero-one k-law if for each property L which can be expressed by first-order formula with quantifier depth at most k either its probability tends to 0 or tends to 1. Zero-one laws were proved for different classes of functions p=p(n). The class n^{-a} is at the top of interest. In 1988 S. Shelah and J.H. Spencer proved that the random graph G(n,n^{-a}) obeys zero-one law if a is positive and irrational. If a is rational from the interval (0,1], then G(n,n^{-a}) does not obey the zero-one law. I obtain zero-one k-laws for some rational a from (0,1]. For any first-order property L let us consider the set S(L) of a from (0,1) such that a probability of G(n,n^{-a}) to satisfy L does not converges or its limit is not zero or one. Spencer proved that there exists L such that S(L) is infinite. Recently in the joint work with Spencer we obtain new results on a distribution of elements of S(L) and its limit points.

On the duality between "free" and "forgetful” constructions

Series
Geometry Topology Seminar
Time
Monday, December 8, 2014 - 14:00 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Emily RiehlHarvard University
Groups, rings, modules, and compact Hausdorff spaces have underlying sets ("forgetting" structure) and admit "free" constructions. Moreover, each type of object is completely characterized by the shadow of this free-forgetful duality cast on the category of sets, and this syntactic encoding provides formulas for direct and inverse limits. After we describe a typical encounter with adjunctions, monads, and their algebras, we introduce a new "homotopy coherent" version of this adjoint duality together with a graphical calculus that is used to define a homotopy coherent algebra in quite general contexts, such as appear in abstract homotopy theory or derived algebraic geometry.

Roots, Schottky semigroups, and a proof of Bandt's Conjecture

Series
School of Mathematics Colloquium
Time
Friday, December 5, 2014 - 16:00 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Danny CalegariUniversity of Chicago

Please Note: Kick-off of the Tech Topology Conference, December 5-7, 2014

In 1985, Barnsley and Harrington defined a "Mandelbrot Set" M for pairs of similarities -- this is the set of complex numbers z with norm less than 1 for which the limit set of the semigroup generated by the similarities x -> zx and x -> z(x-1)+1 is connected. Equivalently, M is the closure of the set of roots of polynomials with coefficients in {-1,0,1}. Barnsley and Harrington already noted the (numerically apparent) existence of infinitely many small "holes" in M, and conjectured that these holes were genuine. These holes are very interesting, since they are "exotic" components of the space of (2 generator) Schottky semigroups. The existence of at least one hole was rigorously confirmed by Bandt in 2002, but his methods were not strong enough to show the existence of infinitely many holes; one difficulty with his approach was that he was not able to understand the interior points of M, and on the basis of numerical evidence he conjectured that the interior points are dense away from the real axis. We introduce the technique of traps to construct and certify interior points of M, and use them to prove Bandt's Conjecture. Furthermore, our techniques let us certify the existence of infinitely many holes in M. This is joint work with Sarah Koch and Alden Walker.

Grid Ramsey problem and related questions

Series
Job Candidate Talk
Time
Thursday, December 4, 2014 - 14:00 for 1 hour (actually 50 minutes)
Location
Skiles 005
Speaker
Choongbum LeeMIT
The Hales--Jewett theorem is one of the pillars of Ramsey theory, from which many other results follow. A celebrated result of Shelah from 1988 gives a significantly improved bound for this theorem. A key tool used in his proof, now known as the cube lemma, has become famous in its own right. Hoping to further improve Shelah's result, more than twenty years ago, Graham, Rothschild and Spencer asked whether there exists a polynoimal bound for this lemma. In this talk, we present the answer to their question and discuss numerous connections of the cube lemma with other problems in Ramsey theory. Joint work with David Conlon (Oxford), Jacob Fox (MIT), and Benny Sudakov (ETH Zurich).

Mathematics at the elementary and middle grades and the Common Core

Series
School of Mathematics Colloquium
Time
Thursday, December 4, 2014 - 11:00 for 1 hour (actually 50 minutes)
Location
Skiles 005
Speaker
Sybilla BeckmanJosiah Meigs Distinguished Teaching Professor of Mathematics, UGA
In this presentation I will show some of the surprising depth and complexity of elementary- and middle-grades mathematics, much of which has been revealed by detailed studies into how students think about mathematical ideas. In turn, research into students' thinking has led to the development of teaching-learning paths at the elementary grades, which are reflected in the Common Core State Standards for Mathematics. These teaching-learning paths are widely used in mathematically high-performing countries but are not well understood in this country. At the middle grades, ideas surrounding ratio and proportional relationships are critical and central to all STEM disciplines, but research is needed into how students and teachers can reason about these ideas. Although research in mathematics education is necessary, it is not sufficient for solving our educational problems. For the mathematics teaching profession to be strong, we need a system in which all of us who teach mathematics, at any level, take collective ownership of and responsibility for mathematics teaching.

Towards dichotomy for planar boolean CSP

Series
Graph Theory Seminar
Time
Wednesday, December 3, 2014 - 15:05 for 1 hour (actually 50 minutes)
Location
Skiles 005
Speaker
Zdenek DvorakCharles University
For relations {R_1,..., R_k} on a finite set D, the {R_1,...,R_k}-CSP is a computational problem specified as follows: Input: a set of constraints C_1, ..., C_m on variables x_1, ..., x_n, where each constraint C_t is of form R_{i_t}(x_{j_{t,1}}, x_{j_{t,2}}, ...) for some i_t in {1, ..., k} Output: decide whether it is possible to assign values from D to all the variables so that all the constraints are satisfied. The CSP problem is boolean when |D|=2. Schaefer gave a sufficient condition on the relations in a boolean CSP problem guaranteeing its polynomial-time solvability, and proved that all other boolean CSP problems are NP-complete. In the planar variant of the problem, we additionally restrict the inputs only to those whose incidence graph (with vertices C_1, ..., C_m, x_1, ..., x_m and edges joining the constraints with their variables) is planar. It is known that the complexities of the planar and general variants of CSP do not always coincide. For example, let NAE={(0,0,1),(0,1,0),(1,0,0),(1,1,0),(1,0,1),(0,1,1)}). Then {NAE}-CSP is NP-complete, while planar {NAE}-CSP is polynomial-time solvable. We give some partial progress towards showing a characterization of the complexity of planar boolean CSP similar to Schaefer's dichotomy theorem.Joint work with Martin Kupec.

The boundary of the curve complex

Series
Geometry Topology Student Seminar
Time
Wednesday, December 3, 2014 - 14:00 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Robert KroneGeorgia Tech
I will present a result of Klarreich on the boundary at infinity of the complex of curves of a compact orientable surface. The complex of curves is a delta-hyperbolic space so it has a boundary which is the set of equivalence classes of quasi-geodesic rays. Klarreich shows that the resulting space is homeomorphic to the space of minimal foliations of the surface.

Infinite volume limit for the Nonlinear Schrodinger Equation and Weak Turbulence

Series
PDE Seminar
Time
Tuesday, December 2, 2014 - 15:00 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Pierre GermainCourant Institute
Abstract: the theory of weak turbulence has been put forward by appliedmathematicians to describe the asymptotic behavior of NLS set on a compactdomain - as well as many other infinite dimensional Hamiltonian systems.It is believed to be valid in a statistical sense, in the weaklynonlinear, infinite volume limit. I will present how these limits can betaken rigorously, and give rise to new equations.

Pages