Seminars and Colloquia by Series

Wednesday, April 8, 2009 - 12:00 , Location: Skiles 255 , Hao Min Zhou , School of Mathematics, Georgia Tech , Organizer:
This talk will be a continuation of the one I gave in this Seminar on March~11. I will present a brief introduction to use partial differential equations (PDE) and variational techniques (including techniques developed in computational fluid dynamics (CFD)) into wavelet transforms and Applications in Image Processing. Two different approaches are used as examples. One is PDE and variational frameworks for image reconstruction. The other one is an adaptive ENO wavelet transform designed by using ideas from Essentially Non-Oscillatory (ENO) schemes for numerical shock capturing.
Wednesday, April 8, 2009 - 11:00 , Location: Skiles 255 , Shandelle Henson , Andrews University , Organizer:
Oscillator synchrony can occur through environmental forcing or as a phenomenon of spontaneous self-organization in which interacting oscillators adjust phase or period and begin to cycle together. Examples of spontaneous synchrony have been documented in a wide variety of electrical, mechanical, chemical, and biological systems, including the menstrual cycles of women. Many colonial birds breed approximately synchronously within a time window set by photoperiod. Some studies have suggested that heightened social stimulation in denser colonies can lead to a tightened annual reproductive pulse (the “Fraser Darling effect”). It has been unknown, however, whether avian ovulation cycles can synchronize on a daily timescale within the annual breeding pulse. We will discuss socially-stimulated egg-laying synchrony in a breeding colony of glaucous-winged gulls using Monte Carlo analysis and a discrete-time dynamical system model.
Tuesday, April 7, 2009 - 16:00 , Location: Skiles 269 , Andrei Kapaev , Indiana University-Purdue University Indianapolis , Organizer: Stavros Garoufalidis
Solutions of the simplest of the Painleve equations, PI, y'' = 6y^2+x, exhibit surprisingly rich asymptotic properties as x is large. Using the Riemann-Hilbert problem approach, we find an exponentially small addition to an algebraically large background admitting a power series asymptotic expansion and explain how this "beyond of all orders" term helps us to compute the coefficient asymptotics in the preceding series.
Series: PDE Seminar
Tuesday, April 7, 2009 - 15:05 , Location: Skiles 255 , Joseph Jerome , Northwestern University, Evanston , Organizer:
The Cauchy problem for the Poisson-Nernst-Planck/Navier-Stokes model was investigated by the speaker in [Transport Theory Statist. Phys. 31 (2002), 333-366], where a local existence-uniqueness theory was demonstrated, based upon Kato's framework for examining evolution equations. In this talk, the existence of a global distribution solution is proved to hold for the model, in the case of the initial-boundary value problem. Connection of the above analysis to significant applications is discussed. The solution obtained is quite rudimentary, and further progress would be expected in resolving issues of regularity.
Tuesday, April 7, 2009 - 11:00 , Location: Skiles 255 , Adam Marcus , Yale University , Organizer: Prasad Tetali
The entropy function has a number of nice properties that make it a useful counting tool, especially when one wants to bound a set with respect to the set's projections. In this talk, I will show a method developed by Mokshay Madiman, Prasad Tetali, and myself that builds on the work of Gyarmati, Matolcsi and Ruzsa as well as the work of Ballister and Bollobas. The goal will be to give a black-box method for generating projection bounds and to show some applications by giving new bounds on the sizes of Abelian and non-Abelian sumsets.
Monday, April 6, 2009 - 16:30 , Location: Skiles 255 , Vera Mikyoung Hur , MIT , Organizer: Yingfei Yi
I will speak on the dispersive character of waves on the interface between vacuum and water under the influence of gravity and surface tension. I will begin by giving a precise account of the formulation of the surface water-wave problem and discussion of its distinct features. They include the dispersion relation, its severe nonlinearity, traveling waves and the Hamiltonian structure. I will describe the recent work of Hans Christianson, Gigliola Staffilani and myself on the local smoothing effect of 1/4 derivative for the fully nonlinear problem under surface tension with some detail of the proof. If time permits, I will explore some open questions regarding long-time behavior and stability.
Monday, April 6, 2009 - 16:00 , Location: Emory, W306 MSC (Math and Science Center) , Noel Brady , University of Oklahoma , Organizer: John Etnyre

Joint meeting at Emory

A k--dimensional Dehn function of a group gives bounds on the volumes of (k+1)-balls which fill k--spheres in a geometric model for the group. For example, the 1-dimensional Dehn function of the group Z^2 is quadratic. This corresponds to the fact that loops in the euclidean plane R^2 (which is a geometric model for Z^2) have quadratic area disk fillings. In this talk we will consider the countable sets IP^{(k)} of numbers a for which x^a is a k-dimensional Dehn function of some group. The situation k \geq 2 is very different from the case k=1.
Monday, April 6, 2009 - 15:00 , Location: Emory, W306 MSC (Math and Science Center) , John Etnyre , School of Mathematics, Georgia Tech , Organizer: John Etnyre

Joint meeting at Emory

Recall that an open book decomposition of a 3-manifold M is a link L in M whose complement fibers over the circle with fiber a Seifert surface for L. Giroux's correspondence relates open book decompositions of a manifold M to contact structures on M. This correspondence has been fundamental to our understanding of contact geometry. An intriguing question raised by this correspondence is how geometric properties of a contact structure are reflected in the monodromy map describing the open book decomposition. In this talk I will show that there are several interesting monoids in the mapping class group that are related to various properties of a contact structure (like being Stein fillable, weakly fillable, . . .). I will also show that there are open book decompositions of Stein fillable contact structures whose monodromy cannot be factored as a product of positive Dehn twists. This is joint work with Jeremy Van Horn-Morris and Ken Baker.
Friday, April 3, 2009 - 15:00 , Location: Skiles 255 , Alexandra Kolla , UC Berkeley , Organizer: Prasad Tetali
I will present an approximation algorithm for the following problem: Given a graph G and a parameter k, find k edges to add to G as to maximize its algebraic connectivity. This problem is known to be NP-hard and prior to this work no algorithm was known with provable approximation guarantee. The algorithm uses a novel way of sparsifying (patching) part of a graph using few edges.
Friday, April 3, 2009 - 12:30 , Location: Skiles 269 , Sergio Almada , School of Mathematics, Georgia Tech , Organizer:
Suppose b is a vector field in R^n such that b(0) = 0. Let A = Jb(0) the Jacobian matrix of b at 0. Suppose that A has no zero eigenvalues, at least one positive and at least one negative eigenvalue. I will study the behavior of the stochastic differential equation dX_\epsilon = b(X_\epsilon) + \epsilon dW as \epsilon goes to 0. I will illustrate the techniques done to deal with this kind of equation and make remarks on how the solution behaves as compared to the deterministic case.