Seminars and Colloquia by Series

Friday, March 2, 2018 - 15:00 , Location: Skiles 005 , Alexander Barvinok , University of Michigan , barvinok@umich.edu , Organizer: Prasad Tetali
This is Lecture 3 of a series of 3 lectures. See the abstract on Tuesday's ACO colloquium of this week.(Please note that this lecture will be 80 minutes' long.)
Friday, March 2, 2018 - 15:00 , Location: Skiles 005 , Alexander Barvinok , University of Michigan , barvinok@umich.edu , Organizer: Prasad Tetali
This is Lecture 3 of a series of 3 lectures. See the abstract on Tuesday's ACO colloquium of this week.(Please note that this lecture will be 80 minutes' long.)
Friday, March 2, 2018 - 15:00 , Location: Skiles 202 , Predrag Cvitanovic , School of Physics, Georgia Tech , Organizer: Michael Loss
Recent advances in fluid dynamics reveal that the recurrent flows observed in moderate Reynolds number turbulence result from close passes to unstable invariant solutions of Navier-Stokes equations. By now hundreds of such solutions been computed for a variety of flow geometries, but always confined to small computational domains (minimal cells).Pipe, channel and plane flows, however, are flows on infinite spatial domains. We propose to recast the Navier-Stokes equations as a space-time theory, with the unstable invariant solutions now being the space-time tori (and not the 1-dimensional periodic orbits of the classical periodic orbit theory). The symbolic dynamics is likewise higher-dimensional (rather than a single temporal string of symbols). In this theory there is no time, there is only a repertoire of admissible spatiotemporal patterns.We illustrate the strategy by solving a very simple classical field theory on a lattice modelling many-particle quantum chaos, adiscretized screened Poisson equation, or the ``spatiotemporal cat.'' No actual cats, graduate or undergraduate, have showninterest in, or were harmed during this research.
Friday, March 2, 2018 - 14:00 , Location: Skiles 006 , Jen Hom , Georgia Tech , Organizer: Jennifer Hom
In this series of talks, we will study the relationship between the Alexander module and the bordered Floer homology of the Seifert surface complement. In particular, we will show that bordered Floer categorifies Donaldson's TQFT description of the Alexander module. No prior knowledge of the Alexander module or Heegaard Floer homology will be assumed.
Friday, March 2, 2018 - 11:00 , Location: Skiles 006 , Jill Pipher , Brown University , Organizer: Mayya Zhilova
The regularity properties of solutions to linear partial differential equations in domains depend on the structure of the equation, the degree of smoothness of the coefficients of the equation, and of the boundary of the domain. Quantifying this dependence is a classical problem, and modern techniques can answer some of these questions with remarkable precision. For both physical and theoretical reasons, it is important to consider partial differential equations with non-smooth coefficients. We’ll discuss how some classical tools in harmonic and complex analysis have played a central role in answering questions in this subject at the interface of harmonic analysis and PDE.
Friday, March 2, 2018 - 10:00 , Location: Skiles 254 , Marcel Celaya , Georgia Tech , mcelaya@gatech.edu , Organizer: Kisun Lee
In this talk we will discuss the paper of Adiprasito, Huh, and Katz titled "Hodge Theory for Combinatorial Geometries," which establishes the log-concavity of the characteristic polynomial of a matroid.
Thursday, March 1, 2018 - 18:00 , Location: Klaus Lecture Auditorium 1443 , Jill Pipher , Brown University , Organizer: Michael Lacey
How is it possible to send encrypted information across an insecure channel (like the internet) so that only the intended recipient can decode it, without sharing the secret key in advance? In 1976, well before this question arose, a new mathematical theory of encryption (public-key cryptography) was invented by Diffie and Hellman, which made digital commerce and finance possible. The technology advances of the last twenty years bring new and urgent problems, including the need to compute on encrypted data in the cloud and to have cryptography that can withstand the speed-ups of quantum computers. In this lecture, we will discuss some of the history of cryptography, as well as some of the latest ideas in "lattice" cryptography which appear to be quantum resistant and efficient.
Thursday, March 1, 2018 - 13:30 , Location: Skiles 005 , Alexander Barvinok , University of Michigan , barvinok@umich.edu , Organizer: Prasad Tetali
 This is Lecture 2 of a series of 3 lectures by the speaker. See the abstract on Tuesday's ACO colloquium of this week. (Please note that this lecture will be 80 minutes' long.)
Thursday, March 1, 2018 - 13:30 , Location: Skiles 005 , Alexander Barvinok , University of Michigan , barvinok@umich.edu , Organizer: Prasad Tetali
 This is Lecture 2 of a series of 3 lectures by the speaker. See the abstract on Tuesday's ACO colloquium of this week. (Please note that this lecture will be 80 minutes' long.)
Wednesday, February 28, 2018 - 14:00 , Location: Skiles 006 , Hyun Ki Min , GaTech , Organizer: Anubhav Mukherjee
I will introduce the notion of satellite knots and show that a knot in a 3-sphere is either a torus knot, a satellite knot or a hyperbolic knot.

Pages