- You are here:
- GT Home
- Home
- News & Events

Series: Geometry Topology Seminar

Lickorish observed a simple way to make two knots in S^3 that produced the same manifold by the same surgery. Many have extended this result with the most dramatic being Osoinach's method (and Teragaito's adaptation) of creating infinitely many distinct knots in S^3 with the same surgery yielding the same manifold. We will turn this line of inquiry around and examine relationships within such families of corresponding knots in the resulting surgered manifold.

Series: Stochastics Seminar

So far, likelihood-based interval estimate for quantiles has not been studied in literature for interval censored Case 2 data and partly interval-censored data, and in this context the use of smoothing has not been considered for any type of censored data. This article constructs smoothed weighted empirical likelihood ratio confidence intervals (WELRCI) for quantiles in a unified framework for various types of censored data, including right censored data, doubly censored data, interval censored data and partly interval-censored data. The 4th-order expansion of the weighted empirical log-likelihood ratio is derived, and the 'theoretical' coverage accuracy equation for the proposed WELRCI is established, which generally guarantees at least the 'first-order' accuracy. In particular for right censored data, we show that the coverage accuracy is at least O(n^{-1/2}), and our simulation studies show that in comparison with empirical likelihood-based methods, the smoothing used in WELRCI generally gives a shorter confidence interval with comparable coverage accuracy. For interval censored data, it is interesting to find that with an adjusted rate n^{-1/3}, the weighted empirical log-likelihood ratio has an asymptotic distribution completely different from that by the empirical likelihood approach, and the resulting WELRCI perform favorably in available comparison simulation studies.

Series: Graph Theory Seminar

Given a configuration of pebbles on the vertices of a connected graph G, a pebbling move is defined as the removal of two pebbles from some vertex, and the placement of one of these on an adjacent vertex. The pebbling number of a graph G is the smallest integer k such that given any configuration of k pebbles on G and any specified vertex v in V(G), there is a sequence of pebbling moves that sends a pebble to v. We will show that the pebbling number of a graph of diameter four on n vertices is at most 3n/2 + O(1), and this bound is best possible up to an additive constant. This proof, based on a discharging argument and a decomposition of the graph into ''irreducible branches'', generalizes work of Bukh on graphs of diameter three. Further, we prove that the pebbling number of a graph on n vertices with diameter d is at most (2^{d/2} - 1)n + O(1). This also improves a bound of Bukh.

Series: Analysis Seminar

Note change in time.

The theory of geometric discrepancy studies different variations of the following question: how well can one approximate a uniform distribution by a discrete one, and what are the limitations that necessarily arise in such approximations. Historically, the methods of harmonic analysis (Fourier transform, Fourier series, wavelets, Riesz products etc) have played a pivotal role in the subject. I will give an overview of the problems, methods, and results in the field and discuss some latest developments.

Series: ACO Student Seminar

Nash bargaining was first modeled in John Nash's seminal 1950 paper. In his paper, he used a covex program to give the Nash bargaining solution, which satifies many nature properties. Recently, V.Vazirani defined a class of Nash bargaining problem as Uniform Nash Bargaining(UNB) and also defined a subclass called Submodular Nash Bargaining (SNB). In this talk, we will consider some game theoretic issues of UNB: (1) price of bargaining; (2) fully competitiveness; (3) min-max and max-min fairness and we show that each of these properties characterizes the subclass SNB.

Series: Research Horizons Seminar

We examine some problems in the coupled motions of fluids and flexible solid bodies. We first present some basic equations in fluid dynamics and solid mechanics, and then show some recent asymptotic results and numerical simulations. No prior experience with fluid dynamics is necessary.

Series: PDE Seminar

We consider the existence of periodic solutions to the Euler equations of gas dynamics. Such solutions have long been thought not to exist due to shock formation, and this is confirmed by the celebrated Glimm-Lax decay theory for 2x2 systems. However, in the full 3x3 system, multiple interaction effects can combine to slow down and prevent shock formation. In this talk I shall describe the physical mechanism supporting periodicity, describe combinatorics of simple wave interactions, and develop periodic solutions to a "linearized" problem. These linearized solutions have a beautiful structure and exhibit several surprising and fascinating phenomena. I shall also discuss partial progress on the perturbation problem: this leads us to problems of small divisors and KAM theory. This is joint work with Blake Temple.

Series: CDSNS Colloquium

Nonlinear wave phenomena are of great importance in the physical world and have been for a long time a challenging topic of research for both pure and applied mathematicians. There are numerous nonlinear evolution equations for which we need to analyze the properties of the solutions for time evolution of the system. As the first step, we should understand the dynamics of their traveling wave solutions. There exists an enormous literature on the study of nonlinear wave equations, in which exact explicit solitary wave, kink wave, periodic wave solutions and their dynamical stabilities are discussed. To find exact traveling wave solutions for a given nonlinear wave system, a lot of methods have been developed. What is the dynamical behavior of these exact traveling wave solutions? How do the travelling wave solutions depend on the parameters of the system? What is the reason of the smoothness change of traveling wave solutions? How to understand the dynamics of the so-called compacton and peakon solutions? These are very interesting and important problems. The aim of this talk is to give a more systematic account for the bifurcation theory method of dynamical systems to find traveling wave solutions and understand their dynamics for two classes of singular nonlinear traveling systems.

Monday, November 17, 2008 - 13:00 ,
Location: Skiles 255 ,
Maoan Han ,
Shanghai Normal University ,
Organizer: Haomin Zhou

Let H(m) denote the maximal number of limit cycles of polynomial systems of degree m. It is called the Hilbert number. The main part of Hilbert's 16th problem posed in 1902 is to find its value. The problem is still open even for m=2. However, there have been many interesting results on the lower bound of it for m\geq 2. In this paper, we give some new lower bounds of this number. The results obtained in this paper improve all existing results for all m\geq 7 based on some known results for m=3,4,5,6. In particular, we confirm the conjecture H(2k+1) \geq (2k+1)^2-1 and obtain that H(m) grows at least as rapidly as \frac{1}{2\ln2}(m+2)^2\ln(m+2) for all large m.

Friday, November 14, 2008 - 14:00 ,
Location: Skiles 269 ,
Thang Le ,
School of Mathematics, Georgia Tech ,
Organizer: Thang Le

We will explain the famous result of Luck and Schick which says that for a large class of 3-manifolds, including all knot complements, the hyperbolic volume is equal to the l^2-torsion. Then we speculate about the growth of homology torsions of finite covers of knot complements. The talk will be elementary and should be accessible to those interested in geometry/topology.